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A NOTE ABOUT

SPECIAL ULTRAFILTERS ON ω

ANDRES MILLÁN

Abstract. In this note, we show how results by Krzysztof
Ciesielski and Janusz Pawlikowski (The Covering Property

Axiom, CPA: A Combinatorial Core of the Iterated Perfect

Set Model. Cambridge Tracts in Mathematics, 164. Cam-
bridge: Cambridge University Press, 2004) can be used to
answer negatively a question by R. Michael Canjar (On the

generic existence of special ultrafilters, Proc. Amer. Math.
Soc. 110 (1990), no. 1, 233–241) about the generic existence
of selective ultrafilters and how this solution also answers in
the negative a similar question about P -points. We also prove
that if the covering number for the meager ideal is equal to
the dominating number d, then every filter generated by less
than d of its members can be extended to 2c -many c-generated
Q-points. This improves a theorem and a remark by Canjar
(as above).

1. Introduction

We will use standard set theoretic notation. If A,B ∈ [ω]ω we
write A ⊆∗ B provided that A \ B is finite. If A ⊆ ω × ω, then
(A)m = {n < ω : (m,n) ∈ A} for every m < ω. We say that a family
of subsets of ω has the strong finite intersection property (SFIP)
provided that the intersection of any finite subfamily is infinite.
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Given a family A of sets, we denote 〈A〉 the filter generated by
A. Letter F will denote always a non-principal filter on ω. A
basis for F is a family B ⊆ F such that for every F ∈ F there
exists a B ∈ B such that B ⊆ F . We say that F is κ-generated

provided that κ is the minimum cardinality of a basis, and it is < κ-

generated provided it is λ-generated for some λ < κ. A filter F on
ω is a Q-filter provided that for every finite-to-one f : ω → ω there
exists an X ∈ F such that f |̀X is one-to-one. A Q-filter which is
an ultrafilter is called a Q-point. On the other hand, we say that
F is rapid provided that for every f : ω → ω there is an X ∈ F
such that |X ∩ f(n)| ≤ n for every n < ω. A rapid ultrafilter is
called a semi-Q-point. Every Q-point is rapid but not every rapid
ultrafilter is a Q-point. An ultrafilter U on a countably infinite set
is a P -point provided that for every sequence 〈Un ∈ U : n < ω〉 such
that Un+1 ⊆∗ Un for every n < ω, there exists a U ∈ U such that
U ⊆∗ Un for every n < ω. An ultrafilter which is both a P -point
and a Q-point is called selective or Ramsey and an ultrafilter which
is both a P -point and a semi-Q-point is called semiselective.

A family G ⊆ ωω is dominating provided that for every h ∈ ωω

there is a g ∈ G such that h(n) < g(n) for every n < ω. The
number d is the minimum cardinality of a dominating family in ωω.

The number cov(M) is the minimum cardinality of a family of
meager sets whose union covers the real line. It is well known that
both cardinals are uncountable and that cov(M) ≤ d.

The Covering Property Axiom of Krzysztof Ciesielski and Janusz
Pawlikowski will be denoted CPA. Although we are not going to
make explicit use of CPA in this note, we will consider the following
theorem.

Proposition 1.1 (Ciesielski and Pawlikowski [7, Theorem 7.21]).
Let M be a countable transitive model of ZFC+CH and let P be

the partial order in M to add ω2 many Sacks reals with countable

supports. Then CPA holds in M . In particular, CPA is consistent

with ZFC set theory. Moreover, the value of 2ω1 is preserved and it

can be equal to ω2 or bigger.

2. The generic existence of ultrafilters

Definition 2.1 (Canjar [6, Definition 1]). We say that selective
(respectively, semiselective, P -point) ultrafilters generically exist
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iff every < c-generated filter can be extended to a selective (respec-
tively, semiselective, P -point) ultrafilter.

The next two theorems characterize the generic existence of selec-
tive and semiselective ultrafilters and P -points in terms of cov(M)
and d.

Proposition 2.2 (Canjar [6, Theorem 2]). The following three

statements are equivalent:

(1) cov(M) = c;

(2) selective ultrafilters generically exist; and

(3) semiselective ultrafilters generically exist.

Proposition 2.3 (Ketonen [8]). The following are equivalent:

(1) d = c; and

(2) P -points generically exist.

In [6, p. 240], R. Michael Canjar asked, assuming that c is reg-
ular, is the existence of 2c-many selective ultrafilters equivalent to
the generic existence of selectives? We will answer this negatively
by constructing a model of ZFC where c = ω2 and there are 2c-
many selective ultrafilters, but cov(M) < c. The same question for
c singular was answered in the negative by James E. Baumgartner
who noticed that in the Bell-Kunen model described in [3], c = ωω1

and cov(M) = ω1, and there are 2c-many selective ultrafilters on
ω.

Theorem 2.4. There is a model N of ZFC so that N |= “c = ω2, ”
and in N , there are 2c-many selective ultrafilters (P -points), but

selective ultrafilters (P -points) do not generically exist.

Proof: Let Φ stand for “there are 2c-many selective ultrafilters”
and let M be such that M |= “ZFC + CH + 2ω1 = 2ω2 = ω3.” If
P ∈ M is the partial order to add ω2-many Sacks reals iteratively
with countable supports and G is P-generic over M , then

M [G] |= “ZFC + CPA + 2ω1 = 2ω2 = ω3.”

Now, CPA implies that c = ω2, cov(M) = d = ω1 ([7, p. 11]).
That Φ holds in M [G] can be seen either by obtaining 2ω1 -many
selective ultrafilters from CPA ([7, Proposition 6.1.2]) or by using
a theorem by Baumgartner and Richard Laver [2, Theorem 4.5] to
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extend 2ω1-many selective ultrafilters in M to 2ω1-many selective
ultrafilters in M [G]. Therefore,

M [G] |= “c is regular + Φ + cov(M) < c.”

Hence, N = M [G] works. �

3. Large q-points

In a remark in [6, p. 237], Canjar claimed that it is possi-
ble to construct 2d-many rapid ultrafilters from the hypothesis
cov(M) = d. Actually, this already follows from the existence of
rapid ultrafilters since it is well known (see [10, Theorem 4]) that
U ⊗ V (U ⊗ V = {A ⊆ ω × ω : {m < ω : (A)m ∈ V} ∈ U}) is rapid
provided V is. Therefore, if we let U vary on the set of non-principal
ultrafilters on ω, we will obtain 2c-many different rapid ultrafilters
on ω × ω. However, we can improve considerably this result.

Theorem 3.1. The identity cov(M) = d implies that every filter

on ω which is < d-generated can be extended to 2c-many different

c-generated Q-points.

The theorem will follow as a consequence of the three lemmas
below. To see how this improves Canjar’s claim as well as the
argument above, notice first that ultrafilters of the form U⊗V with
V rapid are rapid but not Q-points. On the other hand, Proposition
1.1 guarantees that there exists a countable transitive model M for
the theory ZFC+ CPA + c = ω2 = 2ω1 . Let Ψ stand for “there are
2c-many Q-points.” Since CPA implies that all cardinals in Cichon’s
diagram are equal to ω1 (see [7, p. 11]), it follows from Proposition
1.1 that

M |= “cov(M) = d + Ψ + 2d < 2c.”

It is interesting to note that all the Q-points obtained in the proof
of Theorem 3.1 are non-selective Q-points. This has to be the case
since it is known that in the iterated perfect set model the identity
cov(M) = d holds and every selective ultrafilter is ω1-generated
(see [7, Corollary 1.5.4]).

In order to prove Theorem 3.1 we will work on ω × ω instead
of ω. Consider the pair (ω × ω,≺) where ≺ is defined as follows.
Pick any well-order ≺k for the finite set Ak of all pairs in ω × ω

with largest coordinate equal to k. If (m1, n1), (m2, n2) ∈ Ak, then
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(m1, n1) ≺ (m2, n2) iff (m1, n1) ≺k (m2, n2); otherwise, (m1, n1) ≺
(m2, n2) iff max{m1, n1} < max{m2, n2}. This induces an order on
(ω × ω)ω×ω by

h ≺ g ⇔ h(m,n) ≺ g(m,n) ∀(m,n) ∈ ω × ω.

A set G ⊆ (ω × ω)ω×ω is ≺-dominating iff for every h ∈ (ω × ω)ω×ω

there exists a g ∈ G such that h ≺ g. Let

d≺ = min {|G| : G ⊆ (ω × ω)ω×ω and G is ≺-dominating }.

Lemma 3.2. d = d≺.

Proof: This is immediate because (ω × ω,≺) and (ω,<) are iso-
morphic. �

Lemma 3.3. Let F be a < cov(M)-generated filter on ω×ω. There

exists a partition P = {Pm : m < ω} of ω×ω such that |A∩Pm| = ω

for every A ∈ F and m < ω.

Proof: Let κ < cov(M) and let B = {Bξ : ξ < κ} be a basis of
F . We identify the set of all partitions P = {Pm : m < ω} of ω

into infinite pieces with the set Y of all functions f : ω × ω → ω

such that f−1{m} is infinite for every m < ω. It is easy to check
that Y is a Gδ-subset of the product space X = ωω×ω where ω has
the discrete topology. Hence, Y is a Polish space with the relative
topology inherited from X. For every ξ < κ the set

Yξ = {f ∈ Y : ∃m < ω |f−1{m} ∩ Bξ| < ω}

is meager. Since κ < cov(M) there exists an f ∈ Y \
⋃

ξ<κ Yξ.

Hence, the partition Pf = {f−1{m} : m < ω} satisfies the conclu-
sion of the lemma. �

If F : ω × ω → ω × ω is arbitrary, we say that C ⊆ ω × ω is F -
rare provided that F (a, b) ≺ (c, d) for every (a, b), (c, d) ∈ C with
(a, b) ≺ (c, d). The next lemma follows the scheme presented in the
proof of Lemma 9 from [6].

Lemma 3.4. Let F be < cov(M)-generated with |(A)m| = ω for

every A ∈ F , m < ω and let F : ω×ω → ω×ω be arbitrary. There

exists an F -rare set C ⊆ ω × ω such that |(A ∩C)m| = ω for every

A ∈ F , m < ω.
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Proof: Let κ < cov(M) and let B = {Bξ : ξ < κ} be a basis of F .
Take the product topology on X = 2ω×ω with 2 = {0, 1} discrete.
Then, X is a Polish space and Y = {χA ∈ X : A is F -rare} is a
closed subset of X. Therefore, it is also a Polish space with the
relative topology inherited from X. For every ξ < κ, the set

Yξ = {χA ∈ X : ∃m < ω |(A ∩ Bξ)m| < ω}

is meager. Since κ < cov(M), there is a C ∈ Y \
⋃

ξ<κ Yξ. This C

satisfies the conclusion of the lemma. �

Lemma 3.5. Assume cov(M) = d and let F be a < d-generated

filter on ω × ω such that |(X)m| = ω for every X ∈ F and m < ω.

Then, there are 2c-many c-generated Q-points on ω × ω extending

F .

Proof: Let κ < cov(M) and B = {Bξ : ξ < κ} be a basis of F
and fix an independent family K on ω of cardinality c. The family
J = {XA : A ∈ K}, and XA =

⋃

{{m}×ω : m ∈ A} for A ∈ K is an
independent family on ω×ω and |J | = c. Also, for every g : J → 2,
Jg = {S ∈ J : g(S) = 1} ∪ {(ω × ω) \ S : S ∈ J & g(S) = 0} is an

independent family and |Jg| = c. Let 〈Fξ ∈ (ω × ω)ω×ω : ξ < d〉 be
a ≺-dominating family. We use Lemma 3.3 to construct inductively
two sequences 〈Cξ ⊆ ω × ω : ξ < d〉 and 〈Fξ : ξ < d〉 such that for
every ξ < d

(a) Fξ is ≤ max{κ, |ξ|}-generated and extends F ;
(b) ξ < η < d =⇒ Fξ ⊆ Fη;
(c) Fξ+1 = 〈Fξ ∪ {Cξ}〉 and Fξ =

⋃

{Fη : η < ξ} for ξ limit;
(d) |(X)m| = ω for every X ∈ Fξ, m < ω; and
(e) Cξ is Fξ-rare.

Then, the family

Hg =
⋃

{Fξ : ξ < d} ∪ Jg ∪
{

(ω × ω) \
⋂

B : B ⊆ Jg & |B| ≥ ω
}

has the SFIP. Pick for each g ∈ 2J a nonprincipal ultrafilter Ug

on ω × ω extending Hg. The usual argument (see [4, Proposition
9.5]) shows that Ug is c-generated. Also, notice that if g, h ∈ 2J

and g 6= h, then Ug 6= Uh. To see that each Ug is a Q-point, pick
any f : ω × ω → ω × ω finite-to-one. If F : ω × ω → ω × ω is
defined by F (m,n) =≺ -max(f−1{f(m,n)}), then, since the fam-
ily 〈Fξ : ξ < d〉 is ≺-dominating, there exists a ξ < d such that
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F (m,n) ≺ Fξ(m,n) for every (m,n) ∈ Cξ. But condition (e)
from above implies that f(m1, n1) 6= f(m2, n2) for every distinct
(m1, n1), (m2, n2) ∈ Cξ. Thus, f |̀Cξ is one-to-one.

To complete the proof of Theorem 3.1, assume that cov(M) = d

and start with a < d-generated filter F on ω×ω. Then, use Lemma
3.3 to find a partition P = {Pm : m < ω} of ω × ω such that
|X∩Pm| = ω for every m < ω. Consider a bijection b : ω×ω → ω×ω

such that b[Pm] = {m} × ω for every m < ω. Then, the filter
F∗ = {b[X] : X ∈ F} satisfies the hypotheses of Lemma 3.4 and
there are 2c-many c-generated Q-points extending F∗. For each
of these Q-points U∗, the ultrafilter U = {b−1[U ] : U ∈ U∗} is a
Q-point on ω × ω extending F . �

Corollary 3.6. The following four statements are equivalent:

(1) cov(M) = d;

(2) every < d-generated filter can be extended to a Q-point;

(3) every < d-generated filter can be extended to 2c-many c-

generated Q-points; and

(4) there is a cov(M)-generated rapid filter.

Proof: The equivalence (1) ⇔ (2) follows from [6, Theorem 3].
The implication (3) ⇒ (2) is trivial, and (1) ⇒ (3) is Theorem 3.1
above. That (1) ⇔ (4) follows from [5, Lemma 4.6.3(b)] and the
fact that the set formed by the increasing enumerations of members
of a basis of a rapid filter constitutes a dominating family in ωω. �
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