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AN m-DIMENSIONAL

HEREDITARILY INDECOMPOSABLE CONTINUUM

WITH EXACTLY n CONTINUOUS MAPPINGS

ONTO ITSELF

ELŻBIETA POL

Abstract. We show that for every n ∈ N and m ∈ N∪{∞},
there exists a hereditarily indecomposable m-dimensional con-
tinuum X which has exactly n continuous surjections onto
itself (each one being a homeomorphism).

Moreover, we construct a family of cardinality 2ℵ0 of con-
tinua of this type such that no two different continua from
this family are comparable either by continuous mappings or
by embeddings.

1. Introduction

Our terminology follows [5] and [8]. We assume that all our
spaces are separable metrizable. By dimension, we mean the cov-
ering dimension dim and by a continuum, we mean a compact con-
nected space. A continuum X is hereditarily indecomposable, ab-
breviated HI, if for any two intersecting subcontinua K, L of X,
either K ⊂ L or L ⊂ K.

The first HI continuum, now called the pseudo-arc, was con-
structed by Bronis law Knaster [7]. The pseudo-arc, which will
be denoted by P , is an HI one-dimensional chainable continuum
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(unique, up to a homeomorphism), and every non-trivial subcon-
tinuum of P is homeomorphic to P . (For more information and
references concerning the pseudo-arc see [12].)

The first examples of HI continua of dimension m, where m =
2, 3, . . . ,∞, were constructed by R. H. Bing [3].

We say that two continua are comparable by continuous mappings

(by embeddings, respectively) if there exists a continuous mapping
(an embedding, respectively) of one of those continua onto (into,
respectively) the other. By a Cook continuum, we understand a
non-trivial continuum X such that no two different nondegenerate
subcontinua of X are comparable by continuous mappings. The
first example of a hereditarily indecomposable Cook continuum was
constructed in [4]. In the same paper, H. Cook constructed for
every n ∈ N = {1, 2, . . .}, a continuum Hn which has exactly n

continuous mappings onto itself, each one being a homeomorphism.
The continuum Hn is decomposable and admits an atomic mapping
onto a simple closed curve. Applying the ideas from [17], [19], and
[10], we will prove the following theorem.

Theorem 1.1. For each n ∈ N and m ∈ N ∪ {∞}, there exists a

hereditarily indecomposable continuum Xnm of dimension m which

has exactly n continuous mappings onto itself, each one being a

homeomorphism. Moreover, Xnm admits an atomic mapping onto

the pseudo-arc P and the group of autohomeomorphisms of Xnm

onto Xnm is the cyclic group of order n.

In the special cases when m = 1 or n = 1, these results were
obtained in [19]. Any 1-dimensional HI Cook continuum satisfies
the condition of Theorem 1.1 for m = n = 1.

Moreover, we will prove the following theorem.

Theorem 1.2. For every n ∈ N and m ∈ N ∪ {∞}, there exists

a family {Xnm(s) : s ∈ S}, where S is a set of cardinality 2ℵ0 of

topologically different HI m-dimensional continua such that every

Xnm(s) has exactly n continuous surjections onto itself and admits

an atomic mapping ps onto the pseudo-arc P . Moreover,

(i) if s 6= t, then there is no continuous mapping of Xnm(s)
onto Xnm(t);

(ii) if s 6= t, then Xnm(s) does not embed into Xnm(t).
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Our construction is a modification of the ones given in [17] and
[19] and applies a method of condensation of singularities. As be-
fore, we exploit an HI Cook continuum and we use a theorem of
Wayne Lewis stating that for each n ∈ N there exists an embed-
ding of the pseudo-arc P in the plane such that the restriction r of
a period n rotation of the plane around (0, 0) to P is a homeomor-
phism of P onto P of period n [11]. To raise the dimension of the
space obtained in [19], we construct our space in such a way that it
contains a certain m-dimensional continuum Y1. The new idea in
the proof lies in Lemma 2.2 below. Roughly speaking, this lemma
states that one can “replace” one point of a given continuum X by
a special continuum in such a way that the resulting space can be
mapped onto any given Waraszkiewicz spiral. In this way, we can
“improve” a given continuum X so that a given continuum Y1 does
not map onto the whole X.

2. Preliminaries

A continuum Y is a common model for a family of continua W, if
every member of W is a continuous image of Y (we do not assume
that Y ∈ W).

By the ray, we will understand a space homeomorphic to the half-
line [0, +∞). In [22], Z. Waraszkiewicz constructed a family W of
planar continua without a common model. By a Waraszkiewicz

spiral, we mean a member of this family. Every Waraszkiewicz
spiral W is a compactification of the ray L with the remainder S

homeomorphic to the circle. We have

(1) for every continuum A there exists a Waraszkiewicz spiral
W such that A cannot be mapped onto W .

The composant of a point x in a continuum X is the union of
all proper subcontinua of X containing x. If X is a non-degenerate
HI continuum, then X has 2ℵ0 different composants, which are
pairwise disjoint and are connected Fσ-subsets of X, both dense
and a boundary set in X (see [8, §48, VI]).

A mapping f : X → Y between continua is confluent (weakly con-

fluent, respectively), if for each subcontinuum Q of Y each (some,
respectively) component of f−1(Q) is mapped by f onto Q. As
proved by Cook in [4], each mapping of a continuum onto an HI
continuum is confluent.
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A subcontinuum K of a continuum X is terminal if every sub-
continuum of X which intersects both K and its complement must
contain K. A continuous mapping from a continuum X onto Y is
atomic if every fiber of f is a terminal subcontinuum of X.

Lemma 2.1 ([1], cf. [14] and [20]). Let X and Y be two continua

and a ∈ X. Then there exists a continuum M(X,Y, a) and an

atomic mapping p : M(X,Y, a) → X onto X such that p−1(a) is

homeomorphic to Y and p | p−1(X \ {a}) : p−1(X \ {a}) → X \ {a}
is a homeomorphism.

Every continuum M(X,Y, a) with the properties described in
this lemma will be called a pseudosuspension of Y over X at the

point a (cf. [14, 1.13]) and the mapping p will be called a natural

projection from M(X,Y, a) onto X.
Since p−1(a) is a terminal continuum in M(X,Y, a), then (see

[13, Proposition 11])

(2) if X and Y are HI, then so is M(X,Y, a).

By the countable sum theorem (see [5], Theorem 1.5.3), we get

(3) dimM(X,Y, a) = max{dimX, dimY }.

The following lemma, which was suggested by the referee of [16]
(see Remark 5.2), was proved in detail in [10, Lemma 5.1].

Lemma 2.2. Let X be any continuum, let a be any point of X, and

let W = L ∪ S be a Waraszkiewicz spiral, being a compactification

of the ray L with the remainder S homeomorphic to the circle. Let

Y be a continuum satisfying the following condition:

(4) There exists a mapping f : Y → W of Y onto W and a

sequence M1 ⊂ M2 ⊂ . . . of subcontinua of Y contained in

f−1(L) such that the union
⋃∞

i=1 Mi is dense in Y .

Then there exists a pseudosuspension M(X,Y, a) which admits a

mapping f̃ : M(X,Y, a) → W onto W .

Lemma 2.3. For every Waraszkiewicz spiral W there exists an

HI continuum Y of dimension ≤ 2 which satisfies condition (4) of

Lemma 2.2. Moreover, Y can be chosen as a subcontinuum of any

given HI continuum Z with 2 ≤ dimZ < ∞.

Proof: Let Z be any given HI continuum of finite dimension ≥ 2
and W be a Waraszkiewicz spiral. Let Z ′ ⊂ Z be a 2-dimensional
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subcontinuum of Z. By a theorem of Mazurkiewicz [15], there exists
a weakly confluent mapping of Z ′ onto the square I

2. Since W ⊂ I
2,

there exists a subcontinuum X ⊂ Z ′ which is mapped by f onto
W . By Lemma 5.2 of [10], X contains a subcontinuum Y , which
satisfies (4). �

Lemma 2.4 ([4]). There exists a one-dimensional HI continuum

H such that for any two different non-degenerate subcontinua of H,

there is no mapping from one onto the other.

Lemma 2.5 (see [4] and [21], cf. [19], Lemma 2.2). If f : P → H

is a continuous mapping of the pseudo-arc into a Cook continuum

H, then f is a constant mapping.

Lemma 2.6 (see Lemma 5.1 of [9] and its proof). For any proper

subcontinuum M of a 1-dimensional HI Cook continuum H and for

every m = 1, 2, . . . ,∞, there exists an m-dimensional HI continuum

Mm such that every map from a subcontinuum of M into Mm is

constant.

3. Proofs

Proof of Theorem 1.1: For every n ∈ N, a 1-dimensional contin-
uum Xn1 with the required properties was constructed in [17] and
[19]. We shall modify this construction in order to raise the dimen-
sion of such a space. Fix n ∈ N and m ∈ {2, 3, . . . ,∞}. Inductively,
let us define a sequence Y1, Y2, . . . of HI continua and a sequence
W1,W2, . . . of Waraszkiewicz spirals such that

(5) dimY1 = m and dimYl ≤ 2 for l = 2, 3, . . .;

(6) condition (4) is satisfied for Y = Yl and W = Wl−1, for
every l = 1, 2, . . .;

(7) Yl cannot be mapped onto Wl for l = 1, 2, . . ..

Let Y1 be any HI m-dimensional continuum. By (1), there exists
a Waraszkiewicz spiral W1 such that Y1 cannot be mapped onto
W1. Suppose now that Y1, Y2, . . . , Yl−1 and W1,W2, . . . ,Wl−1 are
already defined for some l ≥ 2. For Yl, we take a continuum Y of
dimension ≤ 2 from Lemma 2.3, where we put W = Wl−1. Thus,
Yl can be mapped onto Wl−1 and satisfies (4) for W = Wl−1. Again
by condition (1), there exists a Waraszkiewicz spiral Wl such that
Yl does not map onto Wl.
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By a theorem of Lewis [11], there exists a pseudo-arc P in the
Euclidean plane and a homeomorphism r : P → P onto P of period
n, which is the restriction of the rotation of the plane about the
point (0, 0) through the angle 2π

n
. Note that (0, 0) ∈ P , since the

pseudo-arc P has the fixed point property (see [6]). Let P0 =
{(x1, x2) ∈ P : x1 = λcosα and x2 = λsinα for some 0 < λ <

∞ and 0 < α < 2π
n
}, and Pk = rk(P0) for k = 0, 1, . . . , n − 1. Let

{b1, b2, . . .} be a countable dense subset of P0 such that bi and bj

are in the same composant of P if and only if i = j.
There exists a composant C in P which does not contain any

bi. In C ∩ P0, we choose a point c0, a sequence Qi of continua
containing c0 and converging to {c0}, and a sequence c1, c2, . . . of
points such that ci ∈ Qi and ci 6= cj for i 6= j.

Now, let {a1, a2, . . .} be a sequence such that a2l−1 = cl and
a2l = bl for l = 1, 2, . . .. Put B0 =

⋃
{bl}

∞
l=1

, C0 =
⋃
{cl}

∞
l=1

, and
A0 = B0 ∪ C0.

Then

(8) the set B0 \ F , where F is any finite subset of B0, is dense
in P0.

Let B =
⋃n−1

k=0 rk(B0), C =
⋃n−1

k=0 rk(C0), and A = B ∪ C. Since
a homeomorphic image of a composant of P is a composant of P ,
then

(9) every composant of P contains at most n points from B,

and

(10) C intersects at most n composants of P .

Finally, let K1,K2, . . . be a sequence of disjoint non-degenerate
subcontinua of the hereditarily indecomposable Cook continuum H

from Lemma 2.4. Thus,

(11) for every j 6= i, every continuous mapping from a subcon-
tinuum of Kj into Ki is constant.

Let us define an inverse sequence {Li, p
i
j, {0}∪N} in the following

way. Put L0 = P . Let L1 = M(P, Y1, a1) be a pseudosuspension
of an m-dimensional HI continuum Y1 over P at a1 = c1 and let
p1
0 be the natural projection. Suppose that Li and pi

j are already
defined for j ≤ i ≤ s, where s ∈ N. If s = 2l for l ≥ 1, then let
Ls = L2l = M(Ls−1,Kl, (ps−1

0 )−1(as)) be a pseudosuspension of a
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Cook continuum Kl over Ls−1 at (ps−1
0 )−1(as) = (ps−1

0 )−1(bl). If
s = 2l − 1 for some l ≥ 2, then as = cl, and by (6), the conditions
of Lemma 2.2 are satisfied for W = Wl−1 and Y = Yl, so there
exists a pseudosuspension Ls = L2l−1 = M(Ls−1, Yl, (ps−1

0 )−1(as))

of Yl over Ls−1 at (ps−1
0 )−1(as) which admits a mapping onto Wl−1.

Now, let ps
s−1 be the natural projection and ps

j = p
j+1

j ◦ . . . ◦ ps
s−1

for j < s. Let L be an inverse limit of this inverse sequence and
let ps : L → Ls be the projection. In particular, let p = p0 be the
projection of the limit space onto L0 = P .

Let us note that for every s ∈ N, Ls is the union of an open sub-
set homeomorphic to P \

⋃s
i=0{ai}, of a copy of the m-dimensional

continuum Y1, and of finitely many copies of at most 2-dimensional
continua from the family {K1, Y2,K2, Y3, . . .}. Thus, by the count-
able sum theorem, dimLs = m for every s ∈ N. By the theorem on
the dimension of the limit of an inverse sequence (see [5, Theorem
1.13.4 ]) and since L contains a topological copy of Y1, it follows
that

(12) the dimension of the limit space L is equal to m.

Since L2l−1 can be mapped onto Wl−1 for l ≥ 2, and L projects
onto L2l−1, then

(13) L can be mapped onto every Wl, for l = 1, 2, . . ..

Since the projection pi
j : Li → Lj is a composition of finitely

many atomic mappings, then it is atomic (see [13, (1.4)]). Hence,
p is atomic (see [2, Theorem II]).

Let us note also that by (8) and from the definition of topology
of the inverse limit,

(14) for every finite subset F of B0, every open subset of p−1(P0)
contains some set p−1(b), where b ∈ B0 \ F .

We can assume additionally that L ⊂ P × I
∞, where I = [0, 1],

and that p is the restriction of the projection of P × I
∞ onto P .

Moreover, we can assume that p−1(y) = (y, (0, 0, . . .)) for every
y ∈ P \ P0.

Indeed, assume that L ⊂ I
∞ and for x, y ∈ R

2 let ρ(x, y) =
min(ρe(x, y), 1), where ρe is the Euclidean metric in the plane. If
f(x) = (p(x), ρ(p(x), R2\P0)·x) for x ∈ L, then f is continuous and
one-to-one; hence, it is a homeomorphism of L onto f(L) ⊂ P ×I

∞.
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Thus, we can replace L by f(L) and p by the restriction of the
projection of P × I

∞ onto P .
From the construction, it follows that for l ∈ N, p−1(a2l−1) is

homeomorphic to the continuum Yl, p−1(a2l) is homeomorphic to
the Cook continuum Kl, and p | p−1(P\A0) : p−1(P\A0) → (P\A0)
is a homeomorphism.

Let r(y, t) = (r(y), t) for (y, t) ∈ P × I
∞. Let P0 be the closure

of P0 in P . For k = 0, 1, . . . , n − 1, let P̃k = rk(p−1(P0)) and

Xnm =
⋃n−1

k=0 P̃k.
Note that Xnm admits a continuous mapping g onto L, being

the identity on P̃0, such that g |
⋃n−1

k=1 P̃k is the restriction of the
projection of P × I

∞ onto P . Thus, by (13),

(15) Xnm can be mapped onto Wl for every l = 1, 2, . . ..

Let p̃ : Xnm → P be the restriction of the projection of P ×
I
∞ onto the first axis. The mapping r̃ = r | Xnm is a period n

homeomorphism of Xnm onto Xnm, such that

(16) p̃ ◦ r̃k = rk ◦ p̃ for every k = 0, 1, . . . , n − 1,

and

(17) p(x) = p̃(x) for x ∈ P̃0.

As in [17], we check that p̃ is atomic (cf. [17, Lemma 2.7]).

Note that

(18) p̃ | p̃−1(P \ A) : p̃−1(P \ A) → P \ A is a homeomorphism.

Moreover, for k ∈ {0, 1, . . . , n − 1}, we have that

(19) if x = rk(a1) = rk(c1), then p̃−1(x) is a copy of the m-
dimensional HI continuum Y1;

(20) if x = rk(a2l−1) = rk(cl) for some l ≥ 2, then the set Y k
l =

p̃−1(x) is a copy of the HI continuum Yl with dimYl ≤ 2;

and

(21) if x = rk(a2l) = rk(bl) for some l ≥ 1, then Kk
l = p̃−1(x) is

a copy of the HI Cook continuum Kl.

From (14), it follows that

(22) if F is a finite subset of B, and x(b) ∈ p̃−1(b) for b ∈ B \F ,
then the set {x(b) : b ∈ B \ F} is dense in Xnm.
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Since Xnm is the union of n closed subspaces which embed into
L, then, by (12) and (19), dimXnm = m.

The space Xnm is HI, since it is the preimage of an HI continuum
P under the atomic mapping p̃ with HI fibers.

Since p̃ is an atomic mapping, every composant of Xnm is equal
to p̃−1(L) for some composant L of P (see [20, Lemma 2.8]). By
(9),

(23) every composant of Xnm contains at most n copies of con-
tinua from the family K = {Kk

l : l ∈ N, k = 0, 1, . . . , n −
1} = {p̃−1(b) : b ∈ B}.

Let f : Xnm → Xnm be an arbitrary continuous mapping of Xnm

onto Xnm. We will show that f = r̃k for some k ∈ {0, 1, . . . , n−1}.
For every k and l, Y k

l cannot be mapped onto Wl, while Xnm

admits a mapping onto Wl by (15), so f(Y k
l ) 6= Xnm. Thus,

(24) for every k ∈ {0, 1, . . . , n− 1} and l ∈ N, f(Y k
l ) is contained

in one of the composants of Xnm.

Recall that Qi is a sequence of continua in P containing ci con-
verging to c0, with diameters tending to 0. In every Ls, the sequence
of continua {(pn

0 )−1(Qi)}
∞
i=1 converges to the point (pn

0 )−1(c0), so
in the inverse limit space L, the sequence of continua {p−1(Qi)}

∞
i=1

converges to the point p−1(c0).
It follows that for every k ∈ {0, 1, . . . , n−1}, the sequence of con-

tinua {p̃−1(rk(Qi))}
∞
i=1 converges to the one-point set {p̃−1(rk(c0))},

so the sequence of continua {f(p̃−1(rk(Qi)))}
∞
i=1 converges to the

one-point set {f(p̃−1(rk(c0)))}. Thus, for a fixed k, almost all con-
tinua f(p̃−1(rk(Qi))), where i ∈ N, are contained in the same com-
posant of Xnm and thus, almost all continua f(Y k

l ), where l ∈ N,
are contained in the same composant of Xnm. From this and (24),
it follows that the union of all sets f(Y k

l ), for k = 0, 1, . . . , n − 1
and l = 0, 1, . . ., is contained in finitely many composants of Xnm.

Thus, by (23), only finitely many continua from the family {Kk
l :

l ∈ N, k = 0, 1, . . . , n − 1} can intersect the image under f of the
union

⋃
{Y k

l : l ∈ N, k = 0, 1, . . . , n − 1} = p̃−1(C). It follows that

(25) there exists l0 such that for l ≥ l0 and every k, Kk
l ∩

f(p̃−1(C)) = ∅.

Let B′ = {rk(bl) : l ≥ l0, k = 0, 1, . . . , n− 1}. We will show that
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(26) for every b ∈ B′, there is a nontrivial subcontinuum Q of
p̃−1(b) and t ∈ {1, 2, . . . , n − 1} such that f(r̃t(x)) = x for
every x ∈ Q.

Fix b ∈ B′. Then p̃−1(b) is equal to the Cook continuum Kk
l for

some l ≥ l0 and k ∈ {1, 2, . . . , n − 1}. Since Xnm is HI, then f is
confluent and thus, there exists a proper subcontinuum T of Xnm

such that f(T ) = Kk
l . Then T is disjoint with p̃−1(C) by (25) and

is contained in some composant of Xnm. From this and (23), it
follows that either T is contained in p̃−1(b′) for some b′ ∈ B, or T is
the union of a non-empty subset of p̃−1(P \A) and of finitely many
continua p̃−1(b(1)), . . . , p̃−1(b(r)), where b(i) ∈ B. In the second
case, there exists i such that f(p̃−1(b(i))) is a nondegenerate sub-
continuum of p̃−1(b). For otherwise, the set Kk

l \
⋃r

i=1 f(p̃−1(b(i)))
would contain a non-degenerate subcontinuum, which is the image
of a subcontinuum T ′ ⊂ p̃−1(P \ A) ∩ T . However, by (18), each
non-degenerate subcontinuum T ′ of Xnm contained in p̃−1(P \ A)
is homeomorphic to P ; therefore, by Lemma 2.5, T ′ admits only
constant mappings into the Cook continuum Kk

l , which gives a
contradiction.

Therefore, in both cases, there exists b′ ∈ B such that f(T ∩
p̃−1(b′)) is a nondegenerate subcontinuum of Kk

l . By (11), p̃−1(b′)
must be equal to Kt

l for some t, and, for Q = T ∩ p̃−1(b), condition
(26) is satisfied, because Q and f(Q) must be topological copies of
the same nondegenerate subcontinuum of the Cook continuum Kl.
By choosing a point x(b) ∈ p̃−1(b) ∩ K, we get the result that

(27) for every b ∈ B′, there is a point x(b) ∈ p̃−1(b) such that
f(r̃t(x(b))) = x(b) for some t ∈ {1, 2, . . . , n − 1}.

By (22), the set Y = {x(b) : b ∈ B′} is dense in Xnm.
The remaining part of the proof repeats the arguments from the

proof of Theorem 3.1 in [19]. First, let us note that

(28) for every x ∈ Xnm, there is t ∈ {0, 1, . . . , n − 1} such that
f(r̃t(x)) = x.

Indeed, one can find a sequence {x(bj)}
∞
j=1, where bj ∈ B′, con-

verging to x, such that for some t ∈ {0, 1, . . . , n−1}, f(r̃t(x(bj))) =
x(bj) for every j. Thus, f(r̃t(x(bj))) → f(r̃t(x)), so f(r̃t(x)) = x.

For every x 6= p̃−1((0, 0)), the set Y (x) =
⋃n−1

k=1 r̃k(x) has n

elements and every point of Y (x) is the image of a point in Y (x);
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hence, f(Y (x)) = Y (x) and f | Y (x) → Y (x) is one-to-one. In
particular, for every x 6= p̃−1((0, 0)), there exists k ∈ {0, 1, . . . , n −
1} such that f(x) = r̃k(x).

For k ∈ {0, 1, . . . , n − 1}, let X(k) = {x ∈ Xnm : f(x) = r̃k(x)}.
It is easy to see that every X(k) is closed in Xnm and X(k)∩X(l) =
{p̃−1((0, 0))} for k 6= l, k, l ∈ {0, 1, . . . , n − 1}. It follows that
every X(k) is a continuum. Indeed, if X(k) were the union of two
disjoint closed subsets F1 and F2 with p̃−1((0, 0)) ∈ F2, then Xnm

would be the union of two sets F1 and F2 ∪
⋃

l 6=k X(l), disjoint and
closed in Xnm. Since Xnm is hereditarily indecomposable, then
Xnm = X(k) for some k ∈ {0, 1, . . . , n − 1}, and thus, f = r̃k and
f is a homeomorphism.

This ends the proof that the set of all continuous mappings from
Xnm onto Xnm is equal to the set {r̃0, r̃1, . . . , r̃n−1} and forms the
cyclic group of order n. �

Proof of Theorem 1.2: Let S be a set of cardinality 2ℵ0 , H be
the 1-dimensional HI Cook continuum (see Lemma 2.4), and K

be a proper non-degenerate subcontinuum of H. For every s ∈
S, let us choose a sequence {K1(s),K2(s), . . .} of non-degenerate
subcontinua of K in such a way that Ki(s) ∩ Kj(t) = ∅ if s 6= t or
i 6= j. Such a family {Ki(s) : i ∈ N, s ∈ S} exists, because K has
2ℵ0 composants which are pairwise disjoint. Thus,

(29) every mapping from a subcontinuum of Ki(s) into Ki(t) is
constant.

If, in the proof of Theorem 1.1, we replace in the construction of
Xnmthe sequence K1,K2, . . . by the sequence {K1(s),K2(s), . . .},
then we obtain an HI continuum Xnm(s) with exactly n continu-
ous surjections onto itself, which admits an atomic mapping p̃s :
Xnm(s) → P onto P . As we will prove below, the family {Xnm(s) :
s ∈ S} satisfies condition (i) of Theorem 1.2. In order to obtain
such a family also satisfying condition (ii), we assume additionally
that Y1 is a space Mm constructed in Lemma 2.6 for M = K, and
Yl for l ≥ 2 is a space Y of dimension ≤ 2 constructed in Lemma 2.3
for W = Wl−1, which is contained in the 2-dimensional continuum
M2 from Lemma 2.6 (where we put M = K).

Thus,
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(30) every mapping from a subcontinuum of K into Yl, for l =
1, 2, . . ., is constant.

Let us show condition (i). From the construction, it follows that
Xnm(s) is the union of the set p̃−1

s (P \A) homeomorphic to a subset
of P , of continua from the family K(s) = {p̃−1

s (b) : b ∈ B}, and
of continua from the family Y = {p̃−1

s (c) : c ∈ C}. Note that the
family K(s) contains exactly n copies of every continuum Ki(s), for
every i ∈ N, and the family Y contains n copies of every continuum
Yl, for l ∈ N.

Let f : Xnm(s) → Xnm(t) be an arbitrary continuous surjec-
tion. Suppose that t 6= s. Similar to the proof of Theorem 1.1,
one shows that the set f(

⋃
Y) intersects only finitely many com-

posants of Xnm(t), so it intersects only finitely many continua
from the family K(t). Hence, there exists p̃−1

t (b) ∈ K(t), being
a copy of some Ki(t), which is disjoint with f(

⋃
Y). Since f is

confluent, there exists a nontrivial subcontinuum T of Xnm(s), dis-
joint with

⋃
Y = p̃−1

s (C), such that f(T ) = p̃−1
t (b). Since T is

a proper subcontinuum of Xnm(s), it is contained in some com-
posant of Xnm(s). It follows that either T is contained in some
p̃−1

s (b′) for some b′ ∈ B, or T is the union of a non-empty subset of
p̃−1

s (P \ A) and of finitely many continua p̃−1
s (b(1)), . . . , p̃−1

s (b(r)),
where b(i) ∈ B. In the second case, there exists i such that
f(p̃−1

s (b(i))) is a nondegenerate subcontinuum of p̃−1
t (b). For oth-

erwise, the set p̃−1
t (b) \

⋃r
i=1 f(p̃−1

s (b(i))) would contain a non-
degenerate subcontinuum, which is the image of a subcontinuum
T ′ ⊂ p̃−1

s (P \ A) ∩ T . However, each non-degenerate subcontin-
uum of Xnm(s) contained in p̃−1

s (P \ A) is homeomorphic to P ;
therefore, by Lemma 2.5, it admits only constant mappings into
the Cook continuum p̃−1

t (b), which gives a contradiction.
Therefore, in both cases, there exists b′ ∈ B such that f(T ∩

p̃−1
s (b′)) is a nondegenerate subcontinuum of p̃−1

t (b). But p̃−1
s (b′)

and p̃−1
t (b) are homeomorphic to two disjoint subcontinua of the

Cook continuum H, which yields a contradiction. Thus, s = t.
To prove (ii), suppose that s 6= t, and h : Xnm(s) → Xnm(t) is

an embedding. Let K1(s)′ be a copy of K1(s) in Xnm(s). Then
h(K1(s)′) is a copy of K1(s) in Xnm(t), so it does not embed in
p̃−1

t (P \A) by Lemma 2.5. Thus, h(K1(s)′) intersects some p̃−1
t (ai).

By (29) and (30), h(K1(s)′) is not contained in p̃−1
t (ai) for any
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i = 1, 2, . . .; hence, p̃−1
t (ai) ⊂ h(K1(s)′) for some i. However, if

i = 2l, then p̃−1
t (ai) is a copy of Kl(t), which gives a contradiction

by (29). If i = 2l − 1, then p̃−1
t (ai) is a copy of a continuum

Yl. Since h : K1(s)′ → h(K1(s)′) is a homeomorphism, then Z =
h−1(p̃−1

t (ai)) is a subcontinuum of K1(s)′ such that h(Z) = p̃−1
t (ai),

which contradicts (30). This shows that s = t. �
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