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PARACOMPACTNESS OF BOX PRODUCTS

AND THEIR SUBSPACES

JUDITH ROITMAN

Abstract. Interested in �(ω + 1)ω, we explore the related
space ∇(ω + 1)ω. We find a number of discrete subspaces
of ∇(ω + 1)ω — for example, the set of functions which are
non-decreasing on their finite parts — and use this to find
many paracompact subspaces of both ∇(ω + 1)ω and �(ω +
1)ω. We also explore some other questions relating to the
paracompactness of box products of countably many compact
first countable spaces.

1. Background

Definition 1. �i∈IXi is the topology τ on Πi∈IXi in which u ∈ τ
iff each πi[u] open in XI . I.e., a base for τ consists of all Πi∈Iui

where each ui open in Xi.

If all Xi = X, we write �XI .
In a combinatorial tour de force published in 1996 [11], L. Brian

Lawrence proved that �(ω + 1)ω1 fails to be normal, much less
paracompact. So, as far as normality and paracompactness go,
only the countable index case is interesting.

Conjecture 1. (a) �(ω + 1)ω is paracompact (normal).
(b) �n<ωXn is paracompact (normal) if each Xn is compact

metrizable.
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266 J. ROITMAN

(c) �n<ωXn is paracompact (normal) if each Xn is compact first
countable.

Clearly (c) ⇒ (b) ⇒ (a). When we refer to Conjecture 1, we will
mean the strong form, with “paracompact,” not “normal.”

The first major result in this area was Mary Ellen Rudin’s 1972
result that, under CH, the box product of countably many compact
metrizable spaces is paracompact [14]. Rudin required only that the
metrizable spaces were locally compact and σ-compact. In 1975,
Eric K. van Douwen showed that P×�(ω+1)ω is not normal, thus
showing the necessity of some kind of compactness requirement
[2]. Over the next two decades, a number of results generalized
these results in various directions: tweaking the kind of spaces,
tweaking the set theoretic context, or both. Positive results tended
to have the form “... is paracompact” and negative results the
form “... is not normal.” Negative results tended to be ZFC results;
positive results – at least the ones directly relevant to the conjecture
– were consistency results. In particular, d = c is sufficient to prove
conjecture 1(c) (Judy Roitman [13]) and b = d is sufficient to prove
conjecture 1(b) (van Douwen [4]); Scott W. Williams [19] had earlier
proved that b = d is sufficient to prove conjecture 1(a).

Other results on box products have also appeared, focused on
other properties. Sometimes they were part of a more general study,
e.g., William G. Fleissner and Adrienne M. Stanley’s 2001 paper [5]
in which the authors show that the box product of scattered spaces
of height 1 is a D space. More rarely the results squarely focused
on box products, e.g., Louis Wingers’ 1995 [21] exploration of the
effect of the Hurewicz property on whether X ×�(ω +1)ω is Baire,
and Wingers’ 1994 [20] proof that the countable box product of σ-
compact spaces is pseudonormal and ω1-collectionwise Hausdorff.

This paper asks what we can do with no set theoretic axioms.
Our main results are that various subspaces of �(ω +1)ω are para-
compact. We also look at subspaces and weaker topologies of
�n<ωXn where each Xn is compact first countable, or compact
metrizable.

The superscript ∗ (as in =∗,≤∗,⊂∗ etc.) means mod finite.

2. The basics

2.1 �,∇ and their bases
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We assume all Xn are first countable, and for z ∈ Xn let {uz,j :
j < ω} denote a countable base for z so that each cl uz,j+1 ⊂ uz,j.

If Xn is metrizable with metric d, Xn 6= ω + 1, we require that
uz,j = {w : d(z,w) < 2j}.

If Xn = ω + 1, we require that u(z, j) =

{

{z} if z < ω
(j, ω] if z = ω.

Suppose x ∈ �n<ωXn. We define N(x, f) = Πn<ωux(n),f(n).
{N(x, f) : x ∈ �n<ωXn, f ∈ ωω} is a base for �n<ωXn.

For x ∈ �n<ωXn, we write x̄ = {y ∈ �n<ωXn : ∀∞n y(n) =
x(n)}. For S ⊂ �n<ωXn, we write S̄ = {ȳ : y ∈ S}, and if
N = N(x, f), we write N̄ = N(x̄, f). ∇n<ωXn is the quotient
topology under the relation x ≡ y iff x̄ = ȳ.

In ∇n<ωXn, we define N∗(x̄, f) =
⋂

n<ω N(x̄, n·f). Each N∗(x̄, f)
is clopen. So ∇n<ωXn is 0-dimensional.

2.2 Reduction to ∇ and translations back to �

The following two theorems simplify the problem greatly.

Theorem 1 (Kunen [8]). If each Xn is compact first countable,

then �n<ωXn is paracompact iff ∇n<ωXn is paracompact.

Theorem 2 (Kunen [8]). If each Xn is compact first countable and

∇n<ωXn is paracompact, then it is ultraparacompact; i.e., every

open cover has a pairwise disjoint covering refinement.

Since we will work exclusively with the ∇-product, here we make
explicit how to translate back into the �-product.

Lemma 1. (a) If x ∈ N(y, f), then x̄ ∈ N(ȳ, f).
(b) If N(x, f) ∩ N(y, g) 6= ∅, then N(x̄, f) ∩ N(ȳ, g) 6= ∅.
(c) N(x̄, f)∩N(ȳ, g) 6= ∅ iff {n : u(x(n), f(n)) ∩ u(y(n), g(n)) =

∅} is finite.

From this obvious lemma, we have another obvious lemma.

Lemma 2. Suppose S ⊂ �n<ωXn and x 6=∗ y for all x, y ∈ S.

(a) If S̄ is discrete, then S is discrete.

(b) If p ∈ �n<ω < X)n \ S, p 6=∗ x for all x ∈ S, and S̄ is closed

discrete in ∇n<ωXn\{p̄}, then S is closed discrete in �n<ωXn\{p}.

Finally, we have a lemma which is a direct corollary of K. Kunen’s
proof of Theorem 1.
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Lemma 3. Suppose S ⊂ �n<ωXn where if x, y ∈ S, then x 6=∗ y,
and each Xn is compact first countable. If τF is the topology on

�n<ωXn generated by {N(x, f) : f ∈ F} and τ̄F is the topology

on ∇n<ωXn generated by {N(x̄, f) : f ∈ F}, and if Gδ’s in τ̄f are

open, then τF is paracompact iff τ̄F is paracompact.

2.3 b, d, and their effects

Recall that b is the least κ so that there is an unbounded family
of functions in ωω of size κ, and d is the least κ so that there is
a dominating family of functions in ωω of size κ. There is always
an unbounded family of order type b which is well-ordered under
≤∗, and if b = d, there is a dominating family which is well-ordered
under ≤∗ (called a scale).

If each Xn is first countable, ∇n<ωXn has π-weight d and is
b-open (= every intersection of fewer than b open sets is open).

The following is ancient folklore.

Lemma 4. (a) If F is unbounded in ωω, A ∈ [ω]ω, and g ∈ ωω,
then for some f ∈ F{n ∈ A : g(n) < f(n)} is infinite.

(b) If F ∈ [ωω]<d and A ∈ [[ω]ω]<d, then there is g ∈ ωω so that

∀A ∈ A {n ∈ A : g(n) > f(n)} is infinite.

Let Nf = {N∗(x̄, f) : x ∈ �n<ωXn}. The following was proved
by van Douwen [4].

Lemma 5. If each Xn is metrizable, then x̄ ∈ N∗(ȳ, f) iff ȳ ∈
N∗(x̄, f), and if g ≥∗ f , then Ng refines Nf .

Hence, Nf is a pairwise disjoint cover of ∇n<ωXn.
This gives us a weaker topology than ∇n<ωXn, which is para-

compact and Hausdorff.

Proposition 1. If F ⊂ ωω is unbounded and each Xn is first
countable, then ∇FXn is Hausdorff.

Proof: Suppose x̄ 6= ȳ. There is g ∈ ωω, so N(x̄, g)∩N(ȳ, g) = ∅.
Let A = {n : ux(n),g(n) ∩ uy(n),g(n) = ∅}. A is infinite, so there
is f ∈ F with {n ∈ A : g(n) < f(n)} infinite. Hence, N(x̄, f) ∩
N(ȳ, f) = ∅. �

Theorem 3. Suppose each Xn is metrizable. If F ⊂ ωω is un-

bounded and well-ordered by ≤∗ and |F| = b, then ∇FXn is para-

compact.



PARACOMPACTNESS OF BOX PRODUCTS & THEIR SUBSPACES 269

Proof: We list F = {fα : α < b} in increasing ≤∗ order. If
U ⊂ τ̄F is a cover, by induction, we construct a pairwise disjoint
covering refinement by defining Vα = {N̄ ∈ Nfα

: ∃Ū ∈ U N̄ ⊂ Ū
and ∀β < α N̄ ∩

⋃

Vβ = ∅}; V =
⋃

α<b
Vα.

⋃

α<b
Vα is a pairwise disjoint refinement. Here is why it is a

cover: Consider an arbitrary point x̄. Let α be least so N(x̄, fα) ⊂
Ū for some Ū ∈ U . Since Nα refines Nβ for all β < α, N(x̄, fα) ∈
Vα. �

This is essentially van Douwen’s proof that a κ-open, κ-metrizable
space is compact; hence, if b = d, and each Xn is compact metriz-
able, �n<ωXn is paracompact.

The following definitions are key to the next section.

Definition 2. A set S is strongly separated iff there is an open
discrete family U = {Ux : x ∈ S} with S ∩ Ux = {x} for all x ∈ S.

We say that U strongly separates S.

Definition 3. Let S ⊂ X. We say that S is X-paracompact iff
every open cover of X has a pairwise disjoint open (in X) refinement
covering S.

We write ∇-paracompact when X = ∇n<ωXn.

Lemma 6. Suppose each Xn is first countable. If N is a pairwise

disjoint collection of sets of the form N∗(x̄, f) and |N | < d, then

N is discrete.

Proof: If z̄ /∈
⋃

N , then ∀N∗(x̄, f) ∈ N {n : ∃mx̄,n z(n) /∈ cl
ux(n),mx̄,n·f(n)} is infinite. By Lemma 4(b), let h be defined so that
for each N∗(x̄, f) ∈ N , {n : uz(n),h ∩ ux(n),mx̄,n·f(n) = ∅} is infinite.
Then N∗(z̄, h) ∩ N∗(x̄, f) = ∅ for all N∗(x̄, f) ∈ N . �

Theorem 4. (a) If each Xn is first countable, S ⊂ ∇n<ωXn, and

|S| < d, then S is strongly separated.

(b) If each Xn is first countable, S ⊂ ∇n<ωXn, and |S| = d,

then S is ∇-paracompact.

Proof: (a) Fix x̄ ∈ S. For each ȳ 6= x̄ with ȳ ∈ S, let gx̄,ȳ be
a function so that N(x̄, gx̄,ȳ) ∩ N(ȳ, gx̄,ȳ) = ∅, and let Ax̄,ȳ = {n :
ux(n),gx̄,ȳ(n) ∩ uy(n),gx̄,ȳ(n) = ∅}. By Lemma 4(b), there is kx̄ ∈ ωω

with kx̄|Ax̄,ȳ 6≤∗ gx̄,ȳ|Ax̄,ȳ for all ȳ ∈ S \ {x̄}. So N = {N∗(x̄, kx̄) :
x̄ ∈ S} is pairwise disjoint.
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N is discrete by Lemma 6.

(b) Using Lemma 6, we construct a pairwise disjoint refinement
covering S by induction. �

The theorem that ∇n<ωXn is paracompact if each Xn is first
countable and d = c is a corollary of Theorem 4(b).

The next section is concerned with showing that many sets are
strongly separated. We end this section by showing how this auto-
matically will prove that many subspaces are ∇-paracompact.

Theorem 5. If a space X is κ-open and X =
⋃

α<κ Sα where each

Sα is strongly separated in X \
⋃

β<α Sβ, then X is paracompact.

Proof: Let S =
⋃

α<κ Sα where Wα is an open family which
strongly separates Sα in X \

⋃

β<α Sβ. By induction, we construct

a pairwise disjoint open family R =
⋃

α<κ Rα where each Rα refines
a subset of Wα in a 1-1 fashion; hence, Rα is discrete in X\

⋃

β<α Sβ.

Note that, by κ-open, if α < κ, then
⋃

β<α Rα will be discrete.
Let U be an open cover of X. At stage α, we consider Eα =

Sα\
⋃

β<α Rβ. For each x ∈ Eα, we let Vx be an open neighborhood
of x with x ∈ Vx ⊂ U ∩ W where U ∈ U and W ∈ Wα. Let
Rα = {Vx : x ∈ Eα}. �

Corollary 6. If a space X is κ-open, then the union of at most κ
many strongly separated sets is X-paracompact.

Thus, when we prove that various sets are strongly separated,
we will automatically be proving that the union of at most b many
of them are ∇-paracompact. Similarly, if δ ≤ b, and we have a
collection of sets {Sα : α < δ} where each Sα is strongly separated
in X \

⋃

α<δ Sα, then
⋃

α<δ Sα is paracompact.

3. ∇(ω + 1)ω

For this section, X = �(ω + 1)ω \ {∞}, where ∞ is the function
which is constantly ω.

This section focuses on ∇(ω + 1)ω and finds discrete subsets of
∇− = X̄ which are strongly separated in certain subspaces of X̄
(some even in X̄ itself). Taking unions as in Theorem 5 or Corollary
6 will give ∇− paracompact spaces. Hence, since we have left out
only one point from ∇, such a union is ∇-paracompact.
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3.1 A simple example

Working in ∇−, we note that N(ḡ, h) ∩ N(f̄ , k) 6= ∅ if and
only if f |F (f)∩F (g) =∗ g|F (f)∩F (g) and f |F (f)∩I(g) >∗ h|F (f)∩I(g) and
g|F (g)∩I(f) >∗ k|F (g)∩I(f). Hence, there are easily described com-
binatorial properties which guarantee that no neighborhood of a
point meets a given neighborhood of another point.

Lemma 7. Let f, g ∈ (ω + 1)ω, k ∈ ωω. For all h ∈ ωω N(ḡ, h) ∩
N(f̄ , k) = ∅ iff one of the following holds.

(i) f |F (g)∩F (f) 6=
∗ g|F (g)∩F (f), or

(ii) g|I(f)∩F (g) 6>
∗ k|I(f)∩F (g).

In particular,

Lemma 8. Let f, g ∈ (ω + 1)ω, k ∈ ωω and suppose g ⊃ f, ḡ /∈
N(f̄ , k). Then ∀h ∈ ωω ∀g′ ⊃ g N(ḡ′, h) ∩ N(f̄ , k) =∗ ∅.

Proof: Condition (ii) of Lemma 7 holds for g, hence for g′. �

Definition 4. Let f ∈ (ω + 1)ω . f is non-decreasing (strictly
increasing, respectively) iff ∀n < m, if n,m ∈ F (f), then f(n) ≤
f(m) (f(n) < f(m), respectively).

Definition 5. (a) Let A ∈ [ω]ω, n ∈ ω. n+
A = inf a \ (n + 1).

(b) Let f ∈ (ω + 1, A ⊂ F (f). f+
A (n) = 1 + f(n+

A). If A = F (f),
we just write f+.

Note that f < f+
A for all non-decreasing f .

Proposition 2. Let k ∈ ωω, k non-decreasing. Let Xk = {g ∈ X :
g|F (g) ≤

∗ k|F (g)}. Then X̄k is strongly separated in ∇−.

Proof: Let N = {N(ḡ, k+
F (g)) : ḡ ∈ X̄k}. N is disjoint: if ḡ 6=

ḡ′ and g, g′ ∈ X̄k, then without loss of generality F (g) \ F (g′) is
infinite. But if n ∈ F (g) \ F (g′), then g(n) < k(n) ≤ k(n+

F (g′)) <

k+
F (g′)(n).

N is discrete: if g′ /∈
⋃

N , then for all g ∈ Xk, either property
(i) of Lemma 7 holds or property (ii) of Lemma 7 holds vis-a-vis
k+

F (g). �

By Proposition 2, Corollary 6, and the fact that ∇− is b-open,
we have the theorem that if b = d, then �(ω + 1)ω is paracompact.
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By Theorem 6, we would know that ∇(ω +1)ω is paracompact if
∀k ∈ ωω {g ∈ (ω + 1)ω : g|F (g) 6≥

∗ k|F (g)} were strongly separated,
but this is false; {g ∈ (ω + 1)ω : g|F (g) 6≥∗ k|F (g)} is, in fact, open
and not discrete.

The goal of the rest of this section is to find other strongly sep-
arated subsets of ∇− or various subspaces thereof.

3.2 The machinery

Let f, g ∈ (ω + 1)ω. We present the following definitions.

Definition 6. f⊥(n) =

{

f(n) if f(n) ≤ f(m) ∀m ∈ F (f) \ n
ω otherwise.

Definition 7. (a) g ⊂ f iff g|F (g) = f |F (g).

(b) If g ⊂ f , then (f \ g)(n) =

{

f(n) if n ∈ F (f) \ F (g)
ω otherwise.

(c) If f |F (f)∩F (g) = g|F (f)∩F (g) ,

then (f ∪ g)(n) =







f(n) if n ∈ F (f)
g(n) if n ∈ F (g)
ω if otherwise.

Definition 8. f0 = f⊥; fn+1 = (f \ fn)⊥.

Definition 9. ∇n = {f̄ ∈ ∇− : fn+1 = ∞}; ∇ω = ∇− \
⋃

n<ω ∇n.

Thus, f is non-decreasing (mod finite) iff f̄ ∈ ∇0; ∇0 = {f̄ ∈
∇− : f =∗ f0}; and f̄ ∈ ∇n iff f =∗

⋃

j≤n fj.
We will show that if n < ω, then ∇n is discrete in ∇ and strongly

separated in ∇− \
⋃

i<n ∇i. While ∇ω is not discrete, we will also
show that some combinatorially defined subsets are discrete in ∇
and strongly separated in ∇ω.

Definition 10. (a) If f ∈ (ω + 1)ω and π is a permutation of
ω, then we define the function πf as πf(n) = f(π(n)); we define
πf̄ = ¯(πf).

(b) Given F ⊂ ∇− and π a permutation of ω, we define πF =
{πf̄ : f̄ ∈ F}.

Fleissner pointed out in conversation that if F is strongly sep-
arated in ∇−, so is πF for every permutation π of ω. Since f̄ ∈
⋃

i<ω ∇i iff πf ∈
⋃

i<ω ∇i, we also have F is strongly separated in
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∇− \
⋃

i<j ∇i iff πF is, for all j ≤ ω. So the results below auto-

matically give us many more strongly separated spaces of ∇− or its
subspaces.

3.3 ∇n, n finite

Theorem 7. ∇0 is strongly separated in ∇−. In particular, let

N = {N(f̄ , f+) : f ∈ ∇0}. Then N strongly separates ∇0 in ∇−.

Proof: Suppose f 6=∗ g, f, g ∈ ∇0.

Claim 7.1. N(f̄ , f+) ∩ N(ḡ, g+) = ∅.

Proof of Claim: We may assume that f |F (f)∩F (g) = g|F (f)∩F (g).
Without loss of generality F (f) \ F (g) is infinite, f |F (f)\F (g) >

g+|F (f)\F (g), and g|F (g)\F (f) > f+|F (g)\F (f). Let n ∈ F (f) \

F (g),mn = n+
F (g). Then f(n) > g+(n) = g+(mn) = 1 + g(mn) >

g(mn). Since f ∈ ∇0 ,mn /∈ F (f). Let jn = (mn)+
F (f). By the

same argument, g(mn) > f(jn). This happens infinitely often,
which contradicts f ∈ ∇0. �

Hence, N is pairwise disjoint and separates ∇0. Below, we show
that it is discrete.

Claim 7.2. If g /∈ N(ḡ, g+), g′ ∈ ∇0, and g⊥ = g′, then all
N(ḡ, h) ∩ N(ḡ′, (g′)+) = ∅.

Proof of Claim: By Lemma 8. �

Claim 7.3. Let g /∈ ∇0, g
′ ∈ ∇0. If g′ 6= g⊥, then N(ḡ, kg⊥) ∩

N(ḡ′, (g′)+) = ∅.

Proof of Claim: If H is an infinite subset of F (g) \ F (g⊥), then
g|H is not non-decreasing. So consider H = {n ∈ F (g′) ∩ I(g⊥) :
g′(n) ≤ kg⊥(n)}. If H ∩ F (g) is infinite, then g|H 6=∗ g′|H , and we
are done. So we may assume that H ⊂∗ I(g). If H is infinite, then
{n ∈ F (g′)∩ I(g) : g′(n) ≤ kg⊥(n)} is infinite, and we are done. So
we may assume H =∗ ∅.

We may assume that g⊥|F (g⊥)∩F (g′) =∗ g′
F (g⊥)∩F (g′)

(or again,

we are done). All that is left to consider is g⊥|F (g⊥)∩I(g′). Since

N(ḡ⊥, kg⊥) ∩ N(ḡ′, (g′)+) = ∅, and H is finite, we must have

g⊥|F (g⊥)∩I(g′) 6>
∗ (g′)+|F (g⊥)∩I(g′), and we are done. �
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Let g /∈
⋃

N . By Claim 7.3, if N(ḡ, kg⊥) ∩ N(f̄ , f+) 6= ∅ for

f̄ ∈ ∇0, then f =∗ g⊥. Since g /∈ N(f̄ , f+), by Lemma 7 all
N(ḡ, h) ∩ N(f̄ , f+) = ∅. And this concludes the proof. �

Now we consider ∇n, n > 0.
If f ∈ ∇n, we define kf = sup{(fi)

+ : i ≤ n}.

Lemma 9. Suppose f ∈ ∇n, g ∈ ∇ \
⋃

i≤n ∇i. If N(f̄ , f+) ∩

N(ḡ, (gn)+) 6= ∅, then f =∗
⋃

i≤n gi.

Proof: Imitate the proof of Claim 7.3 on the space ∇(ω + 1)E

where E = F (gn) ∪ I(g). �

Note that f ∈ ∇ is finite-to-one iff there is some π a permutation
of ω with πf ∈ ∇0. Hence, as previously noted, if {πα : α < b} is a
collection of permutations of ω, then

⋃

α<b
πα∇0 is paracompact.

Theorem 8. Each ∇n is discrete. In particular, Nn = {N(ḡ, kg) :
g ∈ ∇n} strongly separates ∇n in ∇− \

⋃

i<n ∇i.

Proof: Assume that for each i ≤ n,Ni strongly separates ∇i in
δ−\

⋃

j<i ∇j. We show that for each f ∈ ∇n, {ḡ ∈ ∇n+1 : gn = f} is

strongly separated in ∇−\
⋃

i<n+1 ∇i by {N(ḡ, kg) : g ∈ ∇n+1, gn =
f}.

Let ḡ, ḡ′ ∈ ∇n+1, f =
⋃

i≤n gi =
⋃

i≤n g′i. Let E = ω \ F (f).

g|E and g′|E are non-decreasing, kg > (g|E)F (gn+1), and kg′ >

(g′|E)F (g′n+1). The proof of Claim 7.1 shows that {N(ḡ, kg) : g ∈
∇n+1, gn = f} separates {ḡ ∈ ∇n+1 :

⋃

i≤n gi = f}.
Hence, by induction, Nn separates ∇n.
To show that Nn is discrete in ∇− \

⋃

i<n ∇i, consider g /∈
⋃

Nn.

If N(ḡ, (
⋃

i≤n gi)
+) ∩ N(f̄ , kf ) 6= ∅ for f̄ ∈ ∇n, then f =∗

⋃

i≤n gi.

Since g /∈ N(f̄ , kf ), then {n ∈ F (g) \ F (f) : g(n) < kf (n)} is
infinite, and all N(ḡ, h) ∩ N(f̄ , kf ) = ∅. �

3.4 ∇ω

Discrete subsets of ∇ω are harder to describe.

Definition 11. (a) Let f ∈ ∇ω. Lf (n) = inf F (fn).
(b) ∇si = {f ∈ ∇ω : Lf is strictly increasing}.
(c) If f ∈ ∇si, then kf (n) = 1 + sup{(fi)

+(n) : i ≤ Lf (n)}.

Note that Lf is 1-1.



PARACOMPACTNESS OF BOX PRODUCTS & THEIR SUBSPACES 275

Lemma 10. Suppose f ∈ ∇si. Then the following hold.

(a) ∀n Lf (n) ≥ n;

(b) ∀n(fn)+(n) < kf (n).

Proof: (a) follows because f ∈ ∇si.
(b) is immediate from (a) and the definition of kf . �

Lemma 11. Suppose f, g ∈ ∇si and N(f̄ , kf ) ∩ N(ḡ, kg) 6= ∅.
∀n gn =∗ fn.

Proof: By induction, using the fact that kf >∗ (fn)+ for all
n. �

Theorem 9. ∇si is discrete and is strongly separated in ∇ω by

N = {N(f̄ , kf ) : f ∈ ∇si}.

Proof: We first prove that N separates ∇si. So consider f̄ , ḡ
distinct elements of ∇si.

Claim 9.1. If there are infinitely many n so that there is in ∈
[F (f)∩F (fn)\F (gn)]∪[F (g)∩F (gn)\F (fn)] with in ≥ sup{Lf (n) ,
Lg(n)}, then N(f̄ , kf ) ∩ N(ḡ, kg) = ∅.

Proof of Claim: Given n, by Lemma 11, there are at most
finitely many such in, so we may assume in is the largest such, i.e.,
fn|ω\(in+1) = gn|ω\(in+1). We consider the case in ∈ F (f)∩F (fn) \

F (gn). Let mn = (in)+
F (gn). Then fn(in) ≤ fn(mn) = gn(mn). By

Lemma 10(a), Lg(n) ≥ n. By assumption, in ≥ Lg(n). Therefore,

kg(in) ≥ (gn)+(in) = 1 + gn(mn) > fn(mn) ≥ fn(in) = f(in),

so f(in) < (g(in))+.
By symmetry, infinitely often either f(in) < kg(in) or g(in) <

kf (in). �

By Claim 9.1, if sn = sup{Lf (n), Lg(n)}, we can assume that
∀n ∀i ≥ sn fn(i) = gn(i). I.e., we can assume that for all n either
fn is a tail of gn or gn is a tail of fn.

Claim 9.2. Suppose gn is a tail of fn and i ∈ F (f)∩F (fn)\F (g).
Then f(i) < kg(i).

Proof of Claim: By Lemma 10(a), n ≤ i. By Claim 9.1, i < Lg(n)
so fn(i) ≤ fn(Lg(n)) = gn(Lg(n)) < (gn)+(Lg(n)) = (gn)+(n) <
kg(n) ≤ kg(i). �
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Hence, if N(f̄ , kf ) ∩ N(ḡ, kg) 6= ∅,∀∞n fn = gn. But then by
Lemma 11, f =∗ g.

Claim 9.3. N is discrete in ∇ω.

Proof of Claim: Given f̄ ∈ ∇ω \ ∇si, we define the function f#:

f#(n) =

{

f(n) if n ∈ F (fi) and ∀j < i n > Lf (j)
∞ otherwise.

Note that f# ∈ ∇si and f ⊃ f#. By Lemma 8 and the proof that N
separates ∇si, if g ∈ ∇si and N(f̄ , h)∩N(ḡ, kg) 6= ∅, then g =∗ f#.

If f̄ /∈ N(f̄#, kf#), then by Lemma 7, all N(f̄ , h) ∩ N(f̄#, kf#) =
∅. �

And this concludes the proof of the theorem. �

To generalize Theorem 9, note that it was the fact that Lf is
increasing and the properties of Lf and kf in lemmas 10 and 11
which made the proof of discreteness work. For the covering family
to be discrete, we needed the uniform definition of the Lf ’s for
f ∈ ∇si.

So our task is to define another function L⊤
f and another kf that

satisfy lemmas 10 and 11. Then we will define a subset of ∇ω

whose L⊤
f ’s will be similar enough so that the proof of Theorem 9

will straightforwardly generalize.

Definition 12. Fix f ∈ ∇ω. We define the set Af and then the

function L⊤
f :

Af = {n : ∀i > n Lf (n) < Lf (i)}.

We enumerate Af in increasing order as Af = {af
n : n < ω} and

define L⊤
f (n) = Lf (af

n).

For example, ∇si = {f̄ : Af = ω}.
Note that L⊤

f (n) ≥ n for all n, and L⊤
f is strictly increasing.

Define kf (n) = 1 + sup{(fi)
+(n) : i ≤ (Lf )⊤(n)}. Note that

(fn)+(n) < kf (n) for all n.

Definition 13. Let A ∈ [ω]ω. ∇A = {f̄ : Af = A}.

Theorem 10. For A ∈ [ω]ω, ∇A is discrete and is strongly sepa-

rated by {N(ḡ, kg) : g ∈ ∇A} in ∇ω.
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Proof: Since L⊤
f is increasing and Lemma 10 holds with Lf re-

placed by (Lf )⊤, a straightforward replacement of Lf by (Lf )⊤ in
the proofs of claims 9.1 and 9.2 proves that N separates ∇A. �

So to complete the proof of Theorem 10, it suffices to prove the
following claim.

Claim 10.1. For all A ∈ [ω]ω, N is discrete in ∇ω.

Proof of Claim: Given f ∈ ∇ω \∇A, we define the function f#,A

as

f#,A(n) =

{

f(n) if n ∈ F (fi) and if i /∈ A, then n > Lf (i+A)
∞ otherwise.

Note that f̄#,A ∈ ∇A. By Lemma 8 and the proof that N
separates ∇A, if g ∈ ∇A and N(f̄ , h) ∩ N(ḡ, kg) 6= ∅, then g =∗

f#,A. Since f ⊃ f#, if f /∈ N(f̄#,A, kf#,A), then by Lemma 7, all

N(f̄ , h) ∩ N(f̄#,A, kf#,A) = ∅. �

And the proof of the theorem is complete. �

4. Two stumbling blocks to settling conjecture 1

Conjecture 1 has been around for over 40 years, and the main
results for a quarter of a century. This section gives two results
which indicate why we have been stuck for so long:

• Many models of b < d < c aren’t counterexamples.
• A straightforward attempt to use inner models to imitate

forcing proofs is doomed.

4.1 b < d < c

If we are to show that Conjecture 1(b) fails, we need a model
of b < d < c. Here, we show that in many models of conjecture
b < d < c, Conjecture 1(c) holds.

Definition 14. A function r ∈ ωω is semi-Cohen over a model M
iff ∀f ∈ M ∩ ωω r 6<∗ f .

If r is Cohen over M , it is of course semi-Cohen.

Lemma 12. If r is semi-Cohen over M , then for all f ∈ M ∩
ωω, A ⊂ ω, r+|A 6≤∗ f |A.
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Proof: Fix f,A ∈ M . We may assume f is non-decreasing. There
are infinitely many n with r(n) > f+

A (n). For such n, f(n+
A) <

f+
A (n) < r(n) ≤ r+(n) ≤ r+(n+

A). �

The following was the (implicit) basic idea in [13].

Theorem 11. Suppose M =
⋃

α<b
Mα where ∃rα ∈ Mα+1 rα is

semi-Cohen over Mα. Then �n<ωXn is paracompact if each Xn is

compact first countable.

Proof: By Corollary 6, it suffices to prove that M |= {N∗(x̄, r+
α ) :

x ∈ Mα ∩ (ω + 1)ω} is discrete.
For x ∈ �n<ωXn, recall that {ux(n),i : i < ω} is a neighborhood

base of open sets of x(n) with cl ux(n),i+1 ⊂ ux(n),i.
So let x 6=∗ y ∈ Mα ∩ (ω + 1)ω . There is some g ∈ Mα with

N(x̄, g) ∩ N(ȳ, g) = ∅. Let A = {n : ux(n),g(n) ∩ uy(n),g(n) = ∅}. By

Lemma 12, r+
α |A 6≤∗ g|A. So N(x̄, r+

α ) ∩ N(ȳ, r+
α ) = ∅.

Now suppose x ∈ Mβ ∩(ω+1)ω \
⋃

x∈Mα
N∗(x̄, r+

α ). (Necessarily,

β > α.) For any y ∈ Mα∩(ω+1)ω, there is m with x̄ /∈ N(ȳ,m·r+
α ).

Let A = {n : x(n) /∈ uy(n),m·r+
α (n)}. There are infinitely many n ∈ A

with r+
β (n) > 1 + rα(n). So N(x̄, r+

β ) ∩ N(ȳ, (m + 1) · r+
α ) = ∅. �

Cohen reals also have a converse property (see [1, p. 100] for a
proof).

Proposition 3. If r is Cohen over M , then every function in M [r]
is dominated infinitely often by some function in M .

Hence, a finite iteration that ends with Cohen forcing satisfies
the following.

Lemma 13. Suppose M |= b = d = κ, and suppose P is a forcing

which does not collapse any cardinal ≤ κ so that every function

in MP is dominated infinitely often by some function in M . Then

MP

 d = κ.

Proof: Otherwise, there is a dominating family Ġ = {ġα : α < λ}
which is increasing mod finite, λ < κ, λ regular. Let {fα : α < κ}
be a dominating family in M which is increasing mod finite. Define
ϕ̇ : λ → κ by ϕ̇(α) = sup{β : ġα >∗ fβ}. By hypothesis, range

ϕ̇ ⊂ κ, and since Ġ is dominating, range ϕ̇ is cofinal in κ. So P

collapses κ, a contradiction. �
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Many models meet the hypothesis of Theorem 11, e.g., any iter-
ated ccc forcing of uncountable cofinality (see [13]). But there are
others. Here we mention two.

Proposition 4. (a) For α < λ, let M |= b = d = κ ≥ ω2. Let

P = Fn(λ, ω), where λ < κ, λ regular. Let MP

 Q̇ is the measure

algebra on 2κ+

. Then MP∗Q̇

 b < d < c and Conjecture 1(c).

(b) Let M |= λ < κ < c, λ, κ regular. Let H be the Hechler
forcing that adds a dominating family of ωω with order type κ×λ.
Then MH


 b < d < c and Conjecture 1(c).

Proof: (a) Define Pα = Fn(α, ω), Q̇α = Q̇ ∩ MPα . If G is P ∗ Q̇-

generic, we define Mα = M [G∩ Pα ∗ Q̇α]. Lemma 13 and Theorem
11 complete the proof.

(b) For α < λ, define Hα to be the Hechler forcing that adds
the subfamily of order type α × λ. If G is H-generic, we define
Mα = M [G ∩ Hα]. Theorem 11 completes the proof. �

In the 25 or so years since the major results on Conjecture 1
were produced, we’ve learned a lot about elementary submodels.
So one might consider adapting the techniques of Theorem 11 to
elementary submodels.

How might this work?
Start with an unbounded family R = {rα : α < b} well-ordered

by ≤∗. Note that if M is an elementary submodel with R ∈ M and
sup b ∩ M = δ, then ∀α ≥ δ rα is semi-Cohen over M . To ensure
that b ∩ M 6= b, require |M | < b.

Given two functions, the proof of Theorem 11 requires that they
are in the same model over which rα is Cohen, so we would also
need that if rα were semi-Cohen over M,M ′ and f ∈ M,f ′ ∈ M ′,
then there is a model M † with f, f ′ ∈ M † and gα semi-Cohen over
M †.

Putting this together, the following would suffice: for each α < b,
there is a set of elementary submodels Mα so ωω ⊂

⋃

α<b

⋃

Mα,
rα is semi-Cohen over each M ∈ Mα; and if f ∈ M ∈ Mα, f ′ ∈
M ′ ∈ Mα, then there is a model M † ∈ Mα with f, f ′ ∈ M†.

And for this to hold, we need the following conjecture to be true.

Conjecture 2. Let R be an unbounded family well-ordered by ≤∗

(hence, necessarily of order type b). Let A =< H(c+),∈, R,∆ >
where ∆ is a well-ordering of H(c+). There is a sequence of ordinals
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D = {δα : α < b}, a sequence {Mα : α < b}, and an assignment
ϕ : d → D satisfying

(1) if M ∈ Mα, then |M | < b,
(2) if M ∈ Mα, then sup(M ∩ b) = δα,
(3) if ϕ(η) = ϕ(ζ) = α, then ∃M ∈ Mα η, ζ ∈ M .

The translation is as follows: Given a fixed dominating family
{fη : η < d}, ϕ(η) = α says that fη ∈

⋃

Mα.
Unfortunately, Conjecture 2 fails when b < d.

Proposition 5 (Ishiu). If b < d, then Conjecture 2 is false.

The proof below uses a well-known set-theoretic technique. This
particular application is from a personal communication from Tet-
suya Ishiu.

Proof: Suppose ∆,A,D, {Mα : α < b}, ϕ as in Conjecture 2.
Let E = {η < d : cf η = b}. |E| = d. For each η ∈ E, let eη

be the ∆-least cofinal increasing function e : b → η. Note that
η ∈ M ⇒ eη ∈ M .

By a counting argument, ∃α K = {η ∈ E : ϕ(η) = α} is station-
ary.

By pressing down, ∃δ H = {η ∈ K : eη(δα) = δ} is stationary.
Since H is stationary, there is ζ ∈ H, ζ a limit of H; hence, there

is η ∈ H, η ∈ [δ, ζ). Suppose η, ζ ∈ M . M |= ∃γ eζ(γ) > η. So
∃γ ∈ M ∩ (δ, b). Hence, M /∈ Mα �
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