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UNIQUENESS OF THE HYPERSPACE GRAPH

OF CONNECTED SUBGRAPHS

LIKIN C. SIMON ROMERO

Abstract. An analogous concept for hyperspace of continua
can be defined in abstract graph theory. Given a connected
graph G, the hyperspace graph of connected subgraphs, de-
noted by C(G), is defined with the set of all connected non-
empty subgraphs of G as the vertex set of C(G). In this paper,
it is shown that given G and G

′ connected graphs such that
C(G) is isomorphic to C(G′), then G and G

′ are isomorphic.

1. Introduction

The work in this paper was presented at the 2005 Spring Topol-
ogy and Dynamical Systems Conference. It is part of the doctoral
dissertation of the author under the direction of Sam B. Nadler, Jr.
at West Virginia University in 2005 [4].

In [3], given a graph G, Sam B. Nadler, Jr. defines a new graph
whose vertices represent non-empty subsets of vertices of G. This is
the first attempt to define an analogous concept to the hyperspaces
of sets in the field of abstract graph theory. In [4], we get an ana-
logue of the hyperspace of subcontinua. Given an abstract graph
G, we define a graph C (G) with the property that every vertex of
C(G) represents a connected subgraph of G. The graph C (G) is the
hyperspace graph of connected subgraphs.
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R. Duda shows that if two finite topological graphs X and Y are
such that neither of them is an arc nor a simple closed curve and
they have homeomorphic hyperspaces of subcontinua, then X and
Y are homeomorphic [1]. It is natural to ask if this result can be
obtained for the hyperspace graphs of connected subgraphs. In this
paper, we give the sketch of the proof that answers this question
affirmatively.

First, we need some basic graph theory.
A graph G is a finite non-empty set denoted by V (G) together

with a set (possibly empty) of unordered pairs of distinct elements
of V (G), denoted by E(G). The set V (G) is called the vertex set
of G, and the set E(G) is called the edge set of G. The size of
a graph G is the cardinality of E(G). The elements of V (G) are
called vertices of G, and the pairs in E(G) are called edges of G.
If two vertices are joined by an edge, they are said to be adjacent.

A graph is a degenerate graph if it has no edges and only one
vertex. If v is such vertex, then we denote the graph as {v}.

The degree of a vertex v in G is the number of vertices of G that
are adjacent to v. An endvertex of G is a vertex with degree 1 in
G.

A graph K is said to be a subgraph of a graph G (denoted by
K ⊂ G) if V (K) is a subset of V (G) and E(K) is a subset of E(G).

A path in a graph G is a finite sequence of vertices P, namely,

P = v0v1v2...vn

such that vi and vi+1 are adjacent in G and vi 6= vj if i 6= j for all
i, j = 0, 1, 2, ..., n.

A graph is said to be connected if for every two vertices of the
graph, there is a path joining those two vertices.

Let v and w be two vertices of the connected graph G. The
distance between v and w in G is the size of the shortest path in
G joining v and w. The distance between v and w is denoted by
d(v,w).

Finally, we are ready to define the analogous of the hyperspace
of subcontinua.

Given a connected graph G, we will define the hyperspace graph
of connected subgraphs of G as the graph C(G) such that



UNIQUENESS OF THE HYPERSPACE GRAPH 285

• the vertex set of C(G) is the set of all connected subgraphs
of G; namely, V (C(G)) = {K : K is connected subgraph of
G};

• two connected graphs K and L are adjacent in C(G) if one
of the following holds.
(1) K ⊂ L and L has exactly one more edge (as a subgraph

of G) than K;
(2) K and L are non-degenerate subgraphs and have ex-

actly the same number of edges (as subgraphs of G),
and there is a common connected subgraph H of both
K and L such that H has exactly one edge less than
K (or L). If this condition holds, K and L are said to
be level adjacent ;

(3) K = {v} and L = {w} with v and w being adjacent
vertices of G.

Let us consider the following two particular kinds of graphs.
A graph is said to be complete if every two vertices of the graph

are adjacent. It is well known that if a graph G contains a sub-
division of the complete graph with five vertices, then G is not
planar.

A cycle in a graph G is a finite sequence of vertices P, namely,

Y = v0v1v2...vn with n ≥ 3

such that vi and vi+1 are adjacent in G, v0 = vn, and vi 6= vj if
i 6= j for all i, j = 0, 1, 2, ..., n.

A graph G′ is an elementary subdivision of G if G′ can be ob-
tained by removing an edge e = vv′ from G and adding a new
vertex w and two new edges vw and vw′.

A subdivision of G is the graph obtained by a succession of ele-
mentary subdivisions.

A graph B is a bipartite graph provided that there is a partition
V and W of the vertex set of B such that V 6= ∅, W 6= ∅, and
every edge of B joins a vertex in V with a vertex in W . A bipartite
graph with a partition V and W is a complete bipartite graph if
every vertex of V and every vertex of W are adjacent. We denote
by Kn,m the complete bipartite graph such that V has n elements
and W has m elements.
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A graph G is planar if G contains no subgraph isomorphic to a
subdivision of K3,3 or K5.

We get a nice characterization for graphs that have planar hy-
perspace graph of connected subgraphs.

Theorem 1.1. C (G) is planar if and only if G is either a path, a
cycle, or the 3-star.

It is easy to prove that C (G) is planar if G is either a path, a
cycle, or the 3-star. In Figure 1, we have the geometric representa-
tion of C (G) of the following graphs: (a) a path with size 4; (b) a
cycle with size 3; and (c) the 3-star.

(a) (b) (c)

Figure 1

The proof follows from the following result.

Proposition 1.2. If G is a connected graph with size greater than
3 containing a vertex with degree greater than 2, then C(G) contains
a subdivision of the complete graph with five vertices (and therefore
is not planar).

Proof: The proof is divided in two cases: when G has a vertex
with degree greater than 3 and when the maximum degree of the
vertices of G is 3.

Suppose that G has a vertex v with degree greater than 3. Let
a, b, c, and d be four vertices adjacent to v. Consider A, B, C, and
D the four connected graphs with size 1 determined by the edges
va, vb, vc, and vd, respectively. Since the graph {v} is a common
subgraph of A, B, C, and D, the graph C (G) contains a copy of
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{v}
{v} {a}

B A K
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(a) (b)

Figure 2

the complete graph with five vertices (Figure 2(a)). This finishes
the first case.

Assume that the maximum degree of the vertices of G is 3. Let
v be a vertex such that the degree of v is 3. Let a, b, and c be the
three vertices adjacent to v.

Let A, B, and C be the three connected graphs with size 1 de-
termined by the edges va, vb, and vc, respectively. Since the graph
{v} is a common subgraph of A, B, and C, the graph C (G) contains
a copy of the complete graph with four vertices.

Let D be the connected graph defined by the edges va, vb, and
vc. Next, we show that there are four paths in C(G) joining D with
A, B, C, and {v}, having only the vertex D in common.

Consider the paths A′, B′, and C ′ in G defined by A′ = avb,
B′ = bvc, and C ′ = cva. Then the paths AA′D, BB′D, and CC ′D
are paths in C(G) (actually in C(D)), joining D with A, B, and C,
respectively, having only the vertex D in common.

Since G is a connected graph with size greater than 3, either a,
or b, or c has degree at least 2. Without loss of generality, assume
that there is a vertex w different from v adjacent to a and different
from c.

Let K, K ′, and K
′′

be paths in G defined by K = aw, K ′ =
vaw, and K

′′

= cvaw, respectively. Since K, K ′, and K
′′

are not
subgraphs of D, {v} {a}KK ′K

′′

D is a path in C(G) that has only
the vertex D with the paths previously constructed.
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The four paths constructed above, together with the complete
graph with four vertices, create a subdivision of the complete graph
with five vertices (Figure 2(b)). �

Using Theorem 1.1, it is easy to show the following results.

Theorem 1.3. Let P be a path with size N and let G be a connected
graph. If C (P ) and C (G) are isomorphic, then G is a path with size
N .

Theorem 1.4. Let Y be a cycle with size N and let G be a con-
nected graph. If C (Y ) and C (G) are isomorphic, then G is a cycle
with size N .

Theorem 1.5. Let T be the 3-star and G be a connected graph. If
C(T ) and C (G) are isomorphic, then G is the 3-star.

These results reduce our problem to graphs that are not paths,
cycles, or the 3-star.

2. Stitched graphs and size levels

There is a natural way to give a partition of the vertices of C(G).
Since the vertices of C (G) are connected subgraphs of G, we can
consider a partition by the cardinality of the edge set. Namely,

Vn = {K ∈ V (C (G)) : K has size n}.

Note that if |n − m| > 1, then no vertex of Vn is adjacent to Vm.

For each n, we define the graph Qn(G) by taking Vn as the
vertex set of Qn (G) together with all the edges of C (G) that join
two elements of Vn as the edge set of Qn (G). The graph Qn(G) is
called the n-th size level of C (G).

The size level graphs can be seen as analogous to the concept of
Whitney levels for hyperspaces of sets [2].

Given G, a connected graph with size N , we will refer to (N − 1)-
th size level as the last non-degenerate size level of G. Let us
analyze some properties of such size level.

Let G be a graph and let K be a subgraph of G. The set E(G)−
E(K) is called the complementary edge set of K in G and it is
denoted by EK,G. In particular, if E(G) − E(K) = {e}, then e is
the complementary edge of K in G.
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If e is a complementary edge of K in G, then either e is a cycle
edge of G (edge contained in a cycle of G) or e is a terminal edge
of G (edge containing a vertex with degree 1). An edge e is a
removable edge of G if e is either a terminal or a cycle edge of G.

Each connected subgraph of G in the last non-degenerate level
can be determined by its complementary edge in G. In order words,
if G is a connected graph with size N , then for every terminal edge
e of G there is a connected subgraph K of G with size N − 1 such
that e is the complementary edge set of K in G.

Next, we analyze the structure of the last non-degenerate level.

Let K be a connected subgraph of G such that K is in the last
non-degenerate level of G. The subgraph K is C-type in G if its
complementary edge in G is a cycle edge. Similarly, the subgraph
K is a T -type in G if its complementary edge in G is a terminal
edge.

Let G be a connected graph with size N , let K be a T -type
subgraph of G, let L be a connected subgraph of G with size N − 1
different from K, and let e be the complementary edge of L in G.
Since K 6= L, e is an edge of K. Note that since K is T -type, all
the cycle edges of G are cycle edges of K and all terminal edges
of G in K are terminal edges of K. Thus, there is a connected
subgraph J of K with size N − 2 with complementary edge e of J
in K. This implies that J is a subgraph of L. We have shown the
following proposition.

Proposition 2.1. Let G be a connected graph with size N and let
K be a T -type subgraph of G. Then for every connected connected
subgraph L with size N − 1 different from K, K is level adjacent to
L.

Let G be a connected graph with size N , let Y be a cycle of G,
and let K be a connected subgraph of G with complementary edge
e in G such that e is not in Y . Then all the edges of the cycle Y are
cycle edges of K. Thus, for every edge f in Y , there is a connected
subgraph J with size N − 2 with complementary edge f in K. Let
L be a connected subgraph of G with complementary edge f in G.
We have that J is a connected subgraph of L. This proves the next
proposition.
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Proposition 2.2. Let G be a connected graph with size N and let
Y be a cycle in G and let L be a connected subgraph of G such that
its complementary edge in G is an edge of Y . If K is a connected
subgraph of G such that its complementary edge in G is not an edge
of Y , then K and L are level adjacent.

A subgraph S of a graph G is said to be spanning (or spans G)
if V (S) = V (G).

Recall the definition of bipartite given on page 285. A graph G
is said to be stitched if G contains a spanning complete bipartite
subgraph.

Theorem 2.3. Let G be a connected graph with size N . Then G is
not a cycle of size greater than 4 if and only if QN−1 (G) is stitched.

Proof: If G is a cycle with size N ≤ 4, then QN−1 (G) is a cycle
with size N . Thus, QN−1 (G) can be spanned by either K1,2 or
K2,2. Therefore, QN−1 (G) is stitched.

If G is a tree, by Proposition 2.1, QN−1 (G) is a complete graph.
Therefore, QN−1 (G) is stitched.

Assume that G is not a cycle but contains a cycle Y as a sub-
graph. For every K subgraph of G with size N − 1, let eK be the
complementary edge of K in G. Define the following partition of
the vertices of QN−1 (G):

• W = {K ∈ QN−1 (G) : eK ∈ E(Y )};
• V = {K ∈ QN−1 (G) : eK /∈ E(Y )}.

Note that V 6= ∅ and W 6= ∅.
Using Proposition 2.1 and Proposition 2.2, QN−1 (G) is stitched.
On the other hand, if G is a cycle with size greater than 4, then

QN−1 (G) is a cycle of size greater than 4. Therefore, QN−1 (G) is
not stitched. �

3. Uniqueness of C(G)

The neighborhood of a vertex v in a graph G is the subgraph of
G determined by the vertices of G adjacent to v and the edges of
G between those vertices.

In Theorem 2.3, we show that the neighborhood of the vertex G
in the graph C(G) is stitched when G is not a cycle of size greater
than 4. This characteristic is quite rare within the vertices of C(G).
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In fact, only G and some very special small subgraphs of G will
have the property of having stitched neighborhoods.

If K is a connected subgraph of G, we denote the neighborhood
of K in C(G) by NK. Define the following set

L(G) = {K ∈ C(G) : NK is stitched}.

We can restate Theorem 2.3 in the following remark.

Remark 3.1. Let G be a connected graph. Then G is not a cycle
of size greater than 4 if and only if G ∈ L (G) .

Lemma 3.2. Let G be a connected graph and let K be a connected
non-empty subgraph of G. Then K ∈ L (G) if and only if one of
the following statements holds.

(1) K = G and G is not a cycle of size greater than 4.
(2) K = {v} for some endvertex v of G.
(3) K = {v} for some vertex v with degree 2 and contained in

a cycle of size 3.

Proof: Let N be the size of G.
For (1), the result follows from Remark 3.1.
If K is like in (2), then NK is a single edge and therefore stitched.
If K is like in (3), then NK is a cycle with size 4 and therefore

stitched.
Assume that K is a proper nondegenerate and non-empty sub-

graph of G with size n such that NK is stitched.
Let A and B be a partition of V (NK) guaranteed by the defini-

tion of a bipartite graph.

Claim 1. If H ∈ V (Qn−1) ∩ B, then V (Qn+1) ∩ V (NK) ⊂ B.
Let H ∈ B and H has size n− 1. Since no subgraph of size n+1

is adjacent to H in C (G), for every L ∈ V (NK) with size n + 1,
L ∈ B.

Similarly, we can show the following claim.

Claim 2. If L ∈ V (Qn+1) ∩ B, then V (Qn−1) ∩ V (NK) ⊂ B.

Using the claims above, we can assume that A ⊂V (Qn). Note
that if J ∈ A, then K and J are adjacent. Let H be the common
subgraph of K and J with size n− 1. Since H is a subgraph of K,
H ∈ B. Let e be the complementary edge of H in K. This implies
that E(K) = E(H) ∪ {e}.
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Consider H ′ ∈ B − {H}. Since H and H ′ are two different
connected subgraphs of K, e is an edge of H ′.

Note that J ∈ A and H ′ ∈ B. This implies that H ′ is adjacent
to J . Thus, H ′ is a connected subgraph of J . Then E(K) =
E(H)∪ {e} ⊂ E (J). Moreover, since K and J have the same size,
K and J are the same subgraph of G. This is a contradiction.
Therefore, if NK is stitched, (1) holds, or K has to be a degenerate
subgraph.

Assume that K = {v} for some vertex v of G such that N{v} is
stitched.

Let A and B be a partition of V
(

N{v}

)

.
If the degree of v is greater than 2 in G, then there are three

distinct vertices a, b, and c such that a, b, and c are adjacent to v
in G. Let A = va, B = vb, and C = vc. Without loss of generality,
assume {a} ∈ A. Since B and C are not adjacent to {v} in C (G),
B,C ∈ A. Also {b} and {c} are not adjacent in C (G) to C and
B, respectively. This implies that {b} , {c} ∈ A. Since {b} is not
adjacent to A in C (G), A ∈ A. However, a, b, and c were any
three vertices adjacent to v. This implies that V (NK) = A. This
contradicts the fact that B is not empty.

If the degree of v is 2, let a and b be the only two vertices of G
that are adjacent to v and let A = va and B = vb. Without loss of
generality, assume a ∈ A. Hence, B ∈ A.

Note that if b ∈ A, then N{v} = A, contradicting the fact that
B is not empty.

Hence, b ∈ B. Since N{v} is stitched with partition A and B, we
have that, in particular, a has to be adjacent to b. Then vabv is a
cycle of length 3. Therefore, (3) holds. This finishes the proof. �

Lemma 3.3. Let G and G′ be two connected graphs that are not
paths or cycles of size greater than 4. If there is an isomorphism
φ : C(G) → C(G′), then φ(G) = φ(G′).

Proof: Let φ : C(G) → C(G′) be an isomorphism. Then φ(L(G)) =
L(G′). By Remark 3.1, G ∈ L(G) and G′ ∈ L(G′).

Note that if L(G) = {G}, then the result is trivial.

Claim 1. If L(G) = {G, {v}} for some vertex v of G, then the
degree of {v} is less than the degree of G in C(G).

If the degree of v in G is 1, then the degree of {v} in C(G) is 2.
Since G is not a path, the degree of G in C(G) is greater than 2.
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If v is a vertex with degree 2 and contained in a cycle of size 3,
then the degree of {v} in C (G) is 4. Let a and b be the two vertices
of G that are adjacent to v in G. Note that a and b must both have
degrees greater than 2 (otherwise, they would be elements of L (G)).
Let K be the connected subgraphs of G with complementary edge
set {va, vb}. Thus, the edge ab is an edge of K that is not a terminal
edge of K. No matter if K has a cycle or K is a tree, there are
two removable edges e and f of G in K. So G has at least five
removable edges, namely va, vb, ab, e, and f. Thus, the degree of
G in C(G) is at least 5.

Claim 2. Let |L(G)| ≥ 3 and let N be the size of G. Then
K ∈ L(G) is such that for every L ∈ L(G) − {K}, the distance
between K and L in C(G) is N if and only if K = G.

First, note that for every vertex v of G, the distance between G
and {v} in C(G) is N .

By Lemma 3.2, L (G) − {G} ⊂ Q1(G). For any {v} , {w} ∈
L (G)−{G}, the distance from {v} and {w} in C (G) is the same as
the distance from v to w in G. Since G is not a path, the distance
from v to w in G is less than N . This proves the claim.

Therefore, if |L (G)| = 2 or |L (G)| ≥ 3, using the claims above,
φ(G) = G′. �

Theorem 3.4. Let G and G′ be connected graphs. Then G and G′

are isomorphic if and only if C(G) and C(G′) are isomorphic.

Proof: One implication is obvious by the construction of the
hyperspace graph.

The case when one of the graphs is a path, a cycle, or the 3-star,
the result follows from Theorem 1.3, Theorem 1.4, and Theorem
1.5, respectively.

Therefore, assume that neither G nor G′ are cycles or paths, and
let φ : C (G) → C (G′) be an isomorphism.

By Lemma 3.3, we have that φ(G) = G′. Consider
M = max {d(G,K) : K ∈ V (C (G))}

and
R (G) = 〈K ∈ V (C (G)) : d(G,K) = M〉.

Since φ is an isomorphism between C (G) and C (G′), we have
that φ(R(G)) = R (G′). Note that Q0(G) = R(G) and Q0(G

′) =
R (G′).
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Then φ|Q0(G) : Q0(G) → Q0(G
′) is an isomorphism. Therefore,

G and G′ are isomorphic. �
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