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k-SPACES, AND PRODUCTS OF WEAK

TOPOLOGIES

YOSHIO TANAKA

Abstract. We investigate conditions for weak topologies to
be productive and consider countable products of k-spaces.

1. Introduction and preliminaries

We assume that all spaces are regular and T1, and all maps are
continuous and onto.

For a cover P of a space X, we recall that X is determined by P
[7] if X has the weak topology with respect to P [3]; that is, G ⊂ X
is open in X if G ∩ P is open in P for each P ∈ P. Here, we can
replace “open” by “closed.” We call such a cover P a determining
cover in [30].

A space X is a sequential space (respectively, k-space; quasi-k-
space [14]) if X has a determining cover by compact metric sets
(respectively, compact sets; countably compact sets). Then a space
X is sequential if X has a determining cover by metric sets (or
convergent sequences). Sequential spaces are k-spaces, and k-spaces
are quasi-k-spaces.

As is well-known, every sequential space (respectively, k-space;
quasi-k-space) is characterized as a quotient image of a locally com-
pact metric space (respectively, locally compact paracompact space;
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M -space (i.e., space which admits a quasi-perfect map onto a metric
space); for example, see [4] (respectively, [3]; [14]).

Similarly, as is known, every space with a countable determin-
ing cover by compact sets is precisely a quotient image of a locally
compact Lindelöf space. Also, every space with a point-countable
(respectively, point-finite) determining cover by compact sets is
precisely an image of a locally compact paracompact space un-
der a quotient map with each point-inverse Lindelöf (respectively,
compact). Here, a cover P of X is point-countable (respectively,
point-finite) if every x ∈ X is in, at most, countably (respectively,
finitely) many P ∈ P.

For a collection P of sets of a space X, P is closure-preserving
(CP ), if for any subfamily P

′

of P, cl(
⋃
{P : P ∈ P

′

}) =
⋃
{clP :

P ∈ P
′

}, and P is hereditarily closure-preserving (HCP ), if for any

subcollection P
′

= {Pα : α} of P, and any {Aα : α} with Aα ⊂ Pα,
the collection {Aα : α} is CP.

For a closed cover F of a space X, we recall that X is dominated
by F [9] if F is a CP cover such that any P ⊂ F is a determining
cover of the union of P. (Sometimes we say that X has the White-
head weak topology, Morita weak topology (in the sense of [12]), or
hereditarily weak topology, with respect to F). We call such a closed
cover F a dominating cover in [30]. A space X with an increasing
determining cover {Xn : n ∈ N} is called the inductive limit of
{Xn : n ∈ N}. When the Xn are closed in X, {Xn : n ∈ N} is a
dominating cover of X. As is well-known, every CW-complex has
a dominating cover by compact metric sets. For some properties
and questions on determining or dominating covers, see [8].

Open covers ⇒ Determining covers ⇐ Dominating covers ⇐
HCP closed covers ⇐ Locally finite closed covers.

Notation. For a cover P of a space, we will use symbols [P] =
{A : A is a finite union of elements of P} and P◦ = {intP : P ∈ P}.

In this paper, we shall consider the following question on prod-
ucts of determining or dominating covers and products of k-spaces
in terms of weak topologies. Question 1.1(1) is mainly consid-
ered in [29]. Related to (3), note that, for a space X = F1 + F2,
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P = {F1, F2} is a binary closed cover of X, but a countable prod-
uct Pω(= P × P × · · · ) is not a determining cover of Xω. So, we
consider the products of type [P]ω (instead of Pω) in (3).

Question 1.1. (1) For each i = 1, 2, let Pi be a determining cover
of a space Xi. Under what conditions is P1 ×P2(= {P1 ×P2 : Pi ∈
Pi}) a determining cover of X1 × X2 ?

(2) Same as (1), but replace “determining” by “dominating.”

(3) Let P be a determining cover of a space X. Under what
conditions is [P]ω a determining cover of Xω ?

Let us recall some elementary facts which will be used often in
this paper. Fact 1.2 is routinely shown (see [7], [24], [25], [28], [29],
[30]). For Fact 1.3, (1) holds by the proof of [22, Lemma 6], and (2)
holds by [24, Lemma 2.5]. For Fact 1.4, (1) holds by Fact 1.2(1),
and (2) holds by [12, Lemma 3].

Fact 1.2. (1) Let C be a determining cover of X. Let P be a
cover (respectively, closed cover) of X. If C is a refinement of P
(respectively, [P]), then P is a determining cover of X.

(2) Let {Pα : α} be a determining cover of X. If each Pα has a
determining cover Pα,

⋃
{Pα : α} is a determining cover of X.

(3) Let P be a determining cover of X. If S is a closed or open
set of X, then {P ∩ S : P ∈ P} is a determining cover of S.

A decreasing sequence (An) of non-empty sets of X is a q-sequence
(respectively, k-sequence) [11], [14], if C =

⋂
{An : n ∈ N} is count-

ably compact (respectively, compact) in X, and each open set U
with C ⊂ U contains some An, equivalently, for any xn ∈ An,
{xn : n ∈ N} has an accumulation point in C [11].

Fact 1.3. (1) Let P be a point-countable determining cover of X.
Then, for each q-sequence (An) in X, some An is contained in an
element of [P].

(2) Let F = {Xα : α ≤ γ} be a dominating cover of X. For each
α ≤ γ, let Lα = Xα −

⋃
{Xβ : β < α}. Then {clLα : α ≤ γ} is a

determining cover of X such that, for each q-sequence (An) in X,
some An meets only finitely many Lα; hence, some An is contained
in an element of [F ].
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Fact 1.4. (1) Let P be a determining cover of X = ΠXi (i ∈ N).
Then ΠPi (i ∈ N) is a determining cover of X, where Pi = Pi(P)
for the projection Pi : X → Xi.

(2) Let X be a locally compact space, and let P be a determining
cover of Y . Then {X} × P is a determining cover of X × Y .

For the following proposition, (1) is stated in [29] (or shown by
Fact 1.2(2)), and (2) is due to [9], [13].

Proposition 1.5. (1) Every space with a determining cover by se-
quential spaces (respectively, k-spaces; quasi-k-spaces) is a sequen-
tial space (respectively, k-space; quasi-k-space).

(2) Every space with a dominating cover by paracompact spaces
(respectively, normal spaces) is paracompact (respectively, normal).

2. Results

Let us recall two canonical quotient spaces, the sequential fan Sω

and the Arens’ space S2. For an infinite cardinal number α, let Sα

be the space obtained from the disjoint union Σ{Lβ : β < α} of
convergent sequences by identifying all the limit points to a single
point. Let S2 be the space obtained from the disjoint union Σ{Ln :
n = 0, 1, · · · } of copies of the sequence {1/n : n ∈ N} ∪ {0} by
identifying each 1/n ∈ L0 with 0 ∈ Ln (n ≥ 1). For α ≥ ω, let Fα

be the obvious HCP closed cover of the space Sα by α convergent
sequences.

As for products of determining covers, we have Example 2.1 be-
low. For (1), (a) holds by Fact 1.4(2), and (b) holds by [10, (7.5)]
(or Corollary 2.5 below). For (2), as is well-known, Q×Sω is not a
k-space; thus, (a) holds by means of Proposition 1.5(1). (b) is es-
sentially given in [2] (see also [3, Example 5, p. 132]), and (c) holds
by [6, Lemma 5]. For products of point-finite determining covers
by compact metric sets, the similar examples also hold, using the
space S2 or K∗

α (in [26]), instead of Sω or Sα, where α = ω1 or
c (= 2ω).

Example 2.1. (1) (a) {R}×Fα is a determining cover of R× Sα,
where R is the space of real numbers.

(b) Fω ×Fω is a determining cover of Sω × Sω.

(2) (a) {Q} ×Fω is not a determining cover of Q× Sω, where Q
is the space of rational numbers.
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(b) Fω ×Fc is not a determining cover of Sω × Sc.
(c) Fω1

×Fω1
is not a determining cover of Sω1

× Sω1
.

Theorem 2.2. Let Pi be a determining cover of Xi (i = 1, 2).
(1) Let X1 be locally compact. Then P1 × P2 is a determining

cover of X1 × X2 if one of the following (a) ∼ (e) holds.
(a) P1 is an open cover.
(b) P1 is a countable increasing cover.
(c) P1 is a point-countable closed cover.
(d) P1 is a dominating cover.
(e) Elements of P2 are k-spaces.

(2) P1×P2 is a determining cover of X1×X2 if (a) or (b) below
holds [29].

(a) X1 × X2 is a quasi-k-space with X1 sequential.
(b) X1 × X2 is a k-space, and the elements of P1 are k-spaces.

Proof: We prove (1) holds. For (a), X1 × X2 has an open cover
(hence, a determining cover) {P1 ×X2 : P1 ∈ P1}. Each P1 ∈ P1 is
locally compact, then P1 × X2 has a determining cover {P1 × P2 :
P2 ∈ P2} by Fact 1.4(2). Thus, the result for (a) holds by Fact
1.2(2). For (b) ∼ (e), X1 has an open cover V = {V : clV is
compact}. Then X1 ×X2 has a determining cover Q = {clV ×P2 :
V ∈ V, P2 ∈ P2} by (a) and Fact 1.2(1). Thus, the result for (b),
(c), or (d) holds, using Fact 1.2 and Fact 1.3. For (e), each P2 ∈ P2

is a k-space (hence, it has a determining cover by compact sets);
therefore, each clV ×P2 ∈ Q has a determining cover {clV ×K : K is
compact in X2} by Fact 1.4(2), but each clV ×K has a determining
cover {(clV ∩ P1) × (K ∩ P2) : Pi ∈ Pi} by Fact 1.2(3). Thus, the
result for (e) holds by Fact 1.2. �

Theorem 2.3. Let Fi be a dominating cover of a space Xi (i =
1, 2) such that F1 is HCP or increasing. Then F1 × F2 is a domi-
nating cover of X1 × X2 if X1 is locally compact, or X1 × X2 is a
quasi-k-space.

Proof: Let F = {Aα × Bβ : (α, β) ∈ Γ} ⊂ F1 × F2. We will
show that S =

⋃
F is closed in X1 × X2, and F is a determining

cover of S. For each α, let Γα = {β : (α, β) ∈ Γ}, and Cα =⋃
{Bβ : β ∈ Γα}. Then S =

⋃
{Aα × Cα : α}, and S is closed in

X1 × X2 (because, for (a, b) /∈ S, let V = X1 − ∪{Aα : Aα 6∋ a},
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W = X2 − ∪{Cα : Aα ∋ a}), then V × W is a nbd of (a, b) which
doesn’t meet S). We will show that F is a determining cover of S.

First, let X1 be a locally compact space. Then X1 × X2 has
a determining cover {(C × X2) : C is compact in X1}. Since S is
closed in X1×X2, S has a determining cover CS = {(C×X2)∩S : C
is compact in X1} by Fact 1.2(3).

Next, let X1×X2 be a quasi-k-space. Then, by Fact 1.4(1), X1×
X2 has a determining cover {(K1 × K2) : Ki is countably compact
in Xi}. Then S has a determining cover KS = {(K1 ×K2)∩S : Ki

is countably compact in Xi}.
Now, for A ⊂ S, assume (*) F ∩ A is closed for each F ∈ F .

Then A is closed in S. To see this, let us show that C ′∩A is closed
in C ′ for each C ′ ∈ CS (or KS) for case (i) or (ii) below.

(i) F1 is HCP: For X1 being locally compact, let C be a compact
set in X1. Then each C ∩Aα is compact; thus, each (C ∩Aα)×Cα

has a determining cover {(C ∩ Aα) × Bβ : β ∈ Γα} by Fact 1.4(2).
Hence, by the assumption (*), each ((C ∩Aα)×Cα)∩A is closed in
(C∩Aα)×Cα, so is closed in (C×X2)∩S. For X1×X2 being quasi-
k, let Ki be a countably compact set in Xi. Then each countably
compact set K2 ∩Cα is contained in a finite union of Bβ’s (β ∈ Γα)
by Fact 1.3(2). Thus, each (K1∩Aα)×(K2∩Cα) has a determining
cover {(K1 ∩Aα)× (K2 ∩Bβ) : β ∈ Γα}. Hence, by the assumption
(*), each ((K1 ∩ Aα) × (K2 ∩ Cα)) ∩ A is closed in (K1 × K2) ∩ S.
While F1 is HCP, then for each countably compact L in X1, L
meets only finitely many elements F of F1 with F ∩ L infinite;
otherwise, L ∩

⋃
F1 is finite. Thus, since S =

⋃
{Aα × Cα : α}, for

each C ′ = (C ×X2)∩ S ∈ CS (or (K1 ×K2)∩ S ∈ KS), C ′ ∩A can
be expressed as a finite union of closed sets in C ′ (hence, it is closed
in C ′). Here, for L∗ = L ∩

⋃
F1 (L = C or K1) being finite, let

Fi (i ≤ k) be all finite sets of L∗, and Gi =
⋃
{Cα : Fi ∩ Aα 6= ∅}.

Then (C ′∩A)∩(L∗×X2) is a finite union of ((Fi×Gi)∩A)∩C ′ (i ≤
k), and these sets are closed in C ′ as in the above, for each Fi is
compact and F2 is a dominating cover of X2.

(ii) F1 is increasing: For each α, let Dα = Aα −
⋃
{Aγ : γ < α},

and Eα =
⋃
{Cγ : γ ≥ α}. Since F1 is increasing, S =

⋃
{Dα×Eα :

α}. Each countably compact set of X1 meets only finitely many
Dα by Fact 1.3(2). Then, for each C ′ ∈ CS (respectively, KS), C ′

is contained in a finite union of sets (Aαi
× Eαi

) ∩ C ′. But each
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(Aαi
× Eαi

) ∩ C ′ has a determining cover {(Aαi
× Bβ) ∩ C ′ : β ∈

Γα, α ≥ αi} by Fact 1.4(2) (respectively, Fact 1.3(2)). As in (i), we
see that C ′ ∩ A is a finite union of closed sets in C ′ (hence, it is
closed in C ′); here note that F1 is increasing. �

Corollary 2.4 below holds by Theorem 2.2(2); here every CW-
complex has a determining cover by the closures of all the cells.
Corollary 2.5 below holds by Theorem 2.2(2), for X1 × X2 is a
k-space by [27, Theorem 6]. A space X is a singly bi-quasi-k-
space [11] if, whenever x ∈ clA, there exists a q-sequence (Bn)
with x ∈ cl(A ∩ Bn). Every k′-space (i.e., the Bn are the same
compact set) is a singly bi-quasi-k-space. Corollary 2.6 below holds
by Theorem 2.3 and Proposition 1.5(2).

Corollary 2.4. Let X and Y be CW-complexes. Then X × Y is a
CW-complex iff it is a quasi-k-space.

Corollary 2.5. Let Xi (i = 1, 2) have a determining cover Ci by
locally compact sets such that Ci are countable decreasing, countable
closed, or point-countable closed with Xi singly bi-quasi-k-spaces.
Then, for any determining cover Pi of Xi, P1×P2 is a determining
of X1 × X2 if P1 consists of k-spaces. Here, this condition can be
omitted when X1 or X2 is sequential.

Corollary 2.6. Let Fi be a dominating cover of a space Xi (i =
1, 2) such that F1 is HCP or increasing. If X1 × X2 is a quasi-k-
space, then X1 × X2 is paracompact (respectively, normal) iff each
element of F1 ×F2 is paracompact (respectively, normal).

Following [11], a space X is a countably bi-quasi-k-space if, when-
ever (An) is a decreasing sequence x with x ∈ clAn, there exists a
q-sequence (Bn) such that x ∈ cl(An ∩ Bn); in particular, X is
countably bi-sequential (= strongly Fréchet [18]) when there exist
xn ∈ An such that {xn : n ∈ N} converges to the point x.

As a generalization of countably bi-quasi-k-spaces, let us con-
sider the following property (P), changing “compact” to “countably
compact” in [7, (3.1)].

(P): For each decreasing sequence (An) in X with
⋂
{clAn : n ∈

N} 6= ∅, there exists a countably compact set K of X such that
K ∩ An 6= ∅ for all n ∈ N .

A space X has countable tightness, t(X) ≤ ω, if whenever a ∈
clA, a ∈ clC for some countable C ⊂ A (equivalently, X has a
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determining cover by countable sets; see [11]). A sequential space
or a hereditarily separable space has countable tightness.

Proposition 2.7. (1) Let X be a Fréchet space, or be a sequential
space which is hereditarily normal or points are Gδ-sets. Then X
is countably bi-sequential iff X has property (P).

(2) Let Xω be a quasi-k-space with t(X) ≤ ω (in particular, let
Xω be sequential). Then X has property (P).

(3) Under the same assumption in (1), if Xω is sequential, then
X is countably bi-sequential.

Proof: For (1), let X have property (P). Then X contains no
closed copy of Sω and no S2. Thus, X is countably bi-sequential by
[23, Theorem 1.5 & Theorem 3.1]. For (2), in view of [21, Theorem
4.13], for each x ∈ X and each decreasing sequence (An) with
x ∈ cl(An−{x}), there exist xn ∈ An such that {xn : n ∈ N} is not
closed in X. Then X has property (P), for X is a quasi-k-space.
(3) holds by (1) and (2). �

Remark 2.8. (1) In Proposition 2.7, the assumption in (1) is es-
sential. Indeed, for the compact sequential, non-Fréchet space Ψ∗

in [5, Example 7.1], Ψ∗ω is sequential by Lemma 2.14(1) below.

(2) In Proposition 2.7(2), “t(X) ≤ ω” is essential. Indeed, under
(CH), there exists a k′-space X with a countable HCP (determin-
ing) cover by compact sets such that Xω is a k-space, but X is
not locally compact [1]; hence, X doesn’t have property (P) by
Theorem 2.10(1) below.

Lemma 2.9. Let P be a point-countable cover of X with t(X) ≤ ω.
Then the following are equivalent.

(a) [P]◦ is an open cover of X.
(b) For each countably compact set K of X, K ⊂ P for some

P ∈ [P]◦.
(c) For each decreasing sequence (An) in X with

⋂
{clAn : n ∈

N} 6= ∅, there exists P ∈ P with P ∩ An 6= ∅ for all n ∈ N .

Proof: Obviously, (b) → (a) → (c) holds. To see that (c) →
(b) holds, suppose (b) doesn’t hold for some countably compact
set K. For each countable set C, let {P ∈ P : P ∩ C 6= ∅} =
{Pi(C) : i ∈ N}. Since t(X) ≤ ω, by induction, there exist points
xn and countable sets Cn (n ∈ N) such that xn ∈ K ∩ clCn, but
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Cn ∩ Pi(Cj) = ∅ if i, j < n. The sequence {xn : n ∈ N} in K has
an accumulation point x. Let An =

⋃
{Ck : k ≥ n}, then (An) is

a decreasing sequence with x ∈ clAn. Then, by (c), there exists
P ∈ P such that P meets infinitely many Cn, a contradiction. �

Theorem 2.10. (1) Let X have property (P), and let P be a de-
termining cover of X. Then [P]◦ is an open cover of X (in fact,
(b) in Lemma 2.9 holds) if (a), (b), or (c) below holds.

(a) P is a countable cover.
(b) P is a point-countable cover, and t(X) ≤ ω.
(c) P is a dominating cover, and t(X) ≤ ω.

(2) Let X be a countably bi-quasi-k-space, and let P be a deter-
mining cover of X. Then [P]◦ is an open cover of X if P is a
dominating or point-countable closed cover of X.

Proof: For (1), since X has property (P), (c), and therefore (b),
in Lemma 2.9 holds. Here, for (a) and (b) in (1), use Fact 1.3(1).
For (c) in (1), let P = {Xα : α ≤ γ} be a dominating cover of
X, and let Lα = Xα −

⋃
{Xβ : β < α} for each α ≤ γ. Since X

has property (P), F = {clLα : α ≤ γ} is a point-finite determining
closed cover of X. Indeed, suppose not for some x ∈ X. Then
x ∈ clLαi

for some αi (i ∈ N), and let An =
⋃
{Lαi

: i ≥ n}. Then
(An) is a decreasing sequence with x ∈ clAn. By property (P), some
countably compact set meets infinitely many Lαi

, a contradiction to
Fact 1.3(2). Thus, (c) is reduced to (b). For (2), X is countably bi-
quasi-k, and the point-countable determining cover P or F (in the
above) is closed; therefore, (2) holds by means of Fact 1.3(1). �

Theorem 2.11. (1) Let Xω be a sequential space. Let P be a
determining cover of X, and let P∗ = {P ∪F : P ∈ P, F is finite}.
Then P∗ω (hence, [P]ω) is a determining cover of Xω.

(2) Let Xω be a quasi-k-space. Let P be a dominating or point-
countable determining cover of X. Then [P]ω is a determining
cover of Xω. When t(X) ≤ ω, [P]◦ω is a determining cover of Xω.

Proof: For (1), Xω has a determining cover {ΠCi : Ci is compact
metric in X} by Fact 1.4(1). Since the Ci are metric and closed in
X, each element ΠCi has a determining cover {Π(Ci∩Pi) : Pi ∈ P∗}
by [20, Lemma 3.3] and Fact 1.2(3). Thus, P∗ω is a determining
cover of Xω by Fact 1.2(1). Similarly for (2), the first half holds,
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using Fact 1.3. The latter part holds by Proposition 2.7(2) and
Theorem 2.10(1). �

Remark 2.12. Let X be a space with a countable determining
closed cover F by first countable and locally compact sets. Then, by
Corollary 2.5, any finite product Xn is a k-space with a determining
cover Fn. But by Theorem 2.10(1) with Proposition 1.5(1) and
Proposition 2.7(2), Xω is not a quasi-k-space and [F ]ω is not a
determining cover of Xω if X is not locally compact,

In view of theorems 2.2, 2.3, and 2.11, we pose the following.

Question 2.13. (1) Let X1 be a locally compact space, or let X1 ×
X2 be a k-space. For a determining cover Pi of Xi (i = 1, 2), is
P1 × P2 a determining cover of X1 × X2 ?

(2) Same as (1), but replace “determining” by “dominating”
twice.

(3) Let Xω be a k-space. For a determining closed cover F of
X, is [F ]ω a determining cover of Xω ?

Following [11], a space X is a bi-k-space if, whenever A is a
filterbase with x ∈ clA for every A ∈ A, there exists a k-sequence
(Bn) with x ∈ cl(A ∩ Bn) for all A ∈ A (in particular, X is bi-
sequential if, moreover

⋂
{Bn : n ∈ N} = {x}), and a space X is

a bi-quasi-k-space (= bi-k-space [14]) if we replace “k-sequence” by
“q-sequence.” Every bi-k-space (respectively, bi-sequential space;
bi-quasi-k-space) is characterized as an image of a paracompact M -
space [11] (respectively, metric space [11]; M -space [14]) under a
bi-quotient map. Here, a map f : X → Y is bi-quotient if whenever
y ∈ Y and U is a cover of f−1(y) by open sets, then finitely many
f(U) with U ∈ U cover a nbd of y in Y [10].

Lemma 2.14. (1) Every countable product of countably compact
sequential spaces is (countably compact) sequential [15].

(2) Every countable product of M -and-k-spaces (respectively, count-
ably compact k-spaces) is an M -space (respectively, countably com-
pact space); see, for example, [19].

Theorem 2.15. (1) Let X be a sequential (respectively, paracom-
pact) space. Then Xω is a quasi-k-space iff it is a sequential space
(respectively, k-space).
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(2) If X is a bi-k-space, then so is Xω [11].

(3) If X is a sequential bi-quasi-k-space, then so is Xω.

Proof: For the “only if” part in (1), since Xω is a quasi-k-space,
it has a determining cover P = {ΠKi : Ki is countably compact
in X} by Fact 1.4. Since X is sequential, any countably compact
set K of X is closed in X, because K ∩ C is closed in C for each
compact metric set in X. Then the countably compact sets Ki

are closed in X; hence, these are sequential. Thus, each element
ΠKi in P is sequential by Lemma 2.14(1). Then P consists of
sequential spaces. Thus, Xω is sequential by Proposition 1.5(1).
For the parenthetic part, since X is paracompact, clKi are also
countably compact, hence compact. Then Xω has a determining
cover {clP : P ∈ P} by compact sets. Thus, Xω is a k-space. For
(3), since X is a bi-quasi-k-space, by [11, Theorem 3.F.3], X is a
bi-quotient image of an M -space S, where S ⊂ X × M for some
metric space M . But X is sequential countably bi-quasi-k and M is
metric, and thus, X×M is a k-space by [27, Corollary 7]; therefore,
X × M is sequential by (1). S is an M -space, hence a quasi-k-
space by [14]; therefore, S has a determining cover by countably
compact sets. But countably compact sets of the sequential space
X × M are closed, hence sequential. Thus, S is sequential. Since
S is sequential, Sω is an M -space by Lemma 2.14(2); hence, Sω

is a quasi-k-space. Thus, Sω is sequential by (1). Hence, Sω is a
sequential M -space. Any product of bi-quotient maps is bi-quotient
[10]; thus, Xω is a bi-quotient image of a sequential M -space Sω.
Therefore, Xω is a sequential bi-quasi-k-space. �

The same result as Theorem 2.15 holds, replacing “Xω” by “ΠXi,”
and similar assertions would be valid in some other results.

For a sequential space X, the author knows no necessary and
sufficient conditions on X for Xω to be sequential (but if X has cer-
tain properties, X is a bi-quasi-k-space as a necessary and sufficient
condition; see [31]). A necessary condition is given in Proposition
2.7(3) (or (2)), and so is a sufficient condition in Theorem 2.15(3).
But these conditions are not necessary and sufficient in view of (2)
and (3) in Example 2.16 below. Also, (1) and (2) are related to
Lemma 2.14 or Theorem 2.15. (1) is due to [11, Example 10.7].
For (2), let X be the disjoint union of the countable spaces Y and
Z in [17, Example 6.6] such that X ×Y is not a k-space, hence not
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a quasi-k-space. For (3), let X be the countable space X in [16,
Theorem 3.5] such that Xω is countably bi-sequential, but X is not
bi-sequential, hence not bi-quasi-k.

Example 2.16. (1) There exists a countably compact space X,
but X2 is not an M -space, not even a quasi-k-space.

(2) (2ω < 2ω1). There exists a countable, countably bi-sequential
space X, but X2 is not a quasi-k-space.

(3) (CH). There exists a countable space X such that Xω is
countably bi-sequential, but X is not bi-quasi-k.

The following holds by means of theorems 2.2, 2.10, 2.11, and
2.15.

Corollary 2.17. (1) Let X be a sequential bi-quasi-k-space. For a
determining cover P of X, P2 (respectively, [P]ω) is a determining
cover of X2 (respectively, Xω).

(2) Let X be a bi-k-space, and let P be a determining cover of
X. Then P2 is a determining cover of X2 if P is a closed cover.
Also, [P]◦ω (respectively, [P]ω) is a determining cover of Xω if P is
a dominating or point-countable closed cover, or a point-countable
cover with t(X) ≤ ω (respectively, P is a point-countable cover).

Finally, let us pose the following question.

Question 2.18. (1) For a k-space X, let X2 be a quasi-k-space;
in particular, let X be countably compact. Is X2 a k-space ?

(2) For a k-space X, let X be a bi-quasi-k-space. Is X2 a bi-
quasi-k-space or a k-space (or quasi-k-space)?

(1) is posed in [29]. When X is sequential, (1) and (2) are positive
by Theorem 2.15. Related to (1) and (2), see Lemma 2.14(2) or
Example 2.16(1).
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