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βX \ {p} ARE NON-NORMAL

FOR NON-DISCRETE SPACES X

JUN TERASAWA

Abstract. For a non-compact metrizable space X without
isolated points and a point p ∈ βX \X, the subspace βX \{p}
is shown to be non-normal.

The proof is based on a special π-base of X, which the au-
thor devised earlier out of Arhangel’skii’s regular base. Max-
imal disjoint families of basic open sets are introduced, and
ultrafilters on them play a prominent role.

1. Introduction

This is both a sequel to and a revision of the author’s earlier
paper [5].

It is an interesting but difficult question whether βω \ {p} is
normal or not for a point p ∈ βω \ ω (see, e.g., [2]). Under CH,
it is known to be non-normal, and a few proofs are offered. But,
without CH or under the negation of CH, we seem to know very
little.

On the other hand, if we were able to prove the non-normality
of βω \ {p}, then it would immediately imply the non-normality of
βX \{p} for any non-pseudocompact space X and some p ∈ βX \X

because ω is C-embedded in X. This observation motivated our
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earlier study [5] of βX \ {p} for a non-compact metrizable space X

without isolated points. Here we extend the argument and show
within ZFC the following theorem.

Theorem. If X is a non-compact, metrizable space without isolated
points and p ∈ βX \ X is an arbitrary point, then βX \ {p} is not
normal.

In [5], this theorem was shown under the additional assumption
that either X is strongly 0-dimensional or p is a remote point.
For further background of this topic, as well as terminologies, the
readers are referred to [1], [2], [3], [4], [5].

In particular, a point x ∈ Ω is called a butterfly point of a Ty-
chonoff space Ω if there are closed sets F0, F1 of Ω such that (1)
x ∈ ClΩ (Fi \ {x}) for each i, and (2) F0 ∩F1 = {x}. This is due to

B. È. Šapirovskĭı [4]. As we noted in [5] for the proofs of Theorem
1 and Theorem 2, it is necessary and sufficient to show that p is
a butterfly point of βX in our theorem above (sufficient because
X ⊂ βX \ {p} is C∗-embedded in βX).

Throughout the paper, for a family A of subsets of X, we will
use the symbol

A∗ =
⋃

{S : S ∈ A}.

A family A of nonempty open sets of X is called a maximal
disjoint family if it is disjoint and is not a proper subfamily of any
disjoint family of nonempty open sets. Below we will often say
“such A covers X modulo nowhere dense set.” This makes sense
because, although A does not necessarily cover X, the set X \ A∗

can contain no nonempty open set of X. In [5], we called such
family A a “dense cover.”

2. From the previous construction

We begin with the fundamental construction from [5].

The following is shown in [5, pp. 340–342], using Arhangel’skii’s
regular base.

Proposition 1. Let X be a metrizable space without isolated points.
Then X has a π-base B consisting of nonempty open sets, each B

being associated with three sets B(i) ∈ B, i = 0, 1, 2, such that

(1) B ⊃ ClXB(i) and ClXB(i) ∩ ClXB(j) = ∅ for i 6= j;
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(2) if B  C then either B ⊂ C(i) for some i or B ∩ C(i) = ∅
for any i;

(3) for each B,C, either B ∩ C = ∅, B ⊂ C, or B ⊃ C;
(4) each B is contained in only finitely many members of B;
(5) every open cover of X is refined by a locally finite (in X),

maximal disjoint subfamily of B.

Note that (1) corresponds to (1′) and (5) is shown in [5, p. 342,
lines 11–18].

In Proposition 1, let B0 be the set of maximal members of B, and,
for n ≥ 1, let Bn be the set of maximal members of B \

⋃

m<n Bm

(“maximal” in the sense of set-inclusion). Then it follows from (3)
and (4) that B =

⋃

n Bn. This leads us to the following equivalent
formulation of Proposition 1.

Proposition 2 (Alternate). Let X be a metrizable space without
isolated points. Then X has a π-base

B =

∞
⋃

n=0

Bn

such that

• each Bn is a locally finite (in X), maximal disjoint family
of nonempty open sets;

• Bn+1 refines Bn;
• for each B ∈ Bn, there are three sets B(i) ∈ Bn+1, i = 0, 1, 2,

such that ClXB(i) ⊂ B and ClXB(i)∩ClXB(j) = ∅ for i 6= j;
• every open cover of X is refined by a locally finite (in X),

maximal disjoint subfamily of B.

Throughout the rest of the paper, we will refer to Proposition 1;
Proposition 2 is included here just for the readers’ convenience.

3. Locally finite, maximal disjoint families

From this point onward, we fix a non-compact metrizable space
X without isolated points, any point p ∈ βX \X, and the family B
as in Proposition 1, and let Ξ denote the family of all locally finite
(in X), maximal disjoint subfamilies of B of the space X. First of
all, we suppose that Ξ is well-ordered in an arbitrary way.
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Now let us take by recursion ξλ ∈ Ξ and an ultrafilter ϕλ on ξλ

(ϕλ consists of subfamilies of ξλ), for ordinals λ < θ, that satisfy
the following:

(a) p ∈ ClβXU∗ for any U ∈ ϕλ;
(b) for λ < µ, there is a U ∈ ϕλ such that U ∩ V 6= ∅, U ∈ U

and V ∈ ξµ imply V ⊂ U ;
(c) for λ < µ and U ∈ ϕλ, the set {V ∈ ξµ : V ⊂ U for some

U ∈ U} belongs to ϕµ;
(d) for ξ ∈ Ξ \ {ξλ : λ < θ}, there is a λ < θ such that none of

U ∈ ϕλ satisfies (b) with ξµ replaced by ξ.

For λ < θ and a neighborhood O of p in βX, let us define

ξλ(O) = {U ∈ ξλ : U ∩ O 6= ∅}.

Then condition (a) is equivalent to

ϕλ ∋ ξλ(O) for every O.

For U satisfying (b), we will say, “U is partitioned by ξµ.” This
makes sense because, since ξµ is a maximal disjoint family, (b)
means that each U ∈ U is expressed as the union of members of ξµ

modulo nowhere dense set.
Condition (b) also implies that ϕλ has a filter base, each member

of which is partitioned by ξµ, because S ∩U ∈ ϕλ for every S ∈ ϕλ,
and S ∩ U is also partitioned by ξµ.

For each U ∈ ϕλ and λ < µ, let us define

ξµ(U) = {V ∈ ξµ : V ⊂ U for some U ∈ U}.

Then condition (c) is stated more briefly:

For λ < µ and U ∈ ϕλ, the set ξµ(U) belongs to ϕµ.

Condition (d) means that the family {ξλ : λ < θ} is maximal in the
sense of (b) in Ξ.

For the first step of the recursion, let ξ0 be the first member of
Ξ and ϕ0 be any ultrafilter that satisfies condition (a).

Now suppose that, for all ordinals λ < µ, we have ξλ and ϕλ that
satisfy the above conditions.

If there is no ξ ∈ Ξ such that

(6) for any λ < µ, some U ∈ ϕλ is partitioned by ξ,
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then we terminate the recursion and define θ = µ. Obviously, by
(1), such θ is not an isolated ordinal. Otherwise, let ξµ be the first
ξ ∈ Ξ that satisfies (6).

Before defining ϕµ that satisfies (c) and (a), we need to check
that

(i) the sets ξµ(U) satisfy the finite intersection property,
(ii) ξµ(U) ∩ ξµ(O) 6= ∅ for any neighborhood O of p.

For (i), take λ0 ≤ λ1 ≤ · · · ≤ λn < µ and Ui ∈ ϕλi
. Let us show

⋂

i≤n

ξµ(Ui) 6= ∅.

Considering the filter base of ϕλ, we may suppose that each of
U0, U1, . . . , Un is partitioned by ξµ. Since Un ∈ ϕλn

and ξλn
(Ui) ∈

ϕλn
for i < n, by the recursive assumption, we have

Un ∩
⋂

i<n

ξλn
(Ui) 6= ∅.

Take V from this intersection arbitrarily. Since ξµ covers X modulo
nowhere dense set, S ∩ V 6= ∅ for some S ∈ ξµ.

Then V ∈ Un implies S ⊂ V and S ∈ ξµ(Un). Furthermore,
V ∈ ξλn

(Ui), i < n, implies V ⊂ U for some U ∈ Ui. Hence, S ⊂ U ,
and we finally have

S ∈ ξµ(Ui) for all i ≤ n.

To see (ii), again it suffices to consider the case that U is parti-
tioned by ξµ. Take any neighborhood O of p in βX, and let

S = U ∩ ξλ(O).

By (a), we have S ∈ ϕλ. Take any S ∈ S. Then S meets O and
is covered by members of ξµ modulo nowhere dense set. Hence,
W ∩ S ∩ O 6= ∅ for some W ∈ ξµ(S). This shows

W ∈ ξµ(S) ∩ ξµ(O) ⊂ ξµ(U) ∩ ξµ(O) 6= ∅.

Now we can take an ultrafilter ϕµ on the set ξµ that contains all
ξµ(O) and all ξµ(U), and the construction is complete.
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4. Lemmas

For each λ < θ, let us define

Hλ =
⋂

{ClβXU∗ : U ∈ ϕλ}.

Then obviously, p ∈ Hλ.

Lemma 1. For λ < µ, Hλ ⊃ Hµ.

Proof: Take any U ∈ ϕλ. Then ξµ(U)∗ ⊂ U∗ and ξµ(U) ∈ ϕµ by
(c). Thus, we have

Hµ =
⋂

{ClβXV∗ : V ∈ ϕµ} ⊂ ClβX(ξµ(U)∗) ⊂ ClβXU∗

and hence, Hµ ⊂ Hλ. �

Lemma 2. For any neighborhood O of p in βX, there is a λ < θ

such that Hλ ⊂ O.

Proof: First, let us take neighborhoods P, Q of the point p such
that

p ∈ Q ⊂ ClβXQ ⊂ P ⊂ ClβXP ⊂ O.

For each point x ∈ X, we can take an open neighborhood N(x) of x

in X such that N(x) ⊂ P or N(x)∩ClX(Q∩X) = ∅, depending on
whether x belongs to ClX(Q ∩ X) or not. By (5) of Proposition 1,
the cover {N(x) : x ∈ X} is refined by a family ξ ∈ Ξ. Obviously,
we have ξ(Q)∗ = {U ∈ ξ : U ∩ Q 6= ∅}∗ ⊂ P .

If ξ = ξλ for some λ < θ, then, by (a), ξ(Q) ∈ ϕλ. Then we have

Hλ ⊂ ClβXξ(Q)∗ ⊂ ClβXP ⊂ O.

If ξ 6= ξλ for any λ < θ, then, by (d), there is a λ such that none
of U ∈ ϕλ is partitioned by ξ.

Now, for every U ∈ ϕλ, consider U ∩ ξλ(Q) ∈ ϕλ. Then there are
U = UU ∈ U ∩ ξλ(Q) and V = VU ∈ ξ such that U ∩ V 6= ∅ and
V 6⊂ U . By (3) of Proposition 1, in this case V ⊃ U holds.

Let S = {UU : U ∈ ϕλ}. Then we have S ∈ ϕλ, because S meets
every U ∈ ϕλ and ϕλ is an ultrafilter. On the other hand, we have
UU ∩ Q 6= ∅, VU ∩ Q 6= ∅, and hence, VU ⊂ P . All these imply

Hλ ⊂ ClβXS∗ = ClβX

(

⋃

U

UU

)

⊂ ClβX

(

⋃

U

VU

)

⊂ ClβXP ⊂ O. �
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For the rest of our argument, the following symbol will be useful
for λ < θ and i = 0, 1, 2:

Lλ,i = {U (i) : U ∈ ξλ}.

Lemma 3. For any λ < θ and i < 3, there is a point rλ,i ∈ Hλ

such that

rλ,i ∈ ClβXL∗
µ,i whenever λ < µ.

Proof: To show this, it suffices to see that the family consisting
of

U∗, U ∈ ϕλ, and L∗
µ,i, µ > λ

has the finite intersection property; i.e., for U and µ0, . . . , µn−1 > λ,

U∗ ∩
⋂

j<n

L∗
µj ,i 6= ∅.

(Note that it does not make the proof any easier if we invoke the
linear relation, say, µ0 ≥ · · · ≥ µn−1 > λ.)

As we have noted above, U contains a subfamily Uj ∈ ϕλ, for
each j < n, which is partitioned by ξµj

.
Take any U0 ∈ U ∩

⋂

j<n Uj.
If U0 ∈ ξµj

for all j < n, then we have nothing more to do

because U
(i)
0 ⊂ U∗ ∩

⋂

j<n L
∗
µj ,i.

Otherwise, consider J1 = {j : U0 6∈ ξµj
}. For each j ∈ J1, since

U0 is covered by ξµj
modulo nowhere dense set and U

(i)
0 ⊂ U0,

some S ∈ ξµj
satisfies U

(i)
0 ∩ S 6= ∅ and S ⊂ U0. By (3) and (4) of

Proposition 1, we can find a maximal one U1 among such S’s, as
j runs over J1 (“maximal” in the sense of set-inclusion). Then by

(2), we have U1 ⊂ U
(i)
0 .

If U1 ∈ ξµj
for all j ∈ J1, then again we have nothing more to

do because U
(i)
1 ⊂ U∗ ∩

⋂

j<n L
∗
µj ,i. Otherwise, consider J2 = {j ∈

J1 : U1 6∈ ξµj
}. For each j ∈ J2, since U0 is covered by ξµj

modulo

nowhere dense set and U
(i)
1 ⊂ U1 ⊂ U

(i)
0 ⊂ U0, some S ∈ ξµj

satisfies U
(i)
1 ∩ S 6= ∅. The maximality of U1 on the previous stage

implies S ⊂ U1. By (3) and (4) of Proposition 1, we can find a
maximal one U2 among such S’s, as j runs over J2. Then by (2),

we have U2 ⊂ U
(i)
1 .
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Next consider U2 and proceed similarly. This process eventually
terminates because we have only finitely many j’s. This concludes
the proof. �

5. Proof of theorem

Now we are ready to prove the Theorem.

For each i < 3, let

Ki = {rλ,i : λ < θ}.

By lemmas 1, 2, and 3, for any neighborhood O of p, there is
λ < θ such that

rµ,i ∈ Hµ ⊂ Hλ ⊂ O for all µ ≥ λ,

and hence, p ∈ ClβXKi.
Take and fix λ < θ arbitrarily. Then

Ki = {rµ,i : µ ≥ λ} ∪ {rµ,i : µ < λ} ⊂ Hλ ∪ ClβXL∗
λ,i .

On the other hand, by (1) of Proposition 1 and the local-finiteness
of ξλ,

ClXL∗
λ,i ∩ ClXL∗

λ,j = ∅ for i 6= j,

and hence, by the metrizability of X,

(7) ClβXL∗
λ,i ∩ ClβXL∗

λ,j = ∅ for i 6= j.

This implies

ClβXKi ∩ ClβXKj ⊂ Hλ for any λ and i 6= j,

and, by Lemma 2,

ClβXKi ∩ ClβXKj ⊂
⋂

λ

Hλ = {p} for i 6= j .

Thus, p is a butterfly point of βX.
It might happen that, for some i, rλ,i = p for sufficiently large λ

and p 6∈ ClβX(Ki \{p}). But, by Lemma 3 and (7), there is at most
one such i, so that it does not matter; in fact, this is the reason we
have constructed three sequences {rλ,i : λ}, i < 3.
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6. Remarks

Remark 1. Note that our argument works for any non-compact
normal space which has a π-base as in Proposition 1.

In particular, if a non-compact normal space X contains a dense
metrizable subspace without isolated points, then βX \ {p} is non-
normal for any p ∈ βX \ X.

Remark 2. In [5], we required

(8) p 6∈ ClβXB for all B ∈ B,

but not here. There is no particular reason for this; B is easily
modified to satisfy (8).

On the other hand, if (8) is satisfied, condition (a) implies that
each ϕλ is free; i.e.,

⋂

ϕλ = ∅. This further implies Hλ ∩ X = ∅,
because ξλ is locally finite in X, and hence, Ki ⊂ βX \ X. Thus,
we have nonempty closed sets ClβXKi \ X, i < 3, which guarantee
that p is a butterfly point of βX \X. However, how it is related to
the non-normality of βX \ (X ∪ {p}) is a delicate question even if
X is locally compact, as we noted in [5].
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