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CONCERNING PRESERVATION OF

INDECOMPOSABILITY UPON TAKING

A PREIMAGE UNDER z 7→ zn

R. PATRICK VERNON

Abstract. In 2005, David P. Bellamy (Certain analytic pre-

images of pseudocircles are pseudocircles, Topology Proc. 29

(2005), no. 1, 19–25) proved that if X is a pseudo-circle in
the complex plane which separates 0 from ∞, and if n ∈ Z

+,
then the preimage of X under z 7→ z

n is also a pseudo-circle.
He ended his paper with two questions. The first question
asks whether the preimage under z 7→ z

n of a hereditarily in-
decomposable continuum which is irreducible with respect to
separating 0 from ∞ is necessarily hereditarily indecompos-
able. The second question asks whether the preimage under
z 7→ z

n of a continuum which properly contains a pseudo-
circle can ever be hereditarily indecomposable. In this paper,
the author provides affirmative answers to both questions.
In addition, the author explores the general behavior of in-
decomposability and hereditary indecomposability under the
operation of taking preimages under z 7→ z

n.

1. Introduction

Let C denote the one-point compactification of the complex plane,
and let ∞ denote the point of C which is not in the complex plane.
A continuum is a compact, connected, nonempty metric space. Ex-
cept where stated otherwise, this paper will discuss continua which
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332 R. P. VERNON

are subsets of the complex plane. A continuum X separates 0 from

∞ if 0 and ∞ belong to different complementary domains of X;
that is, if 0 and ∞ are in different components of C \X. For each
n ∈ N such that n > 1, let φn : C → C be the rotation of C by 2π

n

radians, and let fn : C→ C be defined by fn(z) = zn. Define fn to
be trivial over a continuum X if f−1

n (X) = X1∪ · · · ∪Xn, a disjoint
union of n continua such that fn|Xi

: Xi → X is a homeomorphism
for i = 1, . . . , n.

Theorem 1. Let X be a continuum with 0 in its unbounded com-

plementary domain. Then fn is trivial over X.

Proof: Suppose 0 is in the unbounded complementary domain of
X. Let δ be an arc from 0 to ∞ that does not intersect X. Then
f−1

n (δ) separates the plane into n open sets Si, and fn|Si
: Si →

(C \ δ) is a homeomorphism for each i. Then each Si contains
exactly one copy Xi of X such that Xi is homeomorphic to X via
fn. �

Theorem 2. Let X be a continuum which separates 0 from ∞.

Then f−1
n (X) is a continuum.

This was proven by David P. Bellamy in [1].

2. First Question

Bellamy showed that the preimage under z 7→ zn of a pseudo-
circle which separates 0 from ∞ is again a pseudo-circle [1]. One
property used in the proof was the fact that every proper subcon-
tinuum of a pseudo-circle which separates 0 from∞ is a pseudo-arc
with 0 in its unbounded complementary domain. Bellamy asked
whether this can be generalized in the following fashion: If X is
a hereditarily indecomposable continuum which is irreducible with
respect to separating 0 from ∞, is f−1

n (X) necessarily hereditarily
indecomposable?

Before beginning, we make a few notes.

Lemma 1. If X is a decomposable continuum, then f−1
n (X) is

decomposable.

Proof: Suppose X = A ∪ B, each proper subcontinuum of X.
Then f−1

n (A) is a continuum if A contains 0 or separates 0 from∞,
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and f−1
n (A) is the disjoint union of n continua otherwise. Similarly,

f−1
n (B) is either a continuum or the disjoint union of n continua.

Then f−1
n (X) can be written as the union of 2, n + 1, or 2n proper

subcontinua, and is thus decomposable. �

Corollary 1. If X is not hereditarily indecomposable, then f−1
n (X)

is not hereditarily indecomposable.

We will give examples later in the paper to show that the con-
verses of the above statements are not true. However, we would
like to see under what conditions f−1

n (X) can be (hereditarily) in-
decomposable.

Definition 1. Define fn to be n-crisp over a continuum X if

(1) f−1
n (X) is a continuum, and

(2) for any proper subcontinuum X ′ of X, we have fn is trivial

over X ′.

The notion of an n-crisp map is based on Jo Heath’s original
concept of a “crisp” 2-to-1 map [3].

Lemma 2. Let X be a continuum which separates 0 from ∞. If

fn is an n-crisp map, then

(1) if f−1
n (X) = A ∪ B, two continua, then one of them maps

onto X under fn;

(2) if C is a proper subcontinuum of f−1
n (X) that maps onto X

via fn, then f−1
n (X) =

⋃n−1
i=0 φi

n(C), each a proper subcon-

tinuum of f−1
n (X).

Proof: (1) If fn(A) is a proper subcontinuum of X, then
f−1

n (fn(A)) is the union of n disjoint homeomorphic continua φi
n(A),

i = 1, . . . , n. Then φn(A) is contained in B, so fn(B) contains
fn(φn(A)) = fn(A). Hence, fn(B) = X.

(2) Each φi
n(C) is a continuum since φn is a homeomorphism.

Let x ∈ f−1
n (X) \C. Then φi

n(x) ∈ f−1
n (X) \φi

n(C), so each φi
n(C)

is a proper subset of f−1
n (X). If fn(C) = X, then every point of

f−1
n (X) is in at least one of the φi

n(C). �

Theorem 3. Let Y be a hereditarily indecomposable continuum

which separates 0 from ∞, and let X be a continuum such that

fn(X) = Y . Then X separates 0 from ∞.
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Proof: Let Ŷ be the union of Y with all of its complementary
domains which do not contain 0 or ∞. Let X̂ be the union of X
with all of its complementary domains which do not contain 0 or
∞. Let i1 : Y → Ŷ be the inclusion map of Y into Ŷ , and let
i2 : X → X̂ be the inclusion map of X into X̂ . Let fn,1 = fn|X and
let fn,2 = fn|X̂ . Then fn,1 = fn,2|X . A. Lelek has shown in [5] that

since fn,1 is confluent, f∗

n,1 : H1(Y )→ H1(X) is a monomorphism,

where H1 denotes the first Čech cohomology.
By Alexander duality, H1(Ŷ ) ∼= H̃0(S

2 \ Ŷ ) ∼= Z, since S2 \ Ŷ

has two components. Also, H1(Ŷ , Y ) ∼= 0 since Ŷ /Y is homotopy
equivalent to the wedge of some number of copies of S2. Then by
exactness, i∗1 : H1(Ŷ )→ H1(Y ) is a monomorphism. But i∗2◦f

∗

n,2 =

f∗

n,1 ◦ i∗1. Thus, H1(X̂) 6∼= 0, so X̂ separates the plane. Then X
separates 0 from ∞. �

Theorem 4. Let X be a continuum which is irreducible with re-

spect to separating 0 from ∞. Then f−1
n (X) is also irreducible with

respect to separating 0 from ∞.

Proof: Suppose that there exists a proper subcontinuum C of
f−1

n (X) which separates 0 from∞. Then fn(C) is a subcontinuum
of X which separates 0 from ∞. Let p be a point in f−1

n (X) \ C,
and let ǫ be the distance from p to C. Let V be a ball of radius
ǫ/2 about p. Then either V is in the unbounded complement of
C, or V is in a bounded complement of C. Then we have either
that no point in V is accessible from 0 or that no point in V is
accessible from ∞. By symmetry, it follows that either no point
in

⋃n−1
i=0 φi

n(V ) is accessible from 0 or no such point is accessible
from ∞. Then either no point in fn(V ) is accessible from 0 or
no point in fn(V ) is accessible from ∞. Let X1 and X2 be the
closures of the sets of points in X which are accessible from 0 and
∞, respectively. Then V cannot be contained in both of these
subcontinua, so either X1 6= X or X2 6= X. But X1 and X2 both
separate 0 from ∞ by their construction. So there exists a proper
subcontinuum of X which separates 0 from ∞, contradicting our
initial assumption. Thus, f−1

n (X) is irreducible with respect to
separating 0 from ∞. �

Lemma 3. Let X be a continuum which is irreducible with respect

to separating 0 from ∞. Then fn is n-crisp over X.
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Proof: Since X separates 0 from∞, we know by Theorem 2 that
f−1

n (X) is a continuum. If X ′ is a proper subcontinuum of X, then
0 is in the unbounded complementary domain of X ′, so by Theorem
1, it follows that fn is trivial over X ′. Then by Definition 1, we
have that fn is n-crisp over X. �

Theorem 5. Let X be a hereditarily indecomposable continuum

which is irreducible with respect to separating 0 from ∞. Then

f−1
n (X) is hereditarily indecomposable.

Proof: Suppose C is a subcontinuum of f−1
n (X) which maps onto

X via f . By Theorem 3, we have that C separates 0 from ∞, and
thus, by Theorem 4, we have that C = f−1

n (X). But fn is n-crisp
over X by Lemma 3, so by Lemma 2, we have that f−1

n (X) is inde-
composable. Moreover, if C is a proper subcontinuum of f−1

n (X),
then by the above argument, fn(C) is a proper subcontinuum of X.
Then C is homeomorphic to fn(C), so C is indecomposable since
X is hereditarily indecomposable. Thus, f−1

n (X) is hereditarily
indecomposable. �

Theorem 5 tells us that the answer to Bellamy’s first question
is affirmative. Before answering Bellamy’s second question, we will
construct a continuum which will help us in obtaining our results.

3. A Symmetric Pseudo-arc

A chain C = {C1, . . . , Cn} is a nonempty finite indexed collection
of open sets Cj such that

Cj ∩ Ck 6= ∅ ⇐⇒ |j − k| ≤ 1.

Each Cj is called a link of C. The length of C is the number of links
in C. The first and last links are called the end-links of C. A chain
C is a chain from p to q if p and q are each in a different end-link
of C. The mesh of a chain is the supremum of the diameters of
the links in the chain. A continuum X is called chainable if for
any ǫ > 0 there exists a chain of mesh less than ǫ covering X. A
point p ∈ X is called an endpoint of X if for any ǫ > 0 we can
find an ǫ-chain covering X in which p is in an end-link. A pseudo-

arc is a hereditarily indecomposable chainable continuum, and a
pseudo-circle is a hereditarily indecomposable circularly chainable
continuum which is not chainable.
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One method of constructing a pseudo-arc uses the notion of
crooked chains [2]. A chain E refines a chain D if for each link
ei in E, the closure of ei is a subset of a link of D. If the chain
E = {e1, e2, . . . , en} refines the chain D = {d1, . . . , dm}, E is called
crooked in D provided that if k − h > 2 and ei and ej are links
of E in links dh and dk of D, respectively, then there are links er

and es of E in links dk−1 and dh+1, respectively, such that either
i > r > s > j or i < r < s < j.

We can construct a pseudo-arc using a sequence of chains Ci

such that Ci+1 is crooked in Ci for each i ∈ N, with the sequence
of meshes of the Ci going to 0 as i goes to ∞.

Define a chain C to be symmetric if for each link Ci ∈ C, we have
φ2(Ci) is also a link of C. Define a continuum X to be symmetric

if φ2(X) = X. Define a map g : C→ C to be symmetric if g(−z) =
−g(z) for every z ∈ C.

Lemma 4. If n is an odd positive integer, and C is a symmetric

chain from p to −p of length n with round balls for links, then for

any ǫ > 0, we can create a symmetric ǫ-chain C ′ from p to −p of

odd length, with round balls for links, which is crooked in C.

Proof: For n = 1, let C1 be the sole symmetric convex link of C
containing 0. Let α be a straight line segment whose endpoints are
in the boundary of C1, which contains the origin, and which does
not contain p or −p. Then α separates C1 into two components
Ca

1 and Cb
1. Let D be an ǫ-ball around p which is contained in C1

and does not intersect the origin, and let E be an ǫ-ball around the
origin which is contained in C1 and does not intersect D. Let C ′

a

be a chain of ǫ-balls whose first link is E, last link is D, and every
other link is contained in C1 \ −D. Let C ′ be the chain whose end
links are D and −D and every other link is a link of C ′ or −C ′.
Then C ′ is a symmetric ǫ-chain from p to −p. Notice also that if k
is the number of links of C ′

a, then C ′ has 2k − 1 links, so has odd
length. For n ≥ 3, notice that any chain that is crooked in a chain
of length n can be broken into three chains: a chain that is crooked
in a chain of length n− 1, one that is crooked in a chain of length
n− 2, and a final one that is crooked in a chain of length n− 1.

Suppose our hypothesis is true for all odd integers less than n,
and consider now C = {C1, . . . , Cn}, a symmetric chain of length n
satisfying all of our requirements. Then C(2, n− 1) is a symmetric
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chain of length n − 2, so we form a symmetric chain Ca that is
crooked inside this chain, is of odd length, and has end-links in C2

and Cn−1. Suppose p ∈ C1. Let L1 be the end-link of Ca contained
in C2.

The boundaries of Ca and C are two disjoint simple closed curves.
Let B be the bounded region whose boundary is the union of these
two curves. Then B is a space which is homeomorphic to an an-
nulus. Let α1 be an arc from the boundary of L1 to the boundary
of C2 which is contained in C2. Then α ∪ −α splits B into two
components B1 and B2. Let Cb be a chain of round balls which is
crooked in C(2, n) whose first link intersects L1, each subsequent
link is contained in B1 \ (α ∪ −α), and whose last link is in Cn.
Let Cd be the rotation of Cb by π radians. Let C ′ be the maximal
chain whose links are links of Ca, Cb, or Cd. Then C ′ is crooked in
C and symmetric. �

Corollary 2. There exists a symmetric pseudo-arc in the complex

plane.

Proof: Let {C1, C2, . . . } be a sequence of symmetric chains from
−1 to 1 such that each chain is crooked in the previous chain, each
chain is of odd length so that we may apply Lemma 4, with the
meshes of the chains approaching 0. Let X =

⋂
∞

i=1(
⋃ni

j=1 Ci,j).
Then X is a pseudo-arc. �

Lemma 5. If X is a pseudo-arc as constructed above, then f2(X)
is also a pseudo-arc.

Proof: The image of each chain Ci is a chain, since by symmetry
of Ci we can identify each link Ci,j with its partner −Ci,j. So f2(X)

is chainable. Furthermore, since X = f−1
2 (f2(X)), by Corollary

1 we know that f2(X) is hereditarily indecomposable. So f2(X)
is hereditarily indecomposable and chainable ; hence, f2(X) is a
pseudo-arc. �

Theorem 6. There exists a chainable continuum containing 0 whose

preimage under z 7→ z2 is hereditarily indecomposable.

Proof: Letting X be our symmetric pseudo-arc and Y = f2(X),
we see that X = f−1

2 (Y ) and so f−1
2 (Y ) is hereditarily indecom-

posable. �
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We now have an example of a hereditarily indecomposable con-
tinuum containing 0 whose preimage under z 7→ z2 is also heredi-
tarily indecomposable. We will use this in the next section.

4. Second question

Bellamy’s second question concerns the converse of the first ques-
tion. If X is a hereditarily indecomposable continuum which prop-
erly contains a pseudo-circle, can f−1

n (X) be hereditarily indecom-
posable? In this section, we provide an example of such a contin-
uum.

Given a continuum X, define a point p ∈ X to be accessible in X
if there exists an arc α with p as an endpoint such that α∩X = {p}.
If p is not accessible in X, then p is inaccessible in X. If p is
inaccessible in every subcontinuum X ′ ⊂ X, then p is hereditarily

inaccessible in X.

Lemma 6. If X is a symmetric indecomposable continuum which

does not separate C, then 0 is inaccessible in X.

Proof: Suppose 0 is accessible in X. Let α be an arc from 0
to ∞ which only intersects X at 0. Then α ∪ φ2(α) separates X,
showing that 0 is a cut point of X. Then X is decomposable, a
contradiction. So 0 is inaccessible in X. �

Corollary 3. If X is a symmetric hereditarily indecomposable con-

tinuum which does not separate C, then 0 is hereditarily inaccessible

in X.

One method of constructing a hereditarily indecomposable con-
tinuum which properly contains a pseudo-circle can be attributed
to R. H. Bing in [2]. To do so, let M1 be a pseudo-arc in C and let
p be a hereditarily inaccessible point in M1. Let M2 be a pseudo-
circle in C and let T be a map which takes M2 and its bounded
complementary domain B to the point p, such that T is one-to-one
elsewhere. Then M3 = T−1(M1) \ B is a hereditarily indecompos-
able continuum which properly contains a pseudo-circle.

We will use a variation of this method which will provide us with
such a continuum, with the added feature that our continuum will
be symmetric.
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Theorem 7. For any symmetric pseudo-circle C separating 0 from

∞, there exists a symmetric decomposition map taking C and its

bounded complementary domain to 0, and which is one-to-one else-

where.

Proof: Let C be a symmetric pseudo-circle in C which separates
0 from ∞ and let B be the bounded complementary domain of
C. Let T1 : C → C take C ∪ B to 0 and be one-to-one elsewhere.
Let {x1,−x1} be the leftmost and rightmost points on the real
axis which are elements of C. Let A be the arc along the real
axis containing ∞ whose endpoints are x1 and −x1. Since T1 is
one-to-one on C \ (B ∪ C), then any subcontinuum of A \ (B ∪
C) is homeomorphic via T1 to its image and is therefore an arc.
Furthermore, for any sequence {xi}

∞

i=1 in A converging to a point
in B ∪ C, we have {T1(xi)}

∞

i=1 converges to 0. Then T1(A) is a
simple closed curve containing 0 and∞. Let α1 and α2 be the pair
of arcs in T1(A) whose endpoints are 0 and ∞ such that T1(A) =
α1 ∪ α2. Let C1, C2 denote the complementary domains of T (A).
The boundary of each of these spaces is T (A). Let T2 : C→ C be a
homeomorphism satisfying T2(T1(−x)) = −T2(T1(x)) for all x ∈ A,
and taking T1(A) to the real axis. Define T : C→ C as follows:
(1) If z ∈ A, let T (z) = T2(T1(z)).
(2) If T1(z) ∈ C1, let T (z) = T2(T1(z)).
(2) If T1(z) ∈ C2 (then T1(−z) ∈ C1), let T (z) = −T2(T1(−z)).

Then T is a decomposition map taking B∪C to 0, T is one-to-one
elsewhere, and T (−z) = −T (z) for all z ∈ C. �

Theorem 8. There exists a continuum which properly contains a

pseudo-circle whose preimage is hereditarily indecomposable.

Proof: Let f2(z) = z2, and let X be the symmetric pseudo-arc
constructed earlier. By Corollary 3, we know that 0 is hereditarily
inaccessible in X. Let X1 be a symmetric pseudo-circle separating
0 from ∞. This can be constructed by taking the preimage under
z 7→ z2 of any pseudo-circle which separates 0 from∞. By Bellamy
[1], this is also a pseudo-circle. Let T be a symmetric decomposi-
tion map as constructed in Theorem 7. Then X2 = T−1(X) is a
symmetric hereditarily indecomposable continuum which properly
contains a pseudo-circle. Then Y = f2(X2) is hereditarily indecom-
posable and properly contains a pseudo-circle, and f−1

2 (Y ) = X2,
so the preimage of Y under f2 is hereditarily indecomposable. �
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We have now answered both of Bellamy’s questions in the affir-
mative. However, in doing so we have uncovered several new ques-
tions. In what ways can we generalize our existing results? The
remaining section will provide extensions to our current findings.

5. Composants and accessibility

5.1. Accessibility of 0

Let p be a point in a continuum X. The composant of p in X,
denoted Cp(X), is the union of all proper subcontinua of X con-
taining p. Every indecomposable continuum contains uncountably
many composants, any two of which are disjoint. We say p is ac-

cessible if there exists an arc in C which has p as an endpoint and
every other point is contained in the complement of X. We say
that p is weakly accessible if there exists an arc in C which has p as
an endpoint and every other point is contained in the complement
of Cp(X). A composant C is accessible if it contains an accessible
point. A composant C is weakly accessible if it contains a weakly
accessible point. C is a K-composant, denoted C ∈ K, if there is
a continuum D such that D \X 6= ∅, D ∩ C 6= ∅, and D ∩X is a
proper subcontinuum of X. C is a Z-composant, denoted C ∈ Z,
if there is a continuum D such that D \ X 6= ∅, D ∩ C 6= ∅, and
D∩C is a compact set. A composant C is called external if there is
a continuum D intersecting C but not all other composants of X.
Otherwise, C is called internal. More information on these types
of composants can be found in [4].

Lemma 7. If X is a nonseparating continuum such that 0 ∈ X is

accessible, then f−1
n (X) is decomposable.

Proof: If 0 is accessible, let α be an arc from 0 to ∞ that only
intersects X at 0. Then f−1

n (α) shows that 0 is a separation point
in f−1

n (X). Then f−1
n (X) is decomposable. �

Corollary 4. If X is a nonseparating continuum such that 0 ∈
X is not hereditarily inaccessible, then f−1

n (X) is not hereditarily

indecomposable.
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5.2. The Role of Nonseparation

In the above and in future theorems, we require that X be non-
separating. When considering separating continua containing 0,
certain problems may arise. An example is given below.

Let X be a symmetric pseudo-circle such that for any ǫ > 0,
X can be covered by an ǫ-circular-chain with convex links. Let
p1 be a point in X such that there exists a straight line segment
from 0 to p1 which only intersects X at p1. Let T be a symmetric
decomposition taking the straight arc whose endpoints are p1 and
−p1 to 0, with T being one-to-one elsewhere. Then for any ǫ > 0, we
have that T (X) can be covered by ǫ-graph-chains with connected
links such that the nerve of each graph chain is a figure eight. Also,
0 is accessible in T (X). To see this, let α be an arc in the bounded
complement of X which has 0 as an endpoint and does not intersect
the line from p1 to −p1 anywhere else. Then T (α) is an arc with
0 as an endpoint, which does not intersect T (X) anywhere else.
Then 0 is also accessible in Y = f2(T (X)), but from its bounded
complement.

Suppose T (X) is decomposable. Let T (X) = A∪B, both proper
subcontinua of T (X). If 0 ∈ A and T−1(A) is a continuum, then
either X is a decomposable continuum or T−1(A) ∪ φ2(T

−1(A))
is a proper subcontinuum of X which separates the plane, both
contradictions. So if 0 ∈ A, then T−1(A) = A1 ∪ A2, the disjoint
union of two continua. If 0 /∈ A, then T−1(A) = A1. Similarly,
T−1(B) is either a continuum or the disjoint union of two continua.
Furthermore, at least one of A and B must contain 0. Then X
is the union of either three or four continua, contradicting our as-
sumption that X is indecomposable. So T (X) is indecomposable.
Then by Theorem 1, we have that Y is indecomposable. Then we
have a continuum Y in which 0 is accessible, but f−1

2 (Y ) is also
indecomposable.

We may also note that Y is a pseudo-circle. To see this, first
notice that Y is circularly chainable, as we can take the image
under f2 of any symmetric figure eight chain covering T (X) to give
a circular chain covering Y . Next, suppose Y ′ ⊂ Y is a proper
subcontinuum. If 0 /∈ Y ′, then f−1

2 (Y ′) = Y1 ∪ Y2, where Y1
∼= Y ′

and 0 /∈ Y1. But then T−1(Y1) ∼= Y ′, and since X is a pseudo-circle,
we have that T−1(Y1) is a pseudo-arc. So Y ′ is a pseudo-arc. If
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0 ∈ Y ′, then f−1
2 (Y ′) is a proper subcontinuum of T (X) containing

0, so T−1(f−1
2 (Y ′)) is the disjoint union of two pseudo-arcs in X,

each one being the rotation of the other by π radians. Then f−1
2 (Y ′)

is the one-point union of two pseudo-arcs in T (X), each of which
maps homeomorphically via f2 onto Y ′. So Y ′ is a pseudo-arc.
Then Y is hereditarily indecomposable. Finally, Y is not chainable
since it separates the plane. Thus, Y is a pseudo-circle.

In this example, although f−1
2 (Y ) is indecomposable, it is not

hereditarily indecomposable. If 0 is accessible in a continuum X,
this will always be the case. Let α be an arc with 0 as an endpoint
such that α∩X = {0}. Then we may take a neighborhood about 0
of diameter less than the diameter of f−1

2 (α). Then the component

of f−1
2 (X) containing 0 contained in the closure of this neighbor-

hood would be decomposable, since f−1
2 (α) separates it and only

intersects it at one point.

5.3. Accessibility of C0(X)

Theorem 7 and Corollary 4 demonstrate that it is necessary for
0 to be (hereditarily) inaccessible in X for the preimage of X to
be (hereditarily) indecomposable. However, this is not sufficient,
as the following theorems will show.

Theorem 9. Let X be a nonseparating indecomposable continuum

such that 0 ∈ X. Let C0(X) be the composant of X containing 0.
If C0(X) is a K-composant, then f−1

n (X) is decomposable.

Proof: Suppose C0(X) is a K-composant. Then there exists a
continuum D such that D \X 6= ∅, D ∩ C0(X) 6= ∅, and D ∩X is
a proper subcontinuum of X and thus is contained in C0(X).

Let X ′′ = D ∩ X and let X ′ be a subcontinuum of X which
contains 0 and X ′′. Suppose X \ X ′′ is not contained in just one
complementary domain of D. Then since (X\X ′′)∩D = ∅, we have
X is decomposable, a contradiction to our assumption. Therefore,
X\X ′′ is contained in one complementary domain of D. Let α be an
arc in C\X from some point in D\X to∞. Then f−1

n (D∪X ′∪α) is a
symmetric continuum which separates the plane into some number
of components, exactly n of which contain points of f−1

n (X). Call
these components Ci for i = 1, . . . , n, where Ci = φi−1(C1). Then
let Xi = (f−1(X) ∩ Ci) ∪ f−1

n (X ′). Then f−1
n (X) =

⋃n
i=1(Xi) and

is therefore decomposable. �
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Theorem 10. Let X be a nonseparating indecomposable continuum

such that 0 ∈ X. Let C0(X) be the composant of X containing

0. If C0(X) is a weakly accessible composant, then f−1
n (X) is not

hereditarily indecomposable.

Proof: Let p be a point in C0(X) that is weakly accessible in
X, and let α be an arc with p as an endpoint which only inter-
sects C0(X) at p. Let X ′ be a continuum in C0(X) containing 0
and p, and let X ′′ be a continuum in C0(X) properly containing
X ′. Then X ′ is an accessible subcontinuum of X ′′, so C0(X

′′) is
a K-composant. Then by Theorem 9, we have that f−1

n (X ′′) is
decomposable. So f−1

n (X) is not hereditarily indecomposable. �

5.4. Relation between composants of X and

composants of f−1
n (X)

Since composants seem to play an important part in our results
for the preimages of continua, we will now establish some results
regarding properties of composants.

Theorem 11. Let X be a nonseparating continuum containing 0,
such that f−1

n (X) is an indecomposable continuum containing p. If

p ∈ f−1
n (X), then fn(Cp(f

−1
n (X))) = Cfn(p)(X).

Proof: Let y ∈ fn(Cp(f
−1
n (X))), and let x ∈ Cp(f

−1
n (X)) such

that fn(x) = y. Then there is a proper subcontinuum X ′of f−1
n (X)

containing p and x. If fn(X ′) = X, then f−1
n (X) would be de-

composable, contradicting our assumption. Therefore, we know
that fn(X ′) is a proper subcontinuum of X containing fn(p) and
y. So y ∈ Cfn(p)(X). Then fn(Cp(f

−1
n (X))) ⊂ Cfn(p)(X). Now let

y ∈ Cfn(p)(X). Then there is a proper subcontinuum Y ′ of fn(X)

containing fn(p) and y. Then f−1
n (Y ′) is a continuum if 0 ∈ Y ′ or

is the disjoint union of n continua if 0 /∈ Y ′. In either case, f−1
n (Y ′)

contains a component X ′ such that p ∈ X ′. Furthermore, there
exists x ∈ X ′ such that fn(x) = y. So y ∈ fn(Cp(f

−1
n (X))). Then

Cfn(p)(X) ⊂ fn(Cp(f
−1
n (X))). So fn(Cp(f

−1
n (X))) = Cfn(p)(X).

�

In fact, if C = Cp(f
−1
n (X)) 6= C0(f

−1
n (X)), then fn|C is a bijec-

tion onto Cfn(p)(X). To see this, we need only show that fn|C
is one-to-one, since we have shown above that it is onto. Let
p1, p2 ∈ C and suppose fn(p1) = fn(p2). Then p2 is a rotation
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of p1 by 2π/n radians, and there exists X ′ ⊂ f−1
n (X) containing

these points. Then
⋃n

i=1 φi
n(X ′) is a proper subcontinuum of X

which separates 0 from ∞, a contradiction. So fn|C is a bijection.
If a composant C is a K-composant, denote this by C ∈ K, and

if a composant is a Z-composant, denote this by C ∈ Z.

Theorem 12. Let X be a nonseparating continuum containing 0,
such that f−1

n (X) is an indecomposable continuum containing p.

(1) Cp(f
−1
n (X)) ∈ K ⇐⇒ Cfn(p)(X) ∈ K;

(2) Cp(f
−1
n (X)) ∈ Z ⇒ Cfn(p)(X) ∈ Z;

(3) C0(f
−1
n (X)) ∈ Z ⇐⇒ C0(X) ∈ Z;

(4) Cp(f
−1
n (X)) weakly accessible ⇐⇒ Cfn(p)(X) weakly

accessible;

(5) Cp(f
−1
n (X)) internal ⇒ Cfn(p)(X) internal;

(6) Cp(f
−1
n (X)) accessible ⇐⇒ Cfn(p)(X) accessible.

Proof: (1) Suppose Cp(f
−1
n (X)) is a K-composant; let D be a

continuum such that D∩f−1
n (X) is a subcontinuum of Cp(f

−1
n (X))

and D is not contained in f−1
n (X). Then fn(D) is a continuum

such that fn(D) ∩ X is a subcontinuum of Cfn(p)(X) and fn(D)

is not contained in X. So if Cp(f
−1
n (X)) is a K-composant, then

Cfn(p)(X) is a K-composant.
Now suppose Cfn(p)(X) is a K-composant; let D be a continuum

such that D ∩ X is a subcontinuum of Cfn(p)(X) and D is not

contained in X. Then f−1
n (D) is either a continuum or the disjoint

union of n continua. In either case, D contains a continuum D′ such
that D′ ∩ f−1

n (X) is a subcontinuum of Cp(f
−1
n (X)) and f−1

n (D) is
not contained in f−1

n (X). So if Cfn(p)(X) is a K-composant, then

Cp(f
−1
n (X)) is a K-composant.

(2) Suppose Cp(f
−1
n (X)) is a Z-composant; let D be a continuum

such that D ∩ f−1
n (X) is a compact subset of Cp(f

−1
n (X)) and D

is not contained in f−1
n (X). Then fn(D) is a continuum such that

fn(D) ∩X is a compact subset of Cfn(p)(X) and fn(D) is not con-

tained in X. So if Cp(f
−1
n (X)) is a Z-composant, then Cfn(p)(X)

is a Z-composant.

(3) We already have one direction from (2). Now suppose C0(X)
is a Z-composant; let D be a continuum such that D ∩ X is a
compact subset of C0(X) and D is not contained in X. Then
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f−1
n (D) is either a continuum or the disjoint union of n continua.

In either case, D contains a continuum D′ such that D′ ∩ f−1
n (X)

is a compact subset of C0(f
−1
n (X)) and f−1

n (D) is not contained
in f−1

n (X). So if C0(X) is a Z-composant, then C0(f
−1
n (X)) is a

Z-composant.

(4) Suppose Cp(f
−1
n (X)) is weakly accessible; let x ∈

Cp(f
−1
n (X)) be weakly accessible point, and let α be an arc con-

taining x such that (α \ {x}) ∩ Cp(f
−1
n (X)) = ∅. Then fn(α) con-

tains an arc which contains fn(x), with fn(x) ∈ Cfn(p)(X), and

(fn(α) \ {fn(x)}) ∩ Cfn(p)(X) = ∅. So if Cp(f
−1
n (X)) is weakly

accessible, then Cfn(p)(X) is weakly accessible.
Now suppose Cfn(p)(X) is weakly accessible; let x ∈ Cfn(p)(X)

be a weakly accessible point, and let α be an arc containing x such
that (α \{x})∩Cfn(p)(X) = ∅. Then f−1

n (α) contains an arc which

intersects Cp(f
−1
n (X)) only at one point x1 of f−1

n (x), with x1 in
the same composant as p. Then if Cfn(p)(X) is weakly accessible,

then Cp(f
−1
n (X)) is weakly accessible.

(5) Suppose Cp(f
−1
n (X)) is internal, and let D be a continuum

which is not contained in X which intersects Cfn(p)(X). Then

f−1
n (D) contains a continuum D2 which is not contained in f−1

n (X)
which intersects Cp(f

−1
n (X)). Since Cp(f

−1
n (X)) is internal, D2 in-

tersects every other composant of f−1
n (X). Then fn(D2) intersects

every other composant of X, so Cfn(p)(X) is internal.

(6) Suppose Cp(f
−1
n (X)) is accessible; let x ∈ Cp(f

−1
n (X)) be

an accessible point, and let α be an arc containing x such that
(α\{x})∩f−1

n (X) = ∅. Then fn(α) contains an arc which contains
fn(x), with fn(x) ∈ Cfn(p)(X), and (fn(α) \ {fn(x)}) ∩X = ∅. So

if Cp(f
−1
n (X)) is accessible, then Cfn(p)(X) is accessible.

Now suppose Cfn(p)(X) is accessible, let x ∈ Cfn(p)(X) be an
accessible point, and let α be an arc containing x such that (α \
{x}∩X = ∅. Then f−1

n (α) contains an arc which intersects f−1
n (X)

only at one point x1 of f−1
n (x), with x1 in the same composant as p.

Then if Cfn(p)(X) is accessible, then Cp(f
−1
n (X)) is accessible. �

Corollary 5. Let X be a continuum containing 0.

(1) C0(f
−1
n (X)) ∈ K ⇒ f−1

n (X) is not hereditarily indecompos-

able.
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(2) C0(f
−1
n (X)) weakly accessible ⇒ f−1

n (X) is not hereditarily

indecomposable.

Proof: These results follow directly from theorems 9, 10, and
12. �

5.5. The preimage of the symmetric pseudo-arc

We now apply some of our results to the preimage under z 7→ z2

of our symmetric pseudo-arc.
Let N be a simple 2n-od, with branches I1, . . . , I2n. For each i,

let ti be the endpoint of Ii which is not an endpoint of any other
branch.

Lemma 8. If N = A∪B, then one of these sets contains a complete

branch of N .

Proof: Suppose N = A ∪ B. If 0 /∈ A, then A is contained in
one branch of N ; then B contains all other branches of N , so B
contains a full branch. If 0 ∈ A ∩ B, then WLOG t1 ∈ A, so the
first branch of N is contained in A. �

If X is a symmetric pseudo-arc constructed using our method
discussed earlier, then for each chain Ci covering X, we have a
corresponding tree-chain Ti covering f−1

n (X), where each link of
Ti is the preimage under fn of a link of Ci. Then f−1

n (X) can
be expressed as an inverse limit of N , where the bonding maps
correspond to the nesting of the Ti. We can represent Ci+1 as the
union of two subchains Ci+1,1 and Ci+1,2, with their intersection
being the link of Ci+1 containing 0. Then by crookedness, each of
these subchains contains links in all but possibly one of the links
of Ci. Since each link of Ci is a round ball, then there exists a
sequence {ǫ1, ǫ2, . . . } converging to 0 such that each bonding map
fi satisfies the following properties, where addition is taken to be
over Zn :

(1) fi(Ik) ⊃ (Ik ∪ Ik+1) \Bǫi
(tk), and

(2) fi(Ik \Bǫi
(tk)) ⊃ Ik+1.

Then

fi ◦ fi+1 ◦ · · · ◦ fi+n−1(Ik) ⊃ N \ (

n⋃

j=1

Bǫi
(tj)).
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Theorem 13. If X is a symmetric pseudo-arc constructed using

our method, then f−1
n (X) is indecomposable.

Proof: First note that f−1
n (X) ∼= lim←−(N, fi) = X∞. Suppose

X∞ = A ∪ B. Then for each i ∈ N, we have Ai = πi(A) and
Bi = πi(B). By Lemma 8, one of these contains a branch. Suppose
Ai contains a branch. Then by the above equations, X \Ai−n+1 can
be contained in n balls of radius less than ǫi−n+1. This would be
true for Bi if Bi contained a branch. Since one of these must contain
a branch for each i, there exists WLOG an infinite subsequence j
such that X \Aj can be contained in n balls each of radius less than

ǫj. Then A = lim←−(Aj , f
j+1
j ), where f j

j−1 is formed by composition
of the various fi maps. Then A is dense in X since ǫi goes to 0, so
A = X∞. �

We now extend the above claim to be true for any subcontinuum
of f−1

n (X).

Theorem 14. The preimage of the symmetric pseudo-arc under

z 7→ zn is hereditarily indecomposable.

Proof: Let X denote the symmetric pseudo-arc, and suppose
that X ′ ⊂ X and 0 ∈ X ′. If X ′ were not symmetric, then X ′ ∪
φ2(X

′) would be a decomposable subcontinuum of X, so X ′ must be
symmetric. Furthermore, since any nondegenerate subcontinuum
of a pseudo-arc is also a pseudo-arc, X ′ is a symmetric pseudo-arc.
Finally, X ′ can be formed using subchains of the chains forming X,
and since X ′ is symmetric, we can use symmetric subchains. Then
by Theorem 13, f−1

n (X ′) is indecomposable.
Now let Y ⊂ f−1

n (X) such that 0 ∈ Y . Then fn(Y ) ⊂ X and
0 ∈ fn(Y ). So f−1

n (fn(Y )) is indecomposable. But f−1
n (fn(Y )) =⋃n−1

i=0 φi
n(Y ), so Y = f−1

n (fn(Y )). So Y is indecomposable.
Finally, if Y ⊂ f−1

n (X) such that 0 /∈ Y , then f−1
n (fn(Y )) is the

disjoint union of n rotations of Y , each of which is homeomorphic
under fn to fn(Y ). Since fn(Y ) is indecomposable, we have Y is
indecomposable.

So f−1
n (X) is hereditarily indecomposable. �

In the above example, f−1
n (X) is 2n-od like. However, letting

Y = f2(X) and noting that f−1
2 (Y ) = X, we have that f−1

n (X) =

f−1
2n (Y ) = f−1

2 (f−1
n (Y )). Then by Corollary 1 we have that f−1

n (Y )
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is hereditarily indecomposable, so we have constructed for n =
3, 4, 5, . . . a hereditarily indecomposable n-od like continuum.

References

[1] David P. Bellamy, Certain analytic preimages of pseudocircles are pseudo-

circles, Topology Proc. 29 (2005), no. 1, 19–25.

[2] R. H. Bing, Concerning hereditarily indecomposable continua, Pacific J.
Math. 1 (1951), 43–51.

[3] Jo Heath, 2-to-1 maps with hereditarily indecomposable images, Proc.
Amer. Math. Soc. 113 (1991), no. 3, 839–846.

[4] J. Krasinkiewicz, On internal composants of indecomposable plane con-

tinua, Fund. Math. 84 (1974), no. 3, 255–263.

[5] A. Lelek, On confluent mappings, Colloq. Math. 15 (1966), 223–233.

Department of Mathematics; Tulane University; New Orleans, LA

70118

E-mail address: rvernon@math.tulane.edu




