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THE SYMMETRIC SPAN OF A DISK

AND ITS BOUNDARY

THELMA R. WEST

Abstract. The following theorem (Theorem 1, p. 440) was
given by M. T. Cuervo, E. Duda, and H. V. Fernandez in
[Upper semicontinuous continuum valued functions and spans

of continua, Houston J. Math. 27 (2001), no. 2, 439–444].
Let J be a simple closed curve in the plane and
D the closed topological disk which has J as its
boundary. If the symmetric span of D is k, then
the symmetric span of J is k.

We show in this paper that the proof given for this theorem
is in error. While we have not been able to provide a correct
proof, we have shown that the result holds when D is either
restricted starlike or starlike about a point in the interior of
D.

1. Introduction

The concept of the span of a compact metric space was intro-
duced by A. Lelek in 1964 (see [4, p. 209]). Variations of the span
have been defined since then (cf. [5], [6], [2]). Of particular interest
in this paper is the symmetric span, which was defined by James
Francis Davis in [2]. It is, in general, difficult to evaluate the various
spans of geometric objects. The relationships of these spans is of
interest. Also of interest is how related geometric objects compare
to each other with respect to the various spans.
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350 T. R. WEST

The following theorem was given in [1, Theorem 1, p. 440].

Theorem 1. Let J be a simple closed curve in the plane and D the
closed topological disk which has J as its boundary. If the symmetric
span of D is k, then the symmetric span of J is k.

The proof of this theorem appears to be incorrect. The claim that
the function, f∗ , as given in the proof is upper semicontinuous
(u.s.c.) is incorrect. The proof of Theorem 2 [1, p. 441] also
depends on this theorem. An example will be given where the
theorem holds, but the function f∗ : C → C(J), as defined in the
proof, fails to be u.s.c. While we have not been able to correct the
proof of this theorem, we have shown that the result holds when
the closed disk D is either restricted starlike or starlike.

2. Preliminaries

Let X be a continuum, that is a compact, connected metric
space. The span of X, σ(X), is the least upper bound of the set of
real numbers r which satisfy the following conditions: there exist a
continuum, C, and continuous functions f , g: C → X, such that

d(f(c), g(c)) ≥ r,∀c ∈ C

and

(span σ) f(C) = g(C).

To obtain the various other spans, we replace the preceding equa-
tion with the following.

(semispan σ0) f(C) ⊆ g(C)
(surjective span σ∗) f(C) = g(C) = X
(surjective semispan σ∗

0) f(C) ⊆ g(C) = X
(symmetric span s) f(C) = g(C) and

∀c ∈ C,∃c′ such that f(c) = g(c′) and f(c′) = g(c)

(surjective symmetric span s∗) f(C) = g(C) = X and

∀c ∈ C,∃c′ such that f(c) = g(c′) and f(c′) = g(c).
Alternatively, the span of a continuum X, σ(X), can be defined

as the least upper bound of the set of real numbers r which satisfy
the following conditions:

p1 and p2 are the standard projection maps;
there exists a continuum C, contained in X ×X such that

d(x, y) ≥ r for all (x, y) ∈ C ;
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and

(span σ) p1(C) = p2(C).

To obtain the various other spans, we replace the preceding equa-
tion with the following.

(semispan σ0) p1(C) ⊆ p2(C);
(surjective span σ∗) p1(C) = p2(C) = X;
(surjective semispan σ∗

0) p1(C) ⊆ p2(C) = X;
(symmetric span s) p1(C) = p2(C) and

∀c ∈ C,∃c′ such that p1(c) = p2(c
′) and p1(c

′) = p2(c);

(surjective symmetric span s∗) p1(C) = p2(C) = X and

∀c ∈ C,∃c′ such that p1(c) = p2(c
′) and p1(c

′) = p2(c).
The following inequalities are immediate consequences of the def-

initions.

0 ≤ σ∗(X) ≤ σ(X) ≤ σ0(X) ≤ diamX;

0 ≤ σ∗(X) ≤ σ∗

0(X) ≤ σ0(X) ≤ diamX;

0 ≤ s(X) ≤ σ(X); and

0 ≤ s∗(X) ≤ σ∗(X).

The result below follows from the definitions.

If limi→∞ Xi = X0, then limi→∞ α(Xi) ≤ α(X0),
and if X1 ⊇ X2 ⊇ X3 ⊇ · · · ⊇ X0,
then α(X0) = limi→∞ α(Xi) for α = σ, σ0, s.

We use the following definitions in our discussion.

C(X) = {A ⊆ X | A 6= ∅, A is a continuum}.
N(A, ε) = {x ∈ X | d(x, a) < ε for some a ∈ A}.

The set C(X) is a metric space with the Hausdorff metric, H, given
by

H(A,B) = glb{ε > 0 | A ⊂ N(B, ε) and B ⊂ N(A, ε)}.
Let (C, T1) and (X,T2) be topological spaces. A continuum valued
function f : C → C(X) is said to be u.s.c. at p ∈ C, if for U ∈ T2

such that f(p) ⊂ U , there exists a V ∈ T1 such that p ∈ V and for
all c ∈ V, f(c) ⊂ U . The function f is said to be u.s.c. if it is u.s.c.
at every point c ∈ C.

The lemmas that follow can either be found in [7, 7.16, 7.15d] or
be readily established from the definition of u.s.c.
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Lemma 1. The function f : C → C(X) is u.s.c. if and only if for
any sequence (ci)

∞

i=1 converging to c, lim sup f(ci) ⊆ f(c).

Lemma 2. If f : C → C(X) is an u.s.c. function and Y ⊆
C is a closed (connected) subset of C, then ∪y∈Y f(y) is a closed
(connected) subset of X.

Lemma 3. If f1 : C1 → X1 and f2 : C2 → X2 are u.s.c. functions,
then f1 × f2 : C1 × C2 → X1 ×X2 is an u.s.c. function.

A set X ⊆ R2 is starlike if there is a point p in X such that
for each other point x in X, px ⊆ X [3, p. 155]. In addition, we
say that X is restricted starlike if for each x in the BdX, p 6= x,
BdX ∩ px = {x}.

Let D be a planar closed topological disk with symmetric span,
s(D) = k. Let f, g : C → D be continuous functions from a
continuum C into D such that for all c ∈ C, d(f(c), g(c)) ≥ k, there
is a c ∈ C such that d(f(c), g(c)) = k, and for all c ∈ C there is a
c′ ∈ C such that g(c′) = f(c) and f(c′) = g(c).

For c ∈ C, let f(c)g(c) be the line segment in the plane with end-

points f(c) and g(c). Let Lc be the line perpendicular to f(c)g(c)
through the point f(c). Similarly, let Kc be the line perpendicu-

lar to f(c)g(c) through the point g(c). Let Hc be the portion of
the plane that is bound by Lc and Kc, not including Lc or Kc.
Let f∗(c) = Dc be the continuum in D −Hc containing f(c), and
g∗(c) = Ec be the continuum in D −Hc containing g(c). Let HPc

be the open half plane in R2−Lc that does not contain g(c). Also,
let LPc be the open half plane in R2 − Kc that does not contain
f(c). The functions f∗ and g∗ were shown in [1, p. 440] to be u.s.c.
functions from C into C(D).

The set f∗(c)∩Lc∩J , where J is the boundary of D, is a compact
set. If f∗(c)∩Lc ∩ J = {f(c)}, let Jc = {f(c)}. Otherwise, let acbc

be the minimal interval on Lc containing f∗(c) ∩ Lc ∩ J . In this
case, let Jc be the arc on J which joins ac to bc in Dc.

A function is defined in the proof of Theorem 1 in [1, p. 441]

that is named f∗ and f∗ : C → C(J). We call it f̂∗ here in order
to easily distinguish the functions

f∗ : C → C(D) and f̂∗ : C → C(J).
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This function is defined as f̂∗(c) = Jc. The function ĝ∗ is defined

similarly. It is claimed in this proof that f̂∗ is u.s.c. In the example
that follows, it is shown that f̂∗ is not u.s.c. However, it is the case
that s(D) = s(J) in this example.

3. Example

Let l = (0, 0), m = (0, 18), g = (2, 2), f = (2, 16), b = (4, 4),
c = (4, 14), d = (32, 14), e = (32, 16), a = (34, 4), o = (34, 16),
n = (34, 18), h = (36, 2), i = (36, 18), k = (38, 0), and j = (38, 18).
Let

J = ab∪ bc∪ cd∪de∪ ef ∪fg∪ gh∪hi∪ ij∪ jk∪kl∪ lm∪mn∪na.

Let D be the disc in the plane which is bound by the simple closed
curve J .

Let π be the continuous projection from D onto the arc K

π : D → K

where K = ba∪an∪nm∪ml∪lk∪kj and π is defined as given below.

Definition of π: For a point p which is in the portion of D bound
by a simple closed curve S, define π(p) considering the following
cases.

Case 1: S = ab ∪ bc ∪ cd ∪ da. Project p on the line through it of
slope −5 onto ab.

Case 2: S = (3, 16)(31, 16) ∪ (31, 16)(31, 18) ∪ (31, 18)(3, 18) ∪
(3, 18)(3, 16). Project p vertically onto (31, 18)(3, 18).

Case 3: S = (3, 0)(35, 0)∪ (35, 0)(35, 2)∪ (35, 2)(3, 2)∪ (3, 2)(3, 0).

Project p vertically onto (3, 0)(35, 0).

Case 4: S = (2, 3)(2, 15)∪ (2, 15)(0, 15)∪ (0, 15)(0, 3)∪ (0, 3)(2, 3).

Project p horizontally onto (0, 15)(0, 3).

Case 5: S = da ∪ a(34, 15) ∪ (34, 15)(32, 15) ∪ (32, 15)d. For t ∈
[14, 15], let Lt be the line segment with endpoints (32, t)
and (34, 11t − 150). Project each point p on Lt to the
point (34, 11t − 150).

Case 6: S = (32, 16)(32, 15) ∪ (32, 15)(34, 15) ∪ (34, 15)(34, 18) ∪
(34, 18)(32, 16). For t ∈ [15, 16], let Lt be the line segment
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with endpoints (32, t) and (34, 3t−30). Project each point
p on Lt to the point (34, 3t − 30).

Case 7: S = (32, 16)(31, 16) ∪ (31, 16)(31, 18) ∪ (31, 18)(34, 18) ∪
(34, 18)(32, 16). For t ∈ [31, 32], let Lt be the line segment
with endpoints (t, 16) and (3t−62, 18). Project each point
p on Lt to the point (3t− 62, 18).

Case 8: S = (2, 16)(3, 16) ∪ (3, 16)(3, 18) ∪ (3, 18)(0, 18) ∪
(0, 18)(2, 16). Similar to case 7.

Case 9: S = (2, 16)(2, 15) ∪ (2, 15)(0, 15) ∪ (0, 15)(0, 18) ∪
(0, 18)(2, 16). Similar to case 6.

Case10: S = (0, 3)(2, 3)∪(2, 3)(2, 2)∪(2, 2)(0, 0)∪(0, 0)(0, 3). Sim-
ilar to case 6.

Case11: S = (0, 0)(2, 2)∪(2, 2)(3, 2)∪(3, 2)(3, 0)∪(3, 0)(0, 0). Sim-
ilar to case 7.

Case12: S = (38, 0)(36, 2) ∪ (36, 2)(35, 2) ∪ (35, 2)(35, 0) ∪
(35, 0)(38, 0). Similar to case 7.

Case13: S = (38, 0)(36, 2) ∪ (36, 2)(36, 3) ∪ (36, 3)(38, 3) ∪
(38, 3)(38, 0). Similar to case 6.

Case14: S = (36, 3)(38, 3) ∪ (38, 3)(38, 18) ∪ (38, 18)(36, 18) ∪
(36, 18)(36, 3). Project p horizontally onto (38, 3)(38, 18).

Let C be any continuum and let f̂ and ĝ be continuous functions

f̂ , ĝ : C → D

such that either

(σ) f̂ [C] = ĝ[C];

(σ0) f̂ [C] ⊆ ĝ[C];

(σ∗

0) f̂ [C] ⊆ ĝ[C] = D;

(s) f̂ [C] = ĝ[C] and for all c ∈ C there exists c′ such that

f̂(c) = ĝ(c′) and f̂(c′) = ĝ(c); or

(s∗) f̂ [C] = ĝ[C] = D and for all c ∈ C there exists c′ such that

f̂(c) = ĝ(c′) and f̂(c′) = ĝ(c).

Consider π ◦ f̂ , π ◦ ĝ → K. Since K is an arc and π ◦ f̂ [C] ⊆
π ◦ ĝ[C], there exists c ∈ C such that π ◦ f̂(c) = π ◦ ĝ(c) = t ∈ K

and diam(π−1(t)) ≤
√

104. Consequently, α(D) ≤
√

104 where
α = σ, σ0, σ

∗, σ∗

0 , s, s
∗.
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Next we show that s(J) =
√

104. Let f and g be piecewise linear
functions f, g : [0, 36]→ J such that

t f(t) g(t)
0 b a
1 c a
2 d a
3 e a
4 f a
5 g a
6 g n
7 g m
8 h m
9 i m
10 j m
11 k m
12 l m
13 l n
14 l a
15 m a
16 n a
17 n b
18 a b

t f(t) g(t)
18 a b
19 a c
20 a d
21 a e
22 a f
23 a g
24 n g
25 m g
26 m h
27 m i
28 m j
29 m k
30 m l
31 n l
32 a l
33 a m
34 a n
35 b n
36 b a .

Also, for t ∈ [0, 18], f(t) = g(t + 18) and g(t) = f(t + 18).

Note that for all t ∈ [0, 36], d(f(t), g(t)) ≥
√

104, and for all
t ∈ [0, 36], there exists t′ ∈ [0, 36] such that f(t) = g(t′) and f(t′) =
g(t). So, s(J) ≥

√
104. Hence, s(J) = s(D) =

√
104 since J ⊆ D

and
√

104 ≤ s(J) = s(D) ≤
√

104. If fact,
√

104 = s(J) = s∗(J) =
s(D) = s(D) = σ(D) = σ0(D).

Let B be the closure of the region of D which is bound by bc ∪
cd ∪ bd. Let A be the closure of the region of D which is bound by
ad ∪ d(34, 14) ∪ (34, 14)a.

Let

f(t) =

{
(4, 4 + 10t) 0 ≤ t ≤ 1
(4 + 28(t− 1), 14) 1 ≤ t ≤ 2 .

The slope of f(t)g(t) for t ∈ [0, 2] is given by the function m where

m(t) =

{

−1
3t 0 ≤ t ≤ 1
10

28t−58 1 ≤ t ≤ 2 .
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For t = 0, L0 is the vertical line through b, D0 = bc = J0.

For 0 < t < 1, the slope of Lt is 3
t
∈ (3,+∞), but the slope

between d and f(t) is 10(1−t)
28 ∈ (0, 10

28). Consequently, Dt ⊂ B−{d}
and Jt ⊂ bc ∪ cd− {d}.

For t=1, the slope of L1 is 3, D1 = {c} = J1.

For 1 < t < 2, the slope of Lt is 58−28t
10 ∈ (1

5 , 3). Consequently,

A is beneath Lt,Dt ⊂ B, and Jt ⊂ bc ∪ cd− {d}.
When t = 2, the equation for L2 is y = 1

5x+ 38
5 , D2 is the closure

of the portion of D which is bound by (0, 38
5 )m ∪mn ∪ n(34, 72

5 ) ∪
(34, 72

5 )(4, 42
5 ) ∪ (4, 42

5 )c ∪ cd ∪ de ∪ ef ∪ f(2, 8) ∪ (2, 8)(0, 38
5 ), and

J2 = (0, 38
5 )m ∪mn ∪ n(34, 72

5 ). Consequently, f̂∗ is not u.s.c. at 2

since for 0 ≤ t < 2, Jt ⊂ (bc ∪ cd− {d}) but (bc ∪ cd) ∩ J2 = ∅.

4. Main Results

Theorem 2. Let D be a closed disk in the plane which is restricted
starlike about a point P ∈ D◦. Let J be the simple closed curve
which bounds D. If s(D) = k then s(J) = k.

Proof: Assume that the point about which D is restricted starlike
is the origin, O. Let r : R → (0,+∞) be a continuous function
from the reals into the positive reals, such that r(θ + 2nπ) = r(θ)

for n ∈ Z where {r(θ)eiθ} =
−−→
Oeiθ ∩ J . Also, let h : S1 → J be

the homeomorphism from the unit circle onto J given by h(eiθ) =
r(θ)eiθ. Let a, b ∈ J, a 6= b. There are angles θa and θb such that
0 ≤ θa ≤ 2π, 0 ≤ θb ≤ 2π, h(eiθa) = a, and h(eiθb) = b.

If 0 ≤ θa < θb ≤ 2π, then let

Jab = {h(eiθ) | θa ≤ θ ≤ θb} and

Jba = {h(eiθ) | θb ≤ θ ≤ 2π or 0 ≤ θ ≤ θa}.
If 0 ≤ θb < θa ≤ 2π, then let

Jab = {h(eiθ) | θa ≤ θ ≤ 2π or 0 ≤ θ ≤ θb} and

Jba = {h(eiθ) | θb ≤ θ ≤ θa}.
Suppose f and g are continuous functions from a continuum C

into D which give the symmetric span of D; that is, for all c ∈ C,
d(f(c)g(c)) ≥ k, there is a c∗ ∈ C such that d(f(c∗), g(c∗)) = k,
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and for all c ∈ C there is a c′ ∈ C such that f(c) = g(c′) and
g(c) = f(c′).

We will define functions f̂∗, ĝ∗ : C → C(J) such that f̂∗ and

ĝ∗ are u.s.c. We define f̂∗ : C → C(J) according to the following
cases.

Case 1. O ∈ Lc .
Consequently, O ∈ acbc − {ac, bc} and Dc ∩ J = HPc ∩ J . Let

f̂∗(c) = Dc ∩ J = Jc. Note that Jc is either Jacbc
or Jbcac

.

Case 2. O ∈ R2 − (HPc ∪ Lc) .
There are two subcases to consider.

(2i) f∗(c) ∩ Lc ∩ J = {f(c)} .
For all ε > 0, there are points Plε and Prε

on Lc, such that
Plε < f(c) < Prε

, d(Plε , f(c)) < ε
2 , d(Prε

, f(c)) < ε
2 , and Plε and

Prε
are not in D. Otherwise, there would be an interval Iε of di-

ameter ε centered about f(c) contained in D, and consequently,
also contained in Dc. So, (f∗(c) ∩ Lc ∩ J) ∩ (Lc − {f(c)}) 6= ∅,
contrary to our assumption. So, Dc is contained in the region of

HPc ∪ Lc that is bound by
−−→
OPlε ∪ PlεPrε

∪ −−−→OPrε
for all ε > 0 and

Dc∩ (
−−−→
Of(c)−Of(c)) = ∅. Hence Dc = {f(c)} and f̂∗(c) = f∗(c) =

{f(c)} = Dc ∩ J .

(2ii) f∗ ∩ Lc ∩ J 6= {f(c)} .
In this case, f∗(c) ∩ Lc ∩ J ⊂ acbc and ac 6= bc. We define f̂∗(c) =
Dc ∩ J = Jc. Note that Jc = Jacbc

or Jc = Jbcac
.

Case 3. O ∈ HPc .
In this case, f∗(c) ∩ J ∩ Lc 6= {f(c)}.

There are two subcases to consider.

(3i) acbc − {ac, bc} ⊂ D◦ .
It must be the case that (Lc−acbc)∩D = ∅. So, either Jacbc

⊆ HPc∪
Lc, Jacbc

∩ Lc = {ac, bc}, Jbcac
⊆ R2 −HPc, and we define f̂∗(c) =

Dc ∩ J = Jc = Jacbc
, or Jbcac

⊆ HPc ∪ Lc, Jbcac
∩ Lc = {ac, bc},

Jacbc
⊆ R2 −HPc, and we define f̂∗(c) = Dc ∩ J = Jc = Jbcac

.

(3ii) acbc − {ac, bc} * D◦ .
Either Jacbc

or Jbcac
is contained in (HPc ∪ {ac, bc}). If Jacbc

⊂
HPc∪{ac, bc}, then let Jc′ = Jacbc

. Otherwise, let Jc′ = Jbcac
. Note

that Lc ∩D ⊂ acbc. Let ac′bc′ ⊂ acbc be the smallest interval such
that if x ∈ acac′ , then Ox∩J 6= ∅ and if x ∈ bc′bc, then Ox∩J 6= ∅.
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Let
︷ ︸︸ ︷
acac′ be the arc on J that connects ac and ac′ and is bound by

Oac ∪ acbc ∪Obc. Let
︷︸︸︷

bc′bc be the arc on J that connects bc′ and bc

and is bound by Oac ∪ acbc ∪ Obc. Let Jc = Jc′ ∪
︷ ︸︸ ︷
acac′ ∪

︷︸︸︷

bc′bc. In
this case, Jc ⊂ Dc∩J , but it may not be the case that Jc = Dc∩J .

Now we need to show that f̂∗ is u.s.c. at c for all c ∈ C. Let c ∈ C
such that f̂∗(c) = f∗(c) ∩ J and let (ci) be a sequence in C that

converges to c. For each i, f̂∗(ci) ⊆ f∗(ci)∩J . So, lim sup f̂∗(ci) ⊆
lim sup (f∗(ci) ∩ J) ⊆ (lim supf∗(ci)) ∩ J = f∗(c) ∩ J = f̂∗(c).

Consequently, f̂∗ is u.s.c. at all c ∈ C such that f̂∗(c) = f∗(c) ∩ J ,
as in case 1, subcase (2i), subcase (2ii), subcase (3i), and may be
the situation in subcase (3ii).

Let c ∈ C such that f̂∗(c) ⊂ f∗(c) ∩ J , but f̂∗(c) 6= f∗(c) ∩ J , as

may be the situation in subcase (3ii). Let j ∈ (f∗(c) ∩ J)− f̂∗(c).
To simplify the following argument we assume that there are four
angles θac

, θa
c′
, θb

c′
and θbc

such that π < θac
< θa

c′
< θb

c′
< θbc

<
2π; h(θac

) = ac, h(θa
c′
) = ac′ , h(θb

c′
) = bc′ ; and h(θbc

) = bc. There
is an angle θj such that θa

c′
< θj < θb

c′
and h(θj) = j. Let θf(c) be

the angle such that h(θf(c)) = f(c) and θa
c′

< θf(c) < θb
c′
.

We will consider the case where θa
c′

< θj < θf(c) < θb
c′
. The case

where θa
c′

< θf(c) < θj < θb
c′

is similar. Based on the definition of

ac′ and our choice for j, there must be a point j′ ∈ J and an angle
θj′ such that h(θj′) = j′, θa

c′
< θj′ < θj, and j′ ∈ R2− (HPc ∪Lc).

For c ∈ C, let lc, rc ∈ Lc such that d(lc, f(c)) = d(rc, f(c)) =
diamX. If (ci) is a sequence in C such that (ci) converges to c,
then (f(ci)) converges to f(c) and (g(ci)) converges to g(c). Con-

sequently, (f(ci)g(ci)) converges to f(c)g(c), and (lci
rci

) converges
to lcrc with respect to the Hausdorff metric.

Let

ε1 =
1

4
d(f(c), g(c));

ε2 =
1

2
d(j, Lc);

ε3 =
1

2
d(j′, Lc);

ε4 =
1

2
d(lc,

←→
Oac) if lc 6= ac;
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ε5 =
1

2
d(f(c),

←→
Oj);

ε6 =
1

2
d(ac,

←−→
Oac′) if ac 6= ac′ ;

ε7 =
1

2
d(ac′ ,

←→
Oac) if ac 6= ac′ ;

ε8 =
1

2
d(ac′ ,

←→
Oj);

ε9 =
1

2
d(f(c),

←→
Oj′); and

ε = min{εi | i = 1, 2, · · · , 9 and εi has been defined }.
There is an N ∈ Z+ such that for i ≥ N , H(lci

rci
, lcrc) < ε. Let

Bε = ∪x∈lcrc
B(x, ε). The set (Bε −Oj′) has two components. Let

C ′

lc
be the component that contains lc, and C ′

rc
be the component

that contains rc. Also, the set Bε −
−→
Oj has two components. Let

Clc be the component that contains lc, and Crc
be the component

that contains rc. Clearly, for i ≥ N ,

lci
rci
∩ C ′

lc
6= ∅;

lci
rci
∩ C ′

rc
6= ∅;

lci
rci
∩ Clc 6= ∅; and

lci
rci
∩ Crc

6= ∅.
So,

lci
rci
∩Oj′ 6= ∅;

lci
rci
∩Oj = ∅; and

J ∩ Lci
∩ C ′

lc
6= ∅.

We can see that j ∈ Dci
= f∗(ci), but that j /∈ Jci

= f̂∗(ci).
Consequently,

lim sup f̂∗(ci) ⊂ f̂∗(C).

We conclude that for all c ∈ C and for any sequences (ci) converging

to c, lim sup f̂∗(ci) ⊂ f̂∗(c) and that f̂∗ is upper semicontinuous.
Define g∗ and ĝ∗ similarly, using Kc instead of Lc, Ec instead

of Dc, and LPc instead of HPc. Also, ĝ∗ is u.s.c. By lemmas 2
and 3, the set Z = ∪c∈C f̂∗(c)× ĝ∗(c) is a continuum in J × J with
the properties that if (x, y) ∈ Z, then d(x, y) ≥ k and (y, x) ∈ Z.
Consequently, s(J) = k. �
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Corollary 1. Let D be a closed disk in the plane which is starlike
about a point p ∈ D◦. Let J be the simple closed curve which bounds
D. If s(D) = k, then s(J) = k.

Proof: There is a sequence (Di) of closed disks in the plane
such that each Di is restricted starlike about p ∈ D◦

i and D1 ⊇
D2 ⊇ D3 ⊇ · · · ⊇ D. Consequently, lim s(Di) = s(D). For each
i, let Ji be the simple closed curve that bounds Di. Hence, lim
Ji = J , lim s(Ji) ≤ s(J) ≤ s(D) = k, for each i s(Ji) = s(Di),
k = s(D) = lim s(Di) = lim s(Ji) ≤ s(J) ≤ s(D) = k. So,
s(J) = s(D) = k. �
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