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ON LEXICOGRAPHIC PRODUCTS OF TWO

GO-SPACES WITH A GENERALIZED

ORDERED TOPOLOGY

AI-JUN XU AND WEI-XUE SHI

Abstract. In this paper, we investigate lexicographic prod-
ucts of two GO-spaces with a generalized ordered topology
that we call a generalized ordered topological product of the
two GO-spaces. We concentrate on the relationship of the
properties, such as Lindelöfness, paracompactness, and per-
fectness, of the two GO-spaces and their generalized ordered
topological product.

1. Introduction

Starting with two generalized ordered (GO) spaces X and Y , we
introduced, in [7], a new topology on the lexicographic product set
X × Y . This new topology contains the usual open-interval topol-
ogy of the lexicographic order and also reflects in a natural way
the fact that X and Y carry a GO-topology, rather than just the
open interval topology of their linear orderings. (Precise definitions
appear in section 2.) This new topology on the lexicographic prod-
uct is called a generalized ordered topological product (GOTP) of
the GO-spaces X and Y and is denoted by GOTP(X ∗ Y ). In this
paper, for GO-spaces X and Y , we show that the GOTP(X ∗Y ) is
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Lindelöf (or paracompact) if and only if X, Y are Lindelöf (or para-
compact), provided that Y has two endpoints. We prove that the
GOTP(X ∗ Y ) is a paracompact GO-space if and only if X, Y are
paracompact GO-spaces, provided that X does not have neighbor
points. Moreover, we investigate when the GOTP is metrizable,
(or perfectly normal, or a p-space, or an M -space).

Let X = (X, τ,≤) be a GO-space. If p and q are points of X such
that p < q and (p, q) = ∅, then p and q are called neighbor points
in X; p is the left neighbor point of q and q is the right neighbor
point of p. Let

IX = {x ∈ X | x is an isolated point of X},

RX = {x ∈ X | [x,→) ∈ τ},

LX = {x ∈ X | (←, x] ∈ τ},

EX = RX ∪ LX ,

NX = {x ∈ EX − IX | ∃ y ∈ EX − IX

such that x, y are neighbor points in X}.

For example, suppose X = (−1, 0] ∪ {1, 2} ∪ [3, 4) with the usual
subspace topology from the real line. Then {0, 1, 2, 3} ⊂ EX , but
none of these points belongs to NX . If C is a convex subset of X
and ξ = (A,B) is a (pseudo-)gap in X, then we say that C covers ξ
if C ∩A 6= ∅ 6= C ∩B. A subset A of X is said to be left discrete in
X if for each x ∈ X, there exists a convex open neighborhood O(x)
such that O(x)∩ (A−{x})∩ (←, x] = ∅. A subset A of X is said to
be σ-l-discrete if A = ∪{An | n ∈ N} where for each n ∈ N, An is
left discrete in X and N denotes the positive integers. σ-r-discrete
is similarly defined. Define an equivalence relation ∼ on X by

x ∼ y ⇐⇒ x = y or x, y ∈ NX & x, y are neighbor points in X.

For a set V and a collection U of sets, we will write V ≺ U to mean
that V is a subset of some member of U .

For undefined terminology refer to [3], [4], [5], [6].

2. Lindelöfness and the GOTP

In contrast to lexicographic products of two LOTS with the usual
interval topology, we give a generalized ordered topology on lexico-
graphic products of two GO-spaces.
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Definition 2.1 ([4]). Let (X,<X), (Y,<Y ) be linearly ordered
sets. Then the lexicographic product X ∗Y is defined as the Carte-
sian product X × Y supplied with the lexicographic ordering ⋖;
i.e., if a = 〈x1, y1〉 and b = 〈x2, y2〉 ∈ X × Y then

a ⋖ b if and only if x1 <X x2 or x1 = x2 and y1 <Y y2.

Definition 2.2 ([7]). Let (X, τX , <X), (Y, τY , <Y ) be GO-spaces.
Let λX and λY be the usual interval topology on X and Y , respec-
tively, and let λX∗Y be the usual interval topology on the linearly
ordered set X ∗ Y .

The generalized ordered topology (GOT) τX∗Y is generated by
a subbase λX∗Y ∪ τR ∪ τL ∪ {[〈x, y〉,→) ⊆ X ∗ Y | x ∈ X, y ∈
Y and [y,→) ∈ τY − λY } ∪ {(←, 〈x, y〉] ⊆ X ∗ Y | x ∈ X, y ∈
Y and (←, y] ∈ τY − λY }, where either

τR = ∅ and τL = ∅, if Y does not have endpoints,

or

τR = {[〈x, y0〉,→) | x ∈ X and [x,→) ∈ τX − λX} and
τL = ∅, if Y has a left endpoint y0, but no right one,

or

τR = ∅ and τL = {(←, 〈x, y1〉] | x ∈ X and (←, x] ∈ τX −
λX}, if Y has a right endpoint y1, but no left one,

or

τR = {[〈x, y0〉,→) | x ∈ X and[x,→) ∈ τX − λX} and
τL = {(←, 〈x, y1〉] | x ∈ X and (←, x] ∈ τX − λX}, if Y has
both a left endpoint y0 and a right endpoint y1.

We say that the space (X ∗Y, τX∗Y ) is the generalized ordered topo-
logical product (GOTP) of GO-spaces (X, τX , <X) and (Y, τY , <Y ),
and denote it by GOTP(X ∗Y ). Similarly, we denote (X ∗Y, λX∗Y )
by LOTP(X ∗ Y ).

In Definition 2.2, if X, Y are LOTS, then τX∗Y = λX∗Y . For
each x ∈ X, the subspace {x} ∗ Y of the GOTP(X ∗ Y ) is home-
omorphic to Y . Moreover, the topology on the GOTP(X ∗ Y ) is
determined by the topologies on X and Y . So the GOTP(X ∗Y ) is
a natural generalization of the lexicographic product with the usual
interval topology.
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Convention. When the meanings are clear from the context, we
do not distinguish notations for orderings on different ordered sets
and use simply < instead of <X , <Y , and ⋖.

Definition 2.3. Let X be a GO-space and S ⊆ X be convex in X.
Define

I(S) = {x ∈ S | there exist a, b ∈ S with a < x < b}.

For any subset G ⊆ X, define

I(G) = ∪{I(S) | S is a convex component of G}.

For any subset G of GO-space X, I(G) is open in X. Next, we
explore when the lexicographic product of two GO-spaces with a
generalized ordered topology is Lindelöf. First, we need the follow-
ing lemmas.

Lemma 2.1 ([7]). Let X, Y be GO-spaces and y0 (y1) be a left
(right) point of Y . Suppose U is an open cover of the GOTP(X ∗Y )
by convex sets and

E = {x ∈ X | no element of U contains both 〈u, y0〉

and 〈v, y1〉 for some u, v ∈ X and u < x < v}.

Then E is a closed discrete subspace of X.

Lemma 2.2 ([7]). Let X, Y be GO-spaces. Suppose π1 is a map-
ping from the GOTP(X∗Y ) onto X, which is defined by π1(〈x, y〉) =
x for each point 〈x, y〉 ∈ X ∗ Y . If Y has both a left and a right
endpoint, then π1 is continuous.

Remark. In this paper, π1 always denotes the map defined in
Lemma 2.2.

Theorem 2.1. Let X, Y be GO-spaces. If Y has both a left and a
right endpoint, then the following are equivalent.

(1) X, Y are Lindelöf;
(2) the GOTP(X ∗ Y ) is Lindelöf.

Proof: (1) =⇒ (2) Let y0 be a left endpoint of Y and y1 be a right
endpoint of Y . Suppose U is any open cover of the GOTP(X ∗ Y ).
Without loss of generality, suppose every member of U is convex.
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Let E be defined as in Lemma 2.1. Since X is Lindelöf, E is
countable by Lemma 2.1. Let

I(π1(U)) = {I(π1(U)) | U ∈ U}

and

U(IX) = {{x} | x ∈ E ∩ IX}.

For each x ∈ E∩ ((RX ∪LX)−IX), choose ux, vx ∈ X and Ux ∈
U satisfying the following properties:

(i) if x ∈ E ∩ (RX − IX), then vx > x and [〈x, y1〉, 〈vx, y1〉] ⊆
Ux ∈ U ;

(ii) if x ∈ E ∩ (LX − IX), then ux < x and [〈ux, y0〉, 〈x, y0〉] ⊆
Ux ∈ U .

For each x ∈ E − (RX ∪LX ∪ IX), choose ux, vx ∈ X and Ux0,
Ux1 ∈ U satisfying the following property:

ux < x < vx, [〈ux, y0〉, 〈x, y0〉] ⊆ Ux0 ∈ U and
[〈x, y1〉, 〈vx, y1〉] ⊆ Ux1 ∈ U .

Then let

U(RX) = {[x, vx) | x ∈ E ∩ (RX − IX)},

U(LX) = {(ux, x] | x ∈ E ∩ (LX − IX)},

U(TX) = {(ux, vx) | x ∈ E − (RX ∪ LX ∪ IX)}.

We claim that U ′ = I(π1(U))∪U(IX )∪U(RX)∪U(LX)∪U(TX )
is an open cover of X. Obviously, every member of U ′ is open
in X. It remains to show that I(π1(U)) ⊇ X − E since U(IX) ∪
U(RX) ∪ U(LX) ∪ U(TX) ⊇ E. For every x ∈ X, if x /∈ E, then
there exist u, v ∈ X with the property u < x < v and 〈x, y0〉 ∈
[〈u, y0〉, 〈v, y1〉] ⊆ U ∈ U . Thus, x ∈ (u, v) ≺ I(π1(U)) ∈ I(π1(U)).

Suppose that V is a countable subcover of U ′. Define

W1 = {U ∈ U | I(π1(U)) ∈ V};

W2 = {Ux | x ∈ E ∩ (RX − IX) and [x, vx) ∈ V};

W3 = {Ux | x ∈ E ∩ (LX − IX) and (ux, x] ∈ V};

W4 = {Ux0
, Ux1

| x ∈ E − (RX ∪ LX ∪ IX) and (ux, vx) ∈ V}.

Since Y is Lindelöf and homeomorphic to {x} ∗ Y , there is a
countable open subfamily Vx of U covers {x} ∗ Y for every x ∈ X.
Then let

W5 = ∪{Vx | x ∈ E}.
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Hence, for i = 1, 2, 3, 4, 5, Wi is a countable open collection of the
GOTP(X ∗ Y ). Define W = ∪{Wi | i = 1, 2, 3, 4, 5}. By the
above construction, W is a subset of U . To conclude the proof, it
suffices to show that W is an open cover of the GOTP(X ∗Y ). Let
s = 〈z, y〉 ∈ X ∗ Y . There are two cases:

(i) If z ∈ E, then s = 〈z, y〉 is covered by W5.

(ii) If z /∈ E, then there exists V ∈ V with z ∈ V . Furthermore,
V must be a member of I(π1(U))∪U(RX)∪U(LX)∪U(TX).
If V ∈ I(π1(U)), then there exists a U ∈ U such that V =
I(π1(U)). Hence, s ∈ U ∈ W1. If V ∈ U(TX), then there
exists x ∈ E − (RX ∪ LX ∪ IX) with V = (ux, vx) and x 6=
z. Thus, s = 〈z, y〉 belongs to (〈ux, y0〉, 〈x, y0〉) or (〈x, y1〉,
〈vx, y1〉). Hence, s = 〈z, y〉 belongs to Ux0

or Ux1
, either of

which belongs to W4. The other cases are similar.

(2) =⇒ (1) Clearly, Y is Lindelöf because {x} ∗ Y is a closed set
of the GOTP(X ∗ Y ) and homeomorphic to Y for every x of X.
Next, we will prove that X is Lindelöf. For any open cover V of
X by convex sets, π−1

1 (V) = {π−1
1 (V ) | V ∈ V} is an open cover of

the GOTP(X ∗ Y ) by Lemma 2.2. So, there is a countable open
subcover π−1

1 (V ′) of π−1
1 (V) with V ′ ⊆ V. Then, V ′ is a countable

open subcover of V. In fact, for each x ∈ X, there exists V ∈ V ′

such that 〈x, y0〉 ∈ π−1
1 (V ). Hence, x ∈ V . �

In Theorem 2.1, if Y has only one endpoint, then the GOTP(X ∗
Y ) may not be Lindelöf.

Example 2.1. Let Y = [0, 1) with the usual topology and let X
denote [0, 1] having a base consisting of all intervals (z, 1], [x, y),
where x, y, z ∈ [0, 1]; x < y; and x 6= 1. Then the GOTP(X ∗ Y )
is not Lindelöf.

In addition, we have the following theorem.

Theorem 2.2. Let X, Y be GO-spaces. If Y has neither a left nor
a right endpoint, then the GOTP(X ∗ Y ) is Lindelöf if and only if
Y is Lindelöf and |X| < ω1.

Proof: Obvious, since X ∗ Y is the disjoint union of the open
subset of the GOTP(X ∗ Y ). �
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3. Paracompactness and the GOTP

Lemma 3.1 ([4]). Let X be a GO-space. Then X is hereditarily
paracompact iff X − {x} is paracompact for each point x ∈ X.

Lemma 3.2. Let X, Y be GO-spaces. If Y has both a left and a
right endpoint, and

(1) if A is discrete in X and B is discrete in Y , then A ∗B is
discrete in the GOTP(X ∗ Y );

(2) if D is discrete in the GOTP X ∗ Y , then π1(D) is discrete
in X.

Proof: Let y0 denote the left endpoint of Y and y1 denote the
right endpoint of Y .

(1) For every x ∈ X and y ∈ Y , there exist convex open subsets
O(x,A) (in X) and U(y,B) (in Y ) such that O(x,A)∩ (A−{x}) =
∅ and U(y,B) ∩ (B − {y}) = ∅, respectively. It suffices to show
that there exist open subsets V (〈x, y〉) of the GOTP(X ∗ Y ) such
that V (〈x, y〉) ∩ (A ∗ B − {〈x, y〉}) = ∅ for each 〈x, y〉 ∈ X ∗ Y . If
y 6= y0, y1, then let V (〈x, y〉) = {x}∗(U(y,B)−{y0, y1}). If y = y0,
then let V (〈x, y〉) = {x} ∗U(y0, B) ∪ (π−1

1 (O(x,A)) ∩ (←, 〈x, y0〉)).
If y = y1, then let V (〈x, y〉) = {x} ∗ U(y1, B) ∪ (π−1

1 (O(x,A)) ∩
(〈x, y1〉,→)).

(2) For every 〈x, y〉 ∈ X ∗Y , there exists a convex open neighbor-
hood O(〈x, y〉) of 〈x, y〉 in the GOTP X ∗ Y such that O(〈x, y〉) ∩
(D−{〈x, y〉}) = ∅. We shall prove that there exists an open neigh-
borhood U(x) of x in X such that U(x)∩ (π1(D)−{x}) = ∅. There
are four cases to consider: (i) x ∈ IX is clear. (ii) x ∈ X − (RX ∪
LX ∪ IX). Then there exists ux, vx ∈ X, O(〈x, y0〉) and O(〈x, y1〉)
with ux < x < vx, 〈vx, y1〉 ∈ O(〈x, y1〉) and 〈ux, y0〉 ∈ O(〈x, y0〉).
Then, let U(x) = (ux, vx). (iii) x ∈ RX − IX . For 〈x, y1〉 ∈ X ∗ Y ,
there exists vx > x with 〈vx, y1〉 ∈ O(〈x, y1〉). Then let U(x) =
[x, vx). (iv) x ∈ LX − IX . Similarly, there exists ux < x with
〈ux, y0〉 ∈ O(〈x, y0〉), then let U(x) = (ux, x]. �

Corollary 3.1. Let X, Y be GO-spaces. If Y has both a left and
a right endpoint, then the following are equivalent.

(1) The GOTP(X ∗ Y ) is σ-discrete;
(2) X, Y are σ-discrete.
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Proof: (1) =⇒ (2) Let the GOTP(X ∗ Y ) be σ-discrete. Obvi-
ously, Y is σ-discrete. Moreover, let

X ∗ Y = ∪{Dn | n ∈ N and Dn is discrete

in the GOTP(X ∗ Y ) for each n ∈ N}.

Then, X = π1(X ∗ Y ) = ∪{π1(Dn) | n ∈ N} is σ-discrete in X by
Lemma 3.2(2).

(2) =⇒ (1) Since X, Y are σ-discrete, we have

X = ∪{An | n ∈ N and An is discrete in X} and
Y = ∪{Bm | m ∈ N and Bm is discrete in Y }.

For each n,m ∈ N, let Cn,m = ∪{{x} ∗ Bm | x ∈ An}. Then
X ∗ Y = ∪{Cn,m | n,m ∈ N}. By Lemma 3.2(1), Cn,m is discrete
in the GOTP(X ∗ Y ). Thus, the GOTP(X ∗ Y ) is σ-discrete. �

Lemma 3.3 ([4], Theorem 2.4.6). Let X be a GO-space. Then
X is paracompact if and only if for each gap and each pseudo-gap
(A,B) in X, there exist discrete subsets C ⊂ A and D ⊂ B which
are cofinal in A and coinitial in B, respectively.

Theorem 3.1. If X, Y are (hereditarily) paracompact GO-spaces,
then the GOTP(X ∗ Y ) is a (hereditarily) paracompact GO-space.

Proof: Let X, Y be paracompact. Suppose (A,B) is a left-
pseudo-gap in the GOTP(X ∗ Y ). (The other cases can be proved
similarly.) Then, the singleton set {〈b0X , b0Y 〉} of the left endpoint
of B is a discrete subset of the GOTP(X ∗ Y ) which is coinitial in
B. So, it suffices to prove that there exists a cofinal subset D of A
which is discrete in the GOTP(X ∗ Y ). Let

AX = {aX ∈ X | there exists aY ∈ Y such that
a = 〈aX , aY 〉 ∈ A},

BX = {bX ∈ X | there exists bY ∈ Y such that
b = 〈bX , bY 〉 ∈ B}.

Then X = AX ∪ BX , aX ≤ bX for all aX ∈ AX , and bX ∈ BX .
Further, |AX ∩BX | ≤ 1 and BX has a left endpoint b0X .

Case 1. AX ∩ BX = ∅. Since (A,B) is a left-pseudo-gap, Y has
a left endpoint y0 = b0Y . First we claim that (AX , BX) must be a
left-pseudo-gap in X. In fact, if (AX , BX) were not a left-pseudo-
gap in X, then it would be a jump. So b0X has an immediate
predecessor b−0X in X that is the maximal point of AX . Then Y
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does not have a right endpoint since (A,B) is a left-pseudo-gap of
the GOTP(X ∗Y ). But by the definition of GOTP, [〈b0X , b0Y 〉,→)
is not open in the GOTP(X ∗Y ). This contradicts that (A,B) is a
left-pseudo-gap of the GOTP(X ∗ Y ).

Now we know that (AX , BX) is a left-pseudo-gap in X. Then
there exists DX ⊆ AX such that DX is a discrete subset of X and
cofinal in AX . Pick arbitrary y ∈ Y . Let D = {〈x, y〉 | x ∈ DX}.
Obviously, D is a cofinal subset of A. By Lemma 3.2, D is discrete
in the GOTP(X ∗ Y ).

Case 2. AX ∩BX 6= ∅. Then AX ∩BX = {b0X}. Let

AY = {aY ∈ Y | 〈bX , aY 〉 ∈ A}

and

BY = {bY ∈ Y | 〈bX , bY 〉 ∈ B}.

Then (AY , BY ) is a left-pseudo-gap in Y since {bX} ∗ Y is homeo-
morphic to Y . Hence, there exists a subset DY ⊆ AY which is dis-
crete in Y and cofinal in AY . Now, define D = {〈b0X , y〉 | y ∈ DY }.
Then D is a discrete subset of the GOTP(X ∗ Y ) and a cofinal
subset of A.

Next, let X, Y be hereditarily paracompact. By Lemma 3.1, it
suffices to prove that there are discrete subsets D and R of X ∗Y −
{p}, such that D is cofinal in {s ∈ X∗Y | s < p} and R is coinitial in
{s ∈ X ∗Y | p < s} for every p ∈ X ∗Y . Let p = 〈pX , pY 〉 ∈ X ∗Y .
If pY is not an endpoint of Y , then the proof is clear since Y is
hereditarily paracompact. Let pY be the left endpoint of Y . Then
there are two possibilities to consider:

(i) pX has an immediate predecessor p−X in X. If Y has the

right endpoint y1, then let D = {〈p−X , y1〉}. If Y does not
have a right endpoint, then there exists DY ⊆ Y such that
DY is discrete and cofinal in Y . Thus, let D = {〈p−X , y〉 |
y ∈ DY }.

(ii) pX does not have an immediate predecessor in X. Then
there exists DX ⊆ X − {pX} such that DX is discrete in
X − {pX} and cofinal in {x | x < pX}. Thus, let D =
{〈x, pY 〉 | x ∈ DX}.

In either case, D is discrete in X∗Y −{p} and cofinal in {s ∈ X∗Y |
s < p}. Further, there exists RY ⊆ Y such that RY is discrete and
coinitial in Y − {pY }. Hence, let R = {〈pX , y〉 | y ∈ RY }. Then R
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is discrete in X ∗ Y − {p} and cofinal in {s ∈ X ∗ Y | s > p}. If pY

is the right endpoint of Y , the proof is similar. �

The converse of the above theorem is not true. (See Example
3.1.)

Example 3.1. Let X = ω0 and Y = ω1 with the usual order
topology. Then Y is not paracompact. However, the GOTP(X ∗Y )
is paracompact. (In fact, the GOTP(X ∗ Y ) is Lindelöf.)

Theorem 3.2. Let X, Y be GO-spaces. If Y has neither a left
nor a right endpoint, then the GOTP(X ∗Y ) is paracompact if and
only if Y is paracompact.

The proof of Theorem 3.2 is obvious because the GOTP(X ∗ Y )
is the disjoint union of open subsets of X ∗ Y , each homeomorphic
to Y . Moreover, when “paracompact” is replaced by σ-discrete,
or perfectly normal, or p-space, or M -space, or metrizable, the
conclusion of Theorem 3.2 is also true.

Theorem 3.3. Let X, Y be GO-spaces. If Y has both a left and a
right endpoint, then the following are equivalent.

(1) The GOTP(X ∗ Y ) is paracompact;
(2) X, Y are paracompact.

Proof: (2) =⇒ (1) is clear by Theorem 3.1.

(1) =⇒ (2) Obviously, Y is paracompact since it is homeomor-
phic to the closed {x} ∗ Y of the GOTP(X ∗ Y ) for every x ∈ X.
Next, we prove that X is paracompact. Let (A,B) be a left-
pseudo-gap in X. (The other cases are proved similarly.) Then
(π−1

1 (A), π−1
1 (B)) is a left-pseudo-gap in the GOTP(X ∗Y ). Hence,

there exists a discrete subset D of the GOTP(X ∗ Y ) such that D
is a cofinal subset of π−1

1 (A). Thus, π1(D) is a cofinal subset of A
and a discrete subset of X by Lemma 3.2(2). �

Theorem 3.4. Let X, Y be GO-spaces. If X does not have neigh-
bor points, then the following are equivalent.

(1) the GOTP(X ∗ Y ) is paracompact;
(2) X, Y are paracompact.

Proof: (2) =⇒ (1) is clear by Theorem 3.1.

(1) =⇒ (2) Since X does not have neighbor points, {x} ∗ Y is
a closed subset of the GOTP(X ∗ Y ) for every x ∈ X. Then Y
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is paracompact because Y is homeomorphic to {x} ∗ Y for every
x ∈ X. Next, we prove that X is paracompact. Let (A,B) be a
left-pseudo-gap in X. (The other cases proved similarly.) There
are two cases.

Case 1. If Y has a left endpoint, then (π−1
1 (A), π−1

1 (B)) is a
left-pseudo-gap in the GOTP(X ∗ Y ).

Case 2. If Y does not have a left endpoint, then (π−1
1 (A), π−1

1 (B))
is a gap in the GOTP(X ∗ Y ).

In either case, there is a discrete subset D in the GOTP(X ∗ Y )
which is cofinal in π−1

1 (A). Thus, π1(D) must be cofinal in A.
Further, π1(D) is a discrete subset of X by Lemma 3.2 (2). The
proof is finished. �

In Theorem 3.4, the condition “X does not have neighbor points”
cannot be removed. Otherwise, Y may not be paracompact (see
Example 3.1).

Lemma 3.4 ([4]). Let X be a GO-space. Then the following are
equivalent.

(1) X is metrizable;
(2) there exists a subset D ⊆ X such that

(i) D = X; (ii) EX ⊆ D; (iii) D is σ-discrete (in X).

Theorem 3.5. Let X, Y be GO-spaces. If Y has both a left and a
right endpoint, then the following are equivalent.

(1) The GOTP(X ∗ Y ) is metrizable;
(2) X is σ-discrete and Y is metrizable.

By Lemma 3.2 and Lemma 3.4, the proof of Theorem 3.5 is easy.

4. Other results on the GOTP

Theorem 4.1. Let X, Y be GO-spaces.

(1) If |Y | > 2 and Y has both a left and a right endpoint, then
the GOTP(X ∗ Y ) is perfectly normal ⇐⇒ X is σ-discrete
and Y is perfectly normal.

(2) If |Y | = 2, then the GOTP(X ∗ Y ) is perfectly normal ⇐⇒
X is perfectly normal and EX is σ-discrete in X.

Proof: (1) Necessity. Clearly, Y is perfectly normal. Since |Y | >
2, there exists y ∈ Y such that y is not an endpoint of Y . Then
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{〈x, y〉 | x ∈ X} is a relatively discrete subset in the GOTP(X ∗Y ).
Hence, {〈x, y〉 | x ∈ X} is a σ−discrete subset in the GOTP(X ∗Y )
by Theorem 2.4.5 in [4]. Therefore, X is σ−discrete by the Lemma
3.2(2).

Sufficiency. Let P be a relatively discrete subset in the GOTP(X∗
Y ). Let Px = ({x} ∗ Y ) ∩ P . Then Px is a relatively discrete
subset in {x} ∗ Y for each x ∈ X. Since {x} ∗ Y is homeo-
morphic to Y , Px is σ-discrete in Y for each x ∈ X. In addi-
tion, P ⊆ {{x} ∗ Px | x ∈ π1(P )}. Thus, P is σ-discrete in the
GOTP(X ∗ Y ) by Lemma 3.2(1). By Theorem 2.4.5 in [4], the
GOTP(X ∗ Y ) is perfectly normal.

(2) Necessity. Suppose Y = {y0, y1} with y0 < y1. Let P be
relatively discrete in X. Then π−1

1 (P ) is relatively discrete in the

GOTP(X ∗ Y ). Hence, π−1
1 (P ) is σ-discrete in the GOTP(X ∗ Y ).

By Lemma 3.2(2), P is σ-discrete in X. Then X is perfectly normal.
For each x ∈ LX , 〈x, y1〉 is an isolated point in GOTP(X ∗ Y )

since (←, 〈x, y1〉] is open and 〈x, y1〉 has an immediate predecessor
〈x, y0〉. Similarly, for each x ∈ RX , 〈x, y0〉 is isolated. Thus, A =
{〈x, y1〉|x ∈ LX} ∪ {〈x, y0〉|x ∈ RX} is a relatively discrete subset
of GOTP(X ∗Y ). By perfectness of GOTP(X ∗Y ), A is σ-discrete.
Again by Lemma 3.2, EX = π1(A) is σ-discrete in X.

Sufficiency. Let F = (X ∗ Y )/ ∼ be the quotient space of
GOTP(X,Y ) (See section 1 for the definition of the equivalence
relation ∼). Then F is a GO-space with respect to the ordering
inherited from X ∗ Y . Observe that

NGOTP(X∗Y ) = {〈x, y0〉, 〈x, y1〉|x ∈ X − (LX ∪RX)}

and

F = {{〈x, y0〉, 〈x, y1〉}|x ∈ X − (LX ∪RX)}

∪ {{〈x, y〉}|〈x, y〉 ∈ (X ∗ Y )−NGOTP(X∗Y )}.

Define g : X → F as follows

g(x) =











{〈x, y0〉, 〈x, y1〉} if x ∈ X − (LX ∪RX)

{〈x, y0〉} if x ∈ LX

{〈x, y1〉} if x ∈ RX − IX .

Then g is an embedding map from X to F . We regard x and g(x)
as the same thing. Suppose I = F−X. Then I is a set consisting of
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isolated points of the GOTP(X∗Y ). Hence, any family consisting of
disjoint convex (in F ) subsets of I is σ-discrete in the GOTP(X∗Y )
and also in F . Hence, F may be regarded as the union of X and I,
and I is an open σ-discrete subset of F . Suppose O is a family of
disjoint open convex subsets of F . Then O|X = {O ∩ X|O ∈ O}
is a family of disjoint open convex subsets of X. It follows that
O|X is σ-discrete in X since X is perfectly normal. So we may
put O = ∪{On|n ∈ N} such that On|X is discrete in X. Moreover,
{O ∈ On|O ∩X 6= ∅} is discrete in F as well since each member of
On is convex. Therefore, {O ∈ O|O ∩ X 6= ∅} is σ-discrete in F .
Next, if O ∈ O does not meet X, then O ⊂ I. So {O ∈ O|O ∩X =
∅} is σ-discrete in F . Hence, (X ∗Y )/ ∼ is perfectly normal. Thus,
the GOTP(X ∗Y ) is perfectly normal by [4, Lemma 3 (p. 26)]. �

Let X be a GO-space and suppose ξ = (A,B) is a (pseudo-)gap,
possibly an endgap. Then ξ is said to be countable from the left
if some strictly increasing countably infinite sequence is cofinal
in A, and ξ is said to be countable from the right if there is a
strictly decreasing countably infinite sequence coinitial in B. The
(pseudo-)gap ξ is said to be countable if it is countable from the
left or from the right.

Lemma 4.1 ([6]). (1) Let X be a GO-space. Then X is a p-
space if and only if there exists a sequence (V(n))n∈N of convex
open covers of X with the property that for each x ∈ X and each
(pseudo-)gap ξ = (A,B) in X there exists an n = n(x, ξ) ∈ N such
that St(x,V(n)) does not cover the (pseudo-)gap ξ.

(2) Let X be a GO-space. Therefore, X is an M -space if and
only if there exists a sequence (V(n))n∈N of convex open covers
of X with the property that for each x ∈ X and each countable
(pseudo-)gap ξ = (A,B) in X, there exists an n = n(x, ξ) ∈ N such
that St(x,V(n)) does not cover the (pseudo-)gap ξ.

The following theorem can be proved in a way analogous to the
proof of Theorem 3.1.2 in [6]. But we give here a different (direct)
proof.

Theorem 4.2. Let X and Y be GO-spaces. If Y has both a left
and a right endpoint and no (interior) gaps, then the following are
equivalent.

(1) X is a p-space;
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(2) the GOTP(X ∗ Y ) is a p-space.

Proof: Let y0 denote a left endpoint of Y and y1 denote a right
endpoint of Y .

(1) =⇒ (2) Suppose (A,B) is a (pseudo-)gap of the GOTP(X ∗
Y ). Then (π1(A), π1(B)) is a (pseudo-)gap of X since Y is a com-
pact LOTS. Let (V(n))n∈N be open covers of X with the proper-
ties of Lemma 4.1. Thus, (π−1

1 (V(n)))n∈N are open covers of the
GOTP(X ∗Y ) with the properties of Lemma 4.1. In fact, for every
〈x, y〉 ∈ X∗Y and (pseudo-)gap (A,B), there exists n ∈ N such that
St(x,V(n)) does not cover the (pseudo-)gap (π1(A), π1(B)). Hence,
St(〈x, y〉, π−1

1 (V(n))) does not cover the (pseudo-)gap (A,B).

(2) =⇒ (1) Let (U(n))n∈N be open covers of the GOTP(X ∗
Y ) with the properties of Lemma 4.1. Without loss of generality,
suppose that U(n + 1) refines U(n). For each n ∈ N, let I(U(n)) =
{I(π1((U)) | U ∈ U(n))} and E(U(n)) = X − ∪I(U(n)). For x ∈
E(U(n)) ∩ IX , let V (x, n) = {x}. For x ∈ E(U(n)) ∩ (RX − IX),
there exists vx > x such that 〈vx, y1〉 ∈ St(〈x, y1〉,U(n)). Then
let V (x, n) = [x, vx). Similarly, for x ∈ E(U(n)) ∩ (LX − IX),
there exists ux < x such that 〈ux, y0〉 ∈ St(〈x, y0〉,U(n)). Then
let V (x, n) = (ux, x]. For x ∈ E(U(n)) − (RX ∪ LX ∪ IX), there
exist ux, vx such that ux < x < vx, 〈ux, y0〉 ∈ St(〈x, y0〉,U(n))
and 〈vx, y1〉 ∈ St(〈x, y1〉,U(n)). Then let V (x, n) = (ux, vx) and
V(n) = I(U(n)) ∪ {V (x, n) | x ∈ E(U(n))}. Thus, the sequence
(V(n))n∈N of open covers of X satisfies the properties of Lemma 4.1.
In fact, let (A,B) be a (pseudo-)gap of X. Then (π−1

1 (A), π−1
1 (B))

is a (pseudo-)gap of the GOTP(X ∗ Y ). For x ∈ X, there are
m, n ∈ N such that St(〈x, y0〉,U(m)) and St(〈x, y1〉,U(n)) do not
cover the (pseudo-)gap (π−1

1 (A), π−1
1 (B)) of the GOTP(X ∗Y ). Let

l = max{m,n}. Then St(〈x, y0〉,U(l)) and St(〈x, y1〉,U(l)) do not
cover the (pseudo-)gap (π−1

1 (A), π−1
1 (B)). Therefore, St(x,V(l))

does not cover the (pseudo-)gap (A,B) because π−1
1 (St(x,V(l))) ⊆

St(〈x, y0〉,U(l)) ∪ St(〈x, y1〉,U(l)). �

By an argument similar to the proof of Theorem 4.2, we have
the following theorem.

Theorem 4.3. Let X and Y be GO-spaces. If Y has both a left
and a right endpoint and no countable gaps, then the following are
equivalent.
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(1) X is an M -space;
(2) the GOTP(X ∗ Y ) is an M -space.

The following theorems are improvements of theorems 3.1.3, 3.2.3,
3.1.5, 3.1.6, 3.2.5, 3.2.6 in [6]; Lemma 3 (page 81) and theorems
4.4.3, 4.4.7 in [4] can be proved by some modifications, respectively.

Theorem 4.4. Let X, Y be GO-spaces. If Y has both a left and a
right endpoint and

(1) if Y has at least one interior gap, then the GOTP(X ∗ Y )
is a p-space ⇐⇒ X is σ-discrete and Y is a p-space.

(2) if Y has at least one countable gap, then the GOTP(X ∗Y )
is an M -space ⇐⇒ X is σ-discrete and Y is an M -space.

Theorem 4.5. Let X, Y be GO-spaces. If Y has a left (right)
endpoint, but no right (left) one, and

(1) if Y has no interior gaps, then the GOTP(X ∗ Y ) is a p-
space ⇐⇒ X is a left-(right) p-space, and D = {x ∈ X |
x has no right (left) neighbor point} is σ-l-(σ-r-)discrete;

(2) if Y has at least one interior gap, then the GOTP(X ∗ Y )
is a p-space ⇐⇒ X is a σ-l-(σ-r-)discrete, Y is a p-space
and if X contains neighbor points and the interior gaps are
cofinal (coinitial) in Y , then Y has cofinality ω0 (coinitiality
ω∗

0);
(3) if Y has a countable right (left) endgap and no countable

interior gaps, then the GOTP(X∗Y ) is an M -space⇐⇒ X
is a left-(right) M -space, and D = {x ∈ X | x has no right
(left) neighbor point} is σ-l-(σ-r-)discrete;

(4) if Y has at least one countable interior gap, then the GOTP
(X ∗ Y ) is an M -space ⇐⇒ X is a σ-l-(σ-r-)discrete, Y
is an M -space and if X contains neighbor points and the
countable interior gaps are cofinal (coinitial) in Y , then Y
has cofinality ω0 (coinitiality ω∗

0);
(5) if X has neighbor points, then

(a) X is σ-l-(σ-r-)discrete, Y is σ-discrete, and ω0 (ω∗

0)
is cofinal (coinitial) in Y ⇐⇒ the GOTP(X ∗ Y ) is
σ-discrete;

(b) X is σ-l-(σ-r-)discrete, Y is metrizable, and ω0 (ω∗

0)
is cofinal (coinitial) in Y ⇐⇒ the GOTP(X ∗ Y ) is
metrizable;
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(c) X is σ-l-(σ-r-)discrete, Y is perfectly normal, and ω0

(ω∗

0) is cofinal (coinitial) in Y ⇐⇒ the GOTP(X ∗ Y )
is perfectly normal;

(6) if X does not have neighbor points, then
(a) X is σ-l-(σ-r-)discrete and Y is σ-discrete ⇐⇒ the

GOTP(X ∗ Y ) is σ-discrete;
(b) X is σ-l-(σ-r-)discrete and Y is metrizable ⇐⇒ the

GOTP(X ∗ Y ) is metrizable;
(c) X is σ-l-(σ-r-)discrete and Y is perfectly normal ⇐⇒

the GOTP(X ∗ Y ) is perfectly normal.
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