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ALGEBRAIC STRUCTURE CLOSE TO THE
SMALLEST IDEAL OF βN

CHASE ADAMS, III∗

Abstract. If 〈xn〉∞n=1 is a sequence in N with the property
that for each n, xn+1 > Σn

t=1xt, then we have shown that
several notions of largeness for the set of finite sums, including
syndetic, piecewise syndetic, and central , are equivalent to the
set {xn+1 − Σn

t=1xt : n ∈ N} being bounded. We show here
that there exist such sequences with {xn+1 −Σn

t=1xt : n ∈ N}
unbounded but with density of the set of finite sums as close
to 1 as we please. As a consequence we see that there are
copies of the semigroup H close to, but missing, the smallest
ideal of βN. This semigroup is known to contain much of the
algebraic structure of βN, including all of its idempotents.

1. Introduction

Given a sequence 〈xn〉∞n=1 in N, we let FS(〈xn〉∞n=1) =
{
∑

t∈F xt : F ∈ Pf (N)}, where Pf (N) is the set of finite nonempty
subsets of N. Sets of this form have been of interest ever since the
Finite Sums Theorem was proved in 1974.

Theorem 1.1 (Finite Sums Theorem). Let r ∈ N and let N =⋃r
i=1 Ai. There exist i ∈ {1, 2, . . . , r} and a sequence 〈xn〉∞n=1 in N

such that FS(〈xn〉∞n=1) ⊆ Ai.
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Proof. [4, Theorem 3.1].

The proof of Theorem 1.1, while elementary, was very com-
plicated. Subsequently a much simpler proof was obtained by
Fred Galvin and Steven Glazer who used the fact that the Stone-
Čech compactification βN of N has an operation extending ordi-
nary addition on N making (βN, +) a compact right topological
semigroup. Any compact right topological semigroup must have
idempotents and a subset A of N contains FS(〈xn〉∞n=1) for some
sequence 〈xn〉∞n=1 if and only if there is an idempotent p of βN in
the closure of A.

As a compact right topological semigroup, βN has a smallest
two sided ideal, K(βN) which is the union of all of the minimal left
ideals of βN and is also the union of all of the minimal right ideals
of βN. This ideal is known to have very rich algebraic structure.
(For example, there are 2c pairwise isomorphic groups in K(βN),
each of which contains a free group on 2c generators.)

We take the points of βN to be the ultrafilters on N, identifying
a point of N with the principal ultrafilter consisting of all subsets
of N with that element as a member. Given A ⊆ N, the closure of
A, A = {p ∈ βN : A ∈ p}. The set {A : A ⊆ N} is a basis for the
open sets of βN, as well as a basis for the closed sets of βN. See [6]
for an introduction to the algebraic structure of K(βN).

Of special interest to us is the subsemigroup H of βN.

Definition 1.2. H =
⋂∞

n=1 2nN.

Since H is a compact right topological semigroup, it has a small-
est ideal K(H).

Theorem 1.3. All of the idempotents of βN are in H and each
maximal group in the K(H) contains a free group on 2c generators.
Also, K(H) contains a copy of the 2c × 2c rectangular semigroup.

Proof. [6, Lemma 6.8 and Theorem 7.35] and [7, Corollary 3.15].

Several notions of size have originated in topological dynam-
ics, and they all have characterizations in terms of the algebraic
structure of βN. One of them does not have a simple elementary
description, so we define it first.

Definition 1.4. A subset A of N is central if and only if there is
some idempotent in A ∩ K(βN).
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The other notions with which we will be concerned have sim-
ple elementary definitions. Given A ⊆ N and x ∈ N, −x + A =
{y ∈ N : x + y ∈ A}.

Definition 1.5. Let A ⊆ N.
(a) The set A is thick if and only if for all F ∈ Pf (N) there exists

x ∈ N such that F + x ⊆ A.
(b) The set A is syndetic if and only if there exists G ∈ Pf (N)

such that N =
⋃

t∈G −t + A.
(c) The set A is piecewise syndetic if and only if there exists

G ∈ Pf (N) such that
⋃

t∈G −t + A is thick.
Notice that a set A is thick precisely when it contains arbitrarily

long blocks, syndetic precisely when there is a bound on the gaps
of A, and piecewise syndetic precisely when there is a bound b and
arbitrarily long blocks of N in which A has no gaps longer than b.

All of these notions have simple algebraic characterizations in
terms of βN.

Lemma 1.6. Let A ⊆ N.

(a) The set A is syndetic if and only if for every left ideal L of
βN, L ∩ A 6= ∅.

(b) The set A is thick if and only if there is some left ideal L
of βN with L ⊆ A.

(c) The set A is piecewise syndetic if and only if K(βN)∩A 6= ∅.

Proof. [2, Lemma 1.9].

It turns out that for well behaved sequences, these notions of size
are all equivalent for FS(〈xn〉∞n=1).

Theorem 1.7. Let 〈xn〉∞n=1 be a sequence in N such that for each
n, xn+1 >

∑n
t=1 xt. The following statements are equivalent.

(a) FS(〈xn〉∞n=1) is piecewise syndetic.
(b) For all m ∈ N, FS(〈xn〉∞n=m) is piecewise syndetic.
(c) FS(〈xn〉∞n=1) is syndetic.
(d) For all m ∈ N, FS(〈xn〉∞n=m) is syndetic.
(e) FS(〈xn〉∞n=1) is central.
(f) For all m ∈ N, FS(〈xn〉∞n=m) is central.
(g) The set {xn+1 −

∑n
t=1 xt : n ∈ N} is bounded.

Proof. [1, Corollary 4.2].
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There are other notions of size which do not join the above
list of equivalences. These involve various notions of density. Of
course the ordinary density of a set A ⊆ N is simply d(A) =

lim
n→∞

|A∩ {1, 2, . . . , n}|
n

, provided that limit exists. The ordinary
upper and lower density are defined respectively by

d(A) = lim sup
n→∞

|A ∩ {1, 2, . . . , n}|
n

d(A) = lim inf
n→∞

|A ∩ {1, 2, . . ., n}|
n

.

Then d(A) exists if and only if d(A) and d(A) exist and are equal.
Closely related to the notion of piecewise syndeticity is that of

upper Banach density. (The terminology is due to Furstenberg.
The notion was actually introduced by Polya in [8].)

Definition 1.8. Let A ⊆ N. Then

d∗(A)= sup
{
α : for all n ∈ N there exist m, x ∈ N such that m≥n

and
|A∩ {x + 1, x + 2, . . . , x + m}|

m
≥ α

}
.

The notion of Banach density determines an ideal of βN.

Definition 1.9. ∆∗ = {p ∈ βN : for all A ∈ p , d∗(A) > 0}.

It is easy to see that ∆∗ is a closed two sided ideal of (βN, +),
and consequently contains c`K(βN). The content of the following
theorem is that, in one sense ∆∗ is not much bigger than c`K(βN),
since p ∈ c`K(βN) if and only if each member of p is piecewise
syndetic.

Theorem 1.10. Let A ⊆ βN.

(a) If A is piecewise syndetic, then there is some b ∈ N such
that d∗

(⋃b
t=1(−t + A)

)
= 1.

(b) If d∗(A) > 0, then for each ε > 0, there is some b ∈ N such
that d∗

(⋃b
t=1(−t + A)

)
> 1 − ε.

Proof. (a) Pick b such that
⋃b

t=1(−t + A) is thick.
(b) [5, Theorem 3.8].
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In this paper we show that for each ε > 0, there is a sequence
〈xn〉∞n=1 in N such that

(1) for each n ∈ N, xn+1 >
∑n

t=1 xt,
(2) {xn+1 −

∑n
t=1 xt : n ∈ N} is unbounded, and

(3) 1 > d∗
(⋃b

t=1

(
− t + FS(〈xn〉∞n=1)

))
> 1 − ε.

Then we show that as a consequence, there exist copies of K(H)
contained in ∆∗ \ c`K(βN). As we have seen in Theorem 1.3,
this says that there is substantial algebraic structure contained in
∆∗ \ c`K(βN).

2. Subsemigroups contained in ∆∗ \ c`K(βN)

It follows immediately from [6, Lemma 6.27], that if 〈xn〉∞n=1 is a
sequence in N such that for all n ∈ N, xn+1 >

∑n
t=1 xt, then T =⋂∞

m=1 FS(〈xn〉∞n=m) is algebraically and topologically isomorphic to
H.

Theorem 2.1. Let 〈xn〉∞n=1 be a sequence in N such that for all
n ∈ N, xn+1 >

∑n
t=1 xt, and let T =

⋂∞
m=1 FS(〈xn〉∞n=m). The

following statements are equivalent.
(a) T ∩ K(βN) 6= ∅.
(b) T ∩ c`K(βN) 6= ∅.
(c) {xn+1 −

∑n
t=1 xt : n ∈ N} is bounded.

Proof. Trivially (a) implies (b). To see that (b) implies (c), assume
that T ∩K(βN) 6= ∅. Then, in particular FS(〈xn〉∞n=1)∩c`K(βN) 6=
∅. So, since FS(〈xn〉∞n=1) is open, FS(〈xn〉∞n=1) ∩ K(βN) 6= ∅. So
FS(〈xn〉∞n=1) is piecewise syndetic so that Theorem 1.7 applies.

(c) implies (a). By Theorem 1.7, FS(〈xn〉∞n=1) is piecewise synde-
tic, so pick a minimal left ideal L of βN such that FS(〈xn〉∞n=1)∩L 6=
∅. We shall show by induction that for all m ∈ N, FS(〈xn〉∞n=m) ∩
L 6= ∅. This holds for m = 1 by the choice of L. So let m ∈ N,
assume that FS(〈xn〉∞n=m)∩L 6= ∅, and pick p ∈ FS(〈xn〉∞n=m)∩L.
Now FS(〈xn〉∞n=m)={xm}∪FS(〈xn〉∞n=m+1)∪

(
xm+FS(〈xn〉∞n=m+1)

)
.

Since p ∈ N∗ = βN \ N, {xm} /∈ p. So either FS(〈xn〉∞n=m+1) ∈ p of
xm + FS(〈xn〉∞n=m+1) ∈ p. In the first case we are done, so assume
that xm + FS(〈xn〉∞n=m+1) ∈ p. Then FS(〈xn〉∞n=m+1) ∈ −xm + p.
Since N∗ is a left ideal of βZ by [6, Exercise 4.3.5] we have by
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[6, Lemma 1.43(c)] that L is a left ideal of βZ, and consequently,
−xm + p ∈ FS(〈xn〉∞n=m+1) ∩ L.

We thus have that {FS(〈xn〉∞n=m) ∩ L : m ∈ N} is a collection
of closed subsets of βN with the finite intersection property, which
therefore has nonempty intersection.

As a consequence of Theorem 2.1 we have that if {xn+1−
∑n

t=1 xt :
n ∈ N} is unbounded, then T ∩ c`K(βN) = ∅ and so T is a copy of
H which misses c`K(βN). We shall show in this section that much
of this structure is contained in ∆∗, and is thus close to K(βN).

While we will continue to discuss sequences in N where each
term is greater than the sum of it’s predecessors, we seek to control
the largeness of a particular FS(〈xn〉∞n=1) when the set {xn+1 −∑n

t=1 xt : n ∈ N} is not bounded. We let d ∈ N and consider
sequences 〈xn〉∞n=1 in N such that for each n ∈ N, xn+1 =

∑n
t=1 xt +⌊n+(d−1)

d

⌋
. For d ∈ N, the function f(n) =

⌊n+(d−1)
d

⌋
, though

unbounded, grows slowly.
We shall need the following simple lemmas, whose proofs we

omit.

Lemma 2.2. Let 〈xn〉∞n=1 be a sequence in N such that for all n ∈ N,
xn+1 >

∑n
t=1 xt and let F, G ∈ Pf (N). Then

∑
t∈F xt <

∑
t∈G xt

if and only if max(F 4 G) ∈ G.

Lemma 2.3. Let 〈xn〉∞n=1 be a sequence in N such that for all
n ∈ N, xn+1 >

∑n
t=1 xt and let F, G ∈ Pf(N). If

∑
t∈G xt =

min{
∑

t∈H xt : H ∈ Pf(N) and
∑

t∈F xt <
∑

t∈H xt}, and r =
min N \ F , then G = {r} ∪ {t ∈ F : t > r}.

In Lemma 2.4 we provide, without proof, formulas for computing
the nth term and nth partial sum of the given sequence.

Lemma 2.4. Let d ∈ N and let 〈xn〉∞n=1 be a sequence in N such
that for all n ∈ N, xn+1 =

∑n
t=1 xt +

⌊n+(d−1)
d

⌋
. For n ≥ d + 2, if

n = dk + j, where k ∈ N and j ∈ {2, 3, . . . , d + 1}, then

xn = 2j−2

(
x12dk + 2d

(
2dk − 1
2d − 1

)
+ 1
)

and
n∑

i=1

xi = 2j−1

(
x12dk + 2d

(
2dk − 1
2d − 1

)
+ 1
)
− k − 1 .
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Given F ∈ Pf(N) such that minF ≥ r, we wish to know the
number of times FS(〈xn〉∞n=r) hits {1, 2, . . . ,

∑
t∈F xt}. The next

lemma provides the answer.

Lemma 2.5. Let 〈xn〉∞n=1 be a sequence in N such that for all
n ∈ N, xn+1 >

∑n
t=1 xt. Let r ∈ N and let F ∈ Pf (N) such that

minF ≥ r. Then
∣∣∣∣∣FS(〈xn〉∞n=r)∩

{
1, 2, . . . ,

∑

t∈F

xt

}∣∣∣∣∣ =
∑

t∈F

2t−r .

Proof. We proceed by induction on |F |. Assume first that F = {l},
then

FS(〈xn〉∞n=r)∩
{
1, 2, . . . ,

∑
t∈F xt

}
={∑

t∈G xt : G = F or ∅ 6= G ⊆ {r, r + 1, . . . , l− 1}
}

so
∣∣FS(〈xn〉∞n=r) ∩

{
1, 2, . . . ,

∑
t∈F xt

}∣∣ = 2l−r .
Let m ∈ N and assume that the result is true for all F with

|F | = m. Let F ∈ Pf (N) such that minF ≥ r and |F | = m+1. Let
l = minF and let H = F \ {l}. Let A = {G ∈ Pf(N) : min G ≥ r
and

∑
t∈H xt <

∑
t∈G xt ≤

∑
t∈F xt} and let B =

{F} ∪
{
H ∪ K : ∅ 6= K ⊆ {r, r + 1, . . . , l − 1}

}
.

We claim that A = B.
To see that B ⊆ A, note that directly

∑
t∈H xt <

∑
t∈F xt ≤∑

t∈F xt, so let ∅ 6= K ⊆ {r, r + 1, . . . , l − 1} and let G = H ∪ K.
Then max(G 4 F ) = l ∈ F and max(G 4 H) ∈ K ⊆ G so by
Lemma 2.2,

∑
t∈H xt <

∑
t∈G xt <

∑
t∈F xt.

To see that A ⊆ B, let G ∈ A. If
∑

t∈G xt =
∑

t∈F xt, then
G = F , so assume that

∑
t∈H xt <

∑
t∈G xt <

∑
t∈F xt. Let

k = max(H 4 G) and let m = max(F 4 G). Then k ∈ G and
m ∈ F . We claim that m ≤ l. Suppose instead that m > l. Then
m ∈ H \G so m < k. Thus k > l and k /∈ H so k /∈ F so k ∈ G\F .
This is a contradiction because k > m = max(F 4 G).

Since m ≤ l and m ∈ F , we have m = l. Thus H ⊆ G, for if
t ∈ H , then t ∈ F and t > l so t /∈ F \ G so t ∈ G. Also, given
t ∈ G, if t > l, then t /∈ G \ F so t ∈ H . Thus ∅ 6= G \ H ⊆
{r, r + 1, . . . , l − 1}. Let K = G \ H .
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Having established that A = B, we have that
∣∣∣∣∣FS(〈xn〉∞n=r)∩

{
1, 2, . . . ,

∑

t∈F

xt

}∣∣∣∣∣ =

∣∣∣∣∣FS(〈xn〉∞n=r)∩

{
1, 2, . . . ,

∑

t∈H

xt

}∣∣∣∣∣
+|B|

=
∑

t∈H

2t−r + 2l−r

=
∑

t∈F

2t−r .

We are now able to easily establish the following theorem.

Theorem 2.6. Let d ∈ N and let 〈xn〉∞n=1 be a sequence in N such
that for all n ∈ N, xn+1 =

∑n
t=1 xt +

⌊n+(d−1)
d

⌋
. Then

lim
n→∞

|FS(〈xn〉∞n=1) ∩ {1, 2, . . . , xn}|
xn

= lim
n→∞

2n−1

xn
=

2(2d − 1)
(2d − 1)x1 + 2d

.

In particular

d(FS(〈xn〉∞n=1)) ≥
2(2d − 1)

(2d − 1)x1 + 2d
and

d(FS(〈xn〉∞n=1)) ≤
2(2d − 1)

(2d − 1)x1 + 2d
.

Proof. The first equality holds by Lemma 2.5, where r = 1.
If n = dk + j where n ∈ N and j ∈ {2, 3, . . . , d + 1}, then by

Lemma 2.4,

|FS(〈xn〉∞n=1)∩ {1, 2, . . . , xn}|
xn

=
2dk+j−1

2(j−2)
(
x12dk + 2d

(
2dk−1
2d−1

)
+ 1
)

=
2(2d − 1)

x1(2d − 1) + 2d − 2−dk
.

Therefore

lim
n→∞

|FS(〈xn〉∞n=1) ∩ {1, 2, . . . , xn}|
xn

= lim
k→∞

2(2d − 1)
x1(2d − 1) + 2d − 2−dk

=
2(2d − 1)

(2d − 1)x1 + 2d
.
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The “in particular” follows immediately from the fact that for
any A ∈ N and subsequence 〈xn〉∞n=1 of N, if limn→∞

|A∩{1,2,...,xn}|
xn

exists, then

d(A) ≤ lim
n→∞

|A ∩ {1, 2, . . . , xn}|
xn

≤ d(A) .

We now begin a sequence of lemmas designed to establish that
FS(〈xn〉∞n=1) has an actual density – that is that

lim
m→∞

|FS(〈xn〉∞n=1) ∩ {1, 2, . . . , m}|
m

exists.

Lemma 2.7. Let d ∈ N and let 〈xn〉∞n=1 be a sequence in N such
that for all n ∈ N, xn+1 =

∑n
t=1 xt +

⌊n+(d−1)
d

⌋
. If n ∈ N and

n ≥ 2, then xn+1 ≥ 2xn.

Proof. If n ∈ {2, 3, . . . , d}, then xn = 2n−2x1 + 2n−2 and xn+1 =
2n−1x1+2n−1. Also xd+1 = 2d−1x1+2d−1 and xd+2 = 2dx1+2d+1.

If k ∈ N, j ∈ {2, 3, . . . , d} and n = kd + j one has directly by
Lemma 2.4 that xn+1 = 2xn. Finally, if n = kd + d + 1, then by
Lemma 2.4,

xn = x12kd+d−1 +
2dk+2d−1 − 2d−1

2d − 1
and

xn+1 = x12kd+d +
2dk+2d − 2d

2d − 1
+ 1

= 2xn + 1 .

Lemma 2.8. Let d ∈ N and let 〈xn〉∞n=1 be a sequence in N such
that for all n ∈ N, xn+1 =

∑n
t=1 xt +

⌊n+(d−1)
d

⌋
. If k, r ∈ N and

k ≥ r, then k+1
xk

≤ r+1
xr

.

Proof. For this it suffices to observe that for any n ∈ N, n+2
xn+1

≤
n+2
2xn

< n+1
xn

.

Lemma 2.9. Let d ∈ N and let 〈xn〉∞n=1 be a sequence in N such
that for all n ∈ N, xn+1 =

∑n
t=1 xt +

⌊n+(d−1)
d

⌋
. If m ∈ N, m ≥ 2,

F ∈ Pf(N), and min F ≥ m, then xm
∑

t∈F 2t−1 ≤ 2m−1
∑

t∈F xt.
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Proof. We proceed by induction on the cardinality of F . Let m ∈ N
with m ≥ 2 and let F = {s}. We prove by induction on s that if
s ≥ m, then xm2s−1 ≤ 2m−1xs. Grounding the proof by induction,
for s = m, xm2m−1 ≤ 2m−1xm. Assume for s ≥ m that xm2s−1 ≤
2m−1xs. By Lemma 2.7, xs ≥ 2xs. Therefore,

2m−1xs+1 ≥ 2 · 2m−1xs

≥ 2xm2s−1

= xm2s .

Returning to the inductive proof on the cardinality of F , as-
sume that r ∈ N and whenever |F | = r and min F ≥ m, one
has xm

∑
t∈F 2t−1 ≤ 2m−1

∑
t∈F xt. Let |F | = r + 1 such that

minF ≥ m, let n = minF , and let G = F \ {n}. Then |G| = r.
Since min F ≥ m, minG > m. From the inductive hypothesis,
xm
∑

t∈G 2t−1 ≤ 2m−1
∑

t∈G xt. Then

xm

(∑

t∈F

2t−1

)
= xm2n−1 + xm

∑

t∈G

2t−1

≤ xn2m−1 + 2m−1
∑

t∈G

xt

= 2m−1

(∑

t∈G

xt + xn

)

= 2m−1
∑

t∈F

xt .

Lemma 2.10. Let d ∈ N and let 〈xn〉∞n=1 be a sequence in N such
that for all n ∈ N, xn+1 =

∑n
t=1 xt +

⌊n+(d−1)
d

⌋
. If k ∈ N, k ≥ 2,

F ∈ Pf(N), and maxF = k, then xk

∑
t∈F 2t−1 ≥ 2k−1

∑
t∈F xt.

Proof. We proceed by induction on |F |. To ground the induction
we establish by induction on k the stronger statement that if s ≤ k,
then xk2s−1 ≥ 2k−1xs. This is trivially true if s = k. If xk2s−1 ≥
2k−1xs, then xk+12s−1 ≥ 2xk2s−1 ≥ 2kxs, where the first inequality
holds by Lemma 2.7.
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Now let r ∈ N and assume the conclusion holds for all F with
|F | = r. Let F ∈ Pf(N) with |F | = r+1 be given, let l = minF , and
let G = F \{l}. Then by assumption xk

∑
t∈G 2t−1 ≥ 2k−1

∑
t∈G xt.

Thus

xk

∑

t∈F

2t−1 = xk

(
2l−1 +

∑

t∈G

2t−1

)

≥ 2k−1xl +
∑

t∈G

xt

= 2k−1
∑

t∈F

xt .

Given m ∈ N and
∑

n∈G xn ∈ FS(〈xn〉∞n=m), the next two lem-
mas provide constructions for the immediate successor and prede-
cessor, respectively, of

∑
n∈G xn.

Lemma 2.11. Let 〈xn〉∞n=1 be a sequence in N such that for all
n ∈ N, xn+1 >

∑n
t=1 xt. Let m ∈ N and let H ∈ Pf(N) with

minH ≥ m. If G ∈ Pf(N), minG ≥ m,

∑

n∈G

xn = min

{∑

n∈F

xn : F ∈ Pf (N), minF ≥ m, and
∑

n∈F

xn >
∑

n∈H

xn

}
,

and s = min{t ∈ N \ H : t ≥ m}, then G = {s} ∪ {t ∈ H : t > s}.

Proof. For each n ∈ N, let yn = xm+n−1. Let H ′ = H − m + 1,
where H ′ = H −m + 1 = {t−m+ 1 : t ∈ H}. Let G′ = G−m + 1.
Then

∑
t∈H ′ yt =

∑
t∈H xt and

∑
t∈G′ yt = min{a ∈ FS(〈yn〉∞n=1) :

a >
∑

t∈H ′ yt}. Let r = min(N\H ′). Then by Lemma 2.3, G′ =
{r}∪{t ∈ H ′ : t > r}. Then G = G′+m−1 = {s}∪{t ∈ H : t > s}.

Lemma 2.12. Let 〈xn〉∞n=1 be a sequence in N such that for all
n ∈ N, xn+1 >

∑n
t=1 xt. Let m ∈ N and let L ∈ Pf(N) with

minL ≥ m and L 6= {m}. If K ∈ Pf (N), minK ≥ m,

∑

n∈K

xn = max

{∑

n∈F

xn : F ∈ Pf (N) , min F ≥ m, and
∑

n∈F

xn <
∑

n∈L

xn

}
,

and l = minL, then K = (L\{l})∪ {t ∈ N : m ≤ t < l}.
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Proof. Note that
∑

n∈L

xn = min

{∑

n∈F

xn : F ∈ Pf (N), minF ≥ m, and
∑

n∈F

xn >
∑

n∈K

xn

}
,

Let s = min{t ∈ N \ K : t ≥ m}. Then by Lemma 2.11, L =
{s} ∪ {t ∈ K : t > s}. Therefore,

l = minL = s = min{t ∈ N \ K : t ≥ m})
and so it can easily be verified that

K = (L\{l})∪ {t ∈ N : m ≤ t < l}.

The notations F (m, y) and G(m, y) defined below do not reflect
the fact that they also depend on the sequence 〈xn〉∞n=1.

Definition 2.13. Let 〈xn〉∞n=1 be a sequence in N such that for all
n ∈ N, xn+1 >

∑n
t=1 xt. Let m ∈ N and let y ∈ N such that xm < y.

Then F (m, y) and G(m, y) are finite nonempty subsets of N such
that min F (m, y) ≥ m, minG(m, y) ≥ m, and

∑

n∈F (m,y)

xn =min

{∑

n∈F

xn : F ∈ Pf (N) , minF ≥ m, and y ≤
∑

n∈F

xn

}

and

∑

n∈G(m,y)

xn =max

{∑

n∈F

xn : F ∈ Pf (N) , min F ≥ m, and
∑

n∈F

xn < y

}
.

We omit the routine proof of the following lemma.

Lemma 2.14. Let d ∈ N and let 〈xn〉∞n=1 be a sequence in N such
that for all n ∈ N, xn+1 =

∑n
t=1 xt +

⌊n+(d−1)
d

⌋
. Let m ∈ N with

m ≥ 2. Then

lim
y→∞

∑
n∈G(m,y) xn

y
= lim

y→∞

∑
n∈F (m,y) xn

y
= 1 .

We are now able to establish that the asymptotic densities of the
finite sums from our sequences exist.

Theorem 2.15. Let d, r ∈ N and let 〈xn〉∞n=1 be a sequence in N
such that for all n ∈ N, xn+1 =

∑n
t=1 xt + bn+(d−1)

d c. Then

d
(
FS(〈xn〉∞n=r)

)
=

(2d − 1)22−r

(2d − 1)x1 + 2d
.
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Proof. Let α =
(2d − 1)22−r

(2d − 1)x1 + 2d
. Let ε > 0 be given such that

ε < α. Since lim
m→∞

2m−r

xm
= α by Theorem 2.6, pick m ∈ N such

that m > r and for all k ≥ m,
∣∣∣∣
2k−r

xk
− α

∣∣∣∣ <
ε

2
. By Lemma 2.14,

since

lim
y→∞

∑
t∈G(m,y) xt

y
= lim

y→∞

∑
t∈F (m,y) xt

y
= 1 ,

pick s ∈ N such that if y ≥ s, then

1 − ε

2α − ε
<

∑
t∈G(m,y) xt

y
<

∑
t∈F (m,y) xt

y
< 1 +

ε

2α + ε
.

Let y > max{xm, s}. Then

|FS(〈xn〉∞n=r) ∩ {1, 2, . . . , y}|
y

≤

∣∣∣FS(〈xn〉∞n=r) ∩ {1, 2, . . . ,
∑

t∈F (m,y) xt}
∣∣∣

y

=

∑
t∈F (m,y) 2t−r

y
by Lemma 2.5

=

∑
t∈F (m,y) 2t−r

∑
t∈F (m,y) xt

·
∑

t∈F (m,y) xt

y

≤ 2m−r

xm
·
∑

t∈F (m,y) xt

y
by Lemma 2.9

<
(
α +

ε

2

)(
1 +

ε

2α + ε

)

= α + ε .
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Let k = maxG(m, y). Then

|FS(〈xn〉∞n=r) ∩ {1, 2, . . . , y}|
y

≥

∣∣∣FS(〈xn〉∞n=r) ∩ {1, 2, . . . ,
∑

t∈G(m,y) xt}
∣∣∣

y

=

∑
t∈G(m,y) 2t−r

y
by Lemma 2.5

=

∑
t∈G(m,y) 2t−r

∑
t∈G(m,y) xt

·
∑

t∈G(m,y) xt

y

≥ 2k−r

xk
·
∑

t∈G(m,y) xt

y
by Lemma 2.10

>
(
α −

ε

2

)(
1 −

ε

2α − ε

)

= α − ε .

Corollary 2.16. For each ε > 0 there exists d ∈ N such that,
if x1 = 1 and for each n ∈ N, xn+1 =

∑n
t=1 xt + bn+d−1

d c, then
d(FS(〈xn〉∞n=1)) > 1 − ε.

Proof. Pick d ∈ N such that 1
2d+1−1

< ε. Then by Theorem 2.15

d
(
FS(〈xn〉∞n=1)

)
= (2d−1)2

(2d−1)+2d = 1 − 1
2d+1 .

Notice that, as a consequence of Theorem 2.1, if 〈xn〉∞n=1 is a
sequence such that for all n ∈ N, xn+1 =

∑n
t=1 +bn+(d−1)

d c and
T =

⋂∞
m=1 FS(〈xn〉∞n=m), then T ∩ c`K(βN) = ∅.

As a means to proving that T ∩ ∆∗ 6= ∅, we introduce the def-
inition of a partition regular family of sets and record a theorem
which characterizes this notion.

Definition 2.17. Let R be a nonempty set of sets. We say that R
is partition regular if and only if whenever F is a finite set of sets
and

⋃
F ∈ R, there exists A ∈ F and B ∈ R such that B ⊆ A.

Theorem 2.18. Let D be a set and let R ⊆ P(D) be nonempty and
assume that ∅ 6∈ R. Let R↑={B ∈ P(D) : A ⊆ B for some A ∈ R}.
Then R is partition regular if and only if whenever A ⊆ P(D) has
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the property that every finite nonempty subfamily of A has an in-
tersection which is in R↑, there is an ultrafilter p on D such that
A ⊆p ⊆ R↑.

Proof. [6, Theorem 3.11].

Lemma 2.19. Let R = {A ⊆ N : d∗(A) > 0}. Then R is partition
regular.

Proof. Let F be a finite set of sets such that
⋃

F ∈ R. We note
here that R = R↑. Since

⋃
F ∈ R, d∗(

⋃
F) > 0. By [6, Lemma

20.2], 0 < d∗(
⋃
F) ≤

∑
A∈F d∗(A). Therefore for some A ∈ F ,

d∗(A) > 0.

Lemma 2.20. Let d ∈ N. Let 〈xn〉∞n=1 be a sequence in N such
that for all n ∈ N, xn+1 =

∑n
t=1 xt +

⌊n+(d−1)
d

⌋
and let T =⋂∞

m=1 FS(〈xn〉∞n=m). Then T ∩ ∆∗ 6= ∅.

Proof. Let A = {FS(〈xn〉∞n=m) : m ∈ N}. Let F ∈ Pf(N). Pick r =
maxF . Then

⋂
m∈F FS(〈xn〉∞n=m) = FS(〈xn〉∞n=r). By Theorem

2.15,

d
(
FS(〈xn〉∞n=r)

)
=

(2d − 1)22−r

(2d − 1)x1 + 2d
> 0 .

Since 0<d
(
FS(〈xn〉∞n=r)

)
≤d∗

(
FS〈xn〉∞n=r

)
,
⋂

m∈F FS(〈xn〉∞n=m) ∈
R. Since R is partition regular by Lemma 2.19, we have by The-
orem 2.18 an ultrafilter p on N such that A ⊆ p ⊆ R. Therefore
p ∈ T and for all A ∈ p, d∗(A) > 0.

Recall that the semigroup H contains all of the idempotents of
βN and has substantial algebraic structure.

Theorem 2.21. Let d ∈ N. Let 〈xn〉∞n=1 be a sequence in N such
that for all n ∈ N, xn+1 =

∑n
t=1 xt +

⌊n+(d−1)
d

⌋
and let T =⋂∞

m=1 FS(〈xn〉∞n=m). Then T ∩ ∆∗ is a subsemigroup of βN which
misses K(βN) and contains a topological and algebraic copy of K(H).

Proof. By [6, Theorem 6.27] T is a subsemigroup of βN and there
exists τ : H → T which is an isomorphism and a homeomorphism.
By [6, Theorems 20.5 and 20.6] ∆∗ is an ideal of βN. By Lemma
2.20 T ∩ ∆∗ 6= ∅, so T ∩ ∆∗ is an ideal of T and thus contains
K(T ) = τ [K(H)].
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