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ABSTRACT. An action of a topological semigroup S on X is
compactifiable if this action is a restriction of a jointly contin-
uous action of S on a Hausdorff compact space Y. A topo-
logical semigroup S is compactifiable if the left action of S on
itself is compactifiable. It is well known that every Hausdorff
topological group is compactifiable. This result cannot be ex-
tended to the class of Tychonoff topological monoids. At the
same time, several natural constructions lead to compactifi-
able semigroups and actions.

We prove that the semigroup C(K,K) of all continuous
selfmaps on the Hilbert cube K = [0,1]* is a universal sec-
ond countable compactifiable semigroup (semigroup version
of Uspenskij’s theorem). Moreover, the Hilbert cube K under
the action of C'(K, K) is universal in the realm of all compact-
ifiable S-flows X with compactifiable S where both X and S
are second countable.

We strengthen some related results of Kocak & Strauss [19]
and Ferry & Strauss [13] about Samuel compactifications of
semigroups. Some results concern compactifications with sep-
arately continuous actions, LMC-compactifications and LMC-
functions introduced by Mitchell.
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1. INTRODUCTION

A major role of semigroup actions and semigroup compactifica-
tions is now well understood. See for example the books [4, 5, 37, 1].
Very little is known however about sufficient conditions which en-
sure the existence of proper compactifications (for definitions see
Section 3) in the case of monoidal actions. This contrasts the case
of topological group actions (see for example [44, 46, 45, 48, 2, 30,
25, 24, 26, 29, 35, 31]).

A semigroup action S x X — X, or, a flow (S, X), is compact-
ifiable if there exists a proper S-compactification X «— Y. That
is, if the original action is a restriction of a jointly continuous
action on a Hausdorff compact S-flow Y. In this article we
require that S is a topological semigroup (the multiplication is jointly
continuous). We say that a topological semigroup S is compacti-
fiable if the flow (S,S), the regular left action, is compactifiable.
Passing to the FEllis semigroup E(Y') of an S-compactification Y’
of a monoid S we see that S is compactifiable iff S has a proper
dynamical compactification in the sense of Ruppert [37] (see also the
monoidal compactification in the sense of Lawson [22]). Recall that
a dynamical compactification of S is a right topological semigroup
compactification S — T such that the associated action S xT — T
is jointly continuous (see Definition 3.3 and Proposition 3.5).

If a topological semigroup S algebraically is a group we say that
S is a paratopological group. As usual, topological group means
that in addition we require the continuity of the inverse operation.
Due to Teleman [39] every Hausdorff (equivalently: Tychonoff)
topological group is compactifiable. This classical result cannot be
extended to the class of Tychonoff topological semigroups. For
instance, the multiplicative monoid ([0, c0),-) of all nonnegative
reals is not compactifiable (see Example 6.3.2 below) and not even
LMC-compactifiable as it follows by a result of Hindman and Milnes
[17]. The latter means in fact that there is no proper S-compactifi-
cation S — Y with a separately continuous action on Y. LMC is an
abbreviation of Left Multiplicatively Continuous. LMC-compactifi-
cations and LMC-functions for semigroups were introduced by
Mitchell, [32, 17, 4]. The case of separately continuous compactifi-
cations is parallel to the theory of right topological semigroup com-
pactifications and generalized LMC-functions (see Definition 3.13).
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This direction is linked to Banach representations of semigroups
and actions (in the sense of [28]) and to corresponding generalized
matrix coefficients.

One of our aims in the present paper is to study the similarities
and differences in the theory of flow compactifications when we
pass from groups to semigroups. We emphasize the limitations
providing several noncompactifiable semigroups and actions with
“good topological properties” (contrasting the case of topological
groups).

The classical Gelfand-Naimark 1-1 correspondence between
Banach subalgebras of C'(X) and the compactifications of X can be
extended to the category of S-flows describing jointly continuous
S-compactifications by subalgebras of the algebra RUCg(X) of all
right uniformly continuous functionson X (see Definition 3.9). This
theory is well known for topological group actions (see, for example,
J. de Vries [45]). One can easily extend it to the case of topological
semigroup actions. Some results in this direction can be found in
the work of Ball and Hagler [6]. For instance the authors gave an
example of a second countable noncompactifiable monoid S.

We establish some sufficient and necessary conditions in terms
of uniform structures. In particular, we strengthen two results of
Kocak and Strauss [19] and also a result of Ferry and Strauss [13]
(see Corollary 4.12 and Remark 4.16.1). These results provide an
additional information about points of joint continuity of semigroup
actions. Note that this direction is an object of a quite intensive
investigation (see for example [11, 16, 15, 21, 20, 37, 40] and the
references therein).

The topological monoid C(K, K) of all continuous self-maps en-
dowed with the compact open topology is compactifiable. If E is
a normed space then the monoid (O(F),norm) of all contractive
linear self-operators £ — FE is compactifiable endowed with the
norm topology. It is not true with respect to the strong operator
topology 75 on O(FE). However, its topological opposite semigroup
(O(F)°P, 14) is always compactifiable (Corollary 4.15).

A paratopological group G is compactifiable iff G is a topological
group. It follows in particular, that the Sorgenfrey Line, as an
additive monoid, is not compactifiable.
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One of our main results states that the semigroup U := C'(I*, I¥)
is a universal second countable compactifiable semigroup. It is a
semigroup version of Uspenskij’s theorem [41] about the universal-
ity of the group Homeo (I¥). Moreover, strengthening a result of
[26], we establish that the action of U on I“ is universal in the
realm of compactifiable S-flows X (with compactifiable S) where
X and S both are separable and metrizable.

The present paper influenced especially by [13, 19, 34, 41].

2. SEMIGROUP ACTIONS: NATURAL EXAMPLES AND
REPRESENTATIONS

Let w: P x X — Z be amap. For pg € P and zy € X define left
and right translations by

Apo 0 X = Z, x> 7(po, )

and
p:E():P_)Zv pt—>7T(p,:E0)

respectively. The map 7 is left (right) continuous if every left (right)
translation is continuous. Note that some authors define ‘left con-
tinuity’ as our ‘right continuity’ and vice versa.

Lemma 2.1. Let 7 : P x X — Z be a right continuous map, P’
and X' be dense subsets of P and X respectively. Assume that
the map Ay : X — Z is continuous for every p' € P' and Z is a
reqular space. Then if P x X' — Z is continuous at (p',x") then
m: P x X — Z is continuous at (p', x').

Proof. Let O be a neighborhood of 7(p'z’) in Z. Since Z is regular
one can choose a neighborhood U of 7(p/x’) such that ¢l(U) C O.
Now by continuity of 7’ at (p’, z’) choose the neighborhoods V' of p/
in P and W of 2/ in X’ s.t. ©/(t,y) € U for every (t,y) € V x W.
Now 7(p,z) € cl(U) C O for every p € cl(V) and = € cl(W).
Indeed choose two nets a; € V and b; € W s.t. lim;a; = p in P
and lim; b; = z in X.

Since a; € P’ the map A, is continuous for every i. We have
lim; 7(a;, bj) = m(a;, x) € cl(U) for every i. Now by right continuity
of m we obtain lim; 7(a;, ) = 7(p, z) € cl(U). This implies the con-
tinuity of 7 at (p/, 2’) because ¢l(V) and cl(W) are neighborhoods
of p’ and z’ in P and X respectively. O
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A topologized semigroup S is: (a) left (right) topological; (b)
semitopological; (c) topological if the multiplication function
S xS — S is left (right) continuous, separately continuous, or
jointly continuous, respectively.

A topological (left) S-flow (or an S-space) is a triple (S, X, )
where 7 : S x X — X is a jointly continuous left action of a
topological semigroup S on a topological space X ; we write it also
as a pair (S, X), or simply, X (when 7 and S are understood). As
usual we write sz instead of 7 (s, x) = §(x) = Z(s). “Action” means
that always s1(se2x) = (s182)x. Every x € X defines the orbit map
T:85 — X, s+— sz. Every s € S gives rise to the s-translation
$: X — X, z— sz. The action is monoidal if S is a monoid and
the identity e of S acts as the identity transformation of X.

If the action S x X — X is separately continuous (that is, all
orbit maps Z and all translations § : X — X are continuous) then
we say that X (or, (S, X)) is a semitopological S-flow.

A right flow (X, S) can be defined analogously. If S° is the
opposite semigroup of S with the same topology then (X, S) can be
treated as a left flow (S, X) (and vice versa).

Let h : S — Sy be a semigroup homomorphism, S; act on X;
and Sy on Xo. A map a : X7 — Xo is said to be h-equivariant if
a(sz) = h(s)a(x) for every (s,z) € S; x X;. Sometimes we say
that the pair (h,«) is equivariant. For S; = So with h = idg,
we say: S-map. The map h : S1 — Sy is a co-homomorphism iff
S1 — S9P.s +— h(s) is a homomorphism. We say that (h,«a) is
proper if a is a topological embedding.

Let i be a uniform structure on a set X. We assume that it is
separated. Then the induced topology top(u) on X is Tychonoff. A
uniformity p on a topological space (X, 7) is said to be compatible
if top(u) = 7. “Compact” will mean compact and Hausdorff.

Recall some natural ways getting topological monoids and monoidal
actions.

Let V be a normed space. The closed unit ball of V' we denote
by By . The weak star compact unit ball By« in the dual space V*
will be sometimes denoted by B*.

Examples 2.2. (1) Let Unif(Y,Y) be the set of all uniform
self-maps of a uniform space (Y, pt). Denote by pisyp the uni-
formity of uniform convergence on Unif(Y,Y’). Then under
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the corresponding topology top(jtsup) on Unif(Y,Y) and the
usual composition we get a topological monoid. For every
subsemigroup S C Unif(Y,Y) the induced action SxY — Y
defines a topological flow.

For every compact space Y the semigroup C(Y,Y’) endowed
with the compact open topology is a topological monoid.
It is a particular case of (1). Note also that the subset
Homeo (Y) in C(Y,Y) of all homeomorphisms ¥ — Y is a
topological group.

For every metric space (M,d) the semigroup O(M,d) of
all d-contractive maps f : X — X (that is, d(f(z), f(y)) <
d(z,y)) is a topological monoid with respect to the topology
of pointwise convergence. Furthermore, the evaluation map
O(M,d) x M — M is a jointly continuous monoidal action.
For every normed space (V,||-||) the semigroup ©(V) of
all contractive linear operators V' — V endowed with the
strong operator topology (being a topological submonoid of
O(V,d) where d(z,y) := ||z — y||) is a topological monoid.
The subspace Is(V') of all linear onto isometries is a topo-
logical group.

For every normed space V and a subsemigroup S C ©(V')P
the induced action S x B* — B* on the compact space B*
is jointly continuous.

Every normed algebra A treated as a multiplicative monoid
is a topological monoid. The subset B4 is a topological
submonoid. In particular, for every normed space V the
monoids L(V) and Bpyy of all bounded and, respectively,
of all contractive linear operators V' — V are topological
monoids endowed with the norm topology. Observe that
By and ©(V) algebraically are the same monoids.

We omit the straightforward arguments.

An action S x X — X on a metric space (X, d) is contractive if
every s-translation §: X — X lies in O(X,d). It defines a natural
homomorphism h : S — O(X,d).

Remark 2.3. (1) Ifan action of S on (X, d) is contractive then it

is easy to show that the following conditions are equivalent:
(i) The action is jointly continuous.
(ii) The action is separately continuous.
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(iii) The restriction S x Y — X to some dense subspace Y
of X is separately continuous.
(iv) The natural homomorphism h : S — O(X,d) is con-
tinuous.
(2)If j : V — V is the completion of a normed space V
then we have the following canonical equivariant inclusion
of monoidal actions

(O(V),V) = (6(V), V).

The Banach algebra of all continuous real valued bounded
functions on a topological space X will be denoted by C(X).
Every left action 7 : S x X — X induces the co-homomorphism
hy : S — C(X) and the right action C(X) x S — C(X) where
(fs)(x) = f(sx). While the translations are continuous, the orbit
maps f : S — C(X) are not necessarily norm (even weakly) con-
tinuous and require additional assumptions for their continuity (see
Definition 3.9).

For every normed space V' the usual adjoint map
adj : L(V) — L(V"), ¢ ¢"

is an injective co-homomorphism of monoids.
The following two simple lemmas are very useful. For some
closely related results see [41], [1, Chapter 5] and [28, Fact 2.2].

Lemma 2.4. For every normed space V the injective map
v:0(V)? — C(B", BY)

induced by the adjoint map adj : L(V) — L(V*), is a topological
(even uniform) monoid embedding. In particular,

O(V)? x B* — B*

is a jointly continuous monoidal action of ©(V)P on the compact
space B*.

Proof. The strong uniformity on ©(V) is generated by the fam-
ily of pseudometrics {p, : v € V}, where p,(s,t) = ||sv — tv]|.
On the other hand the family of pseudometrics {q, : v € V},
where g, (s,t) = sup{|(fs)(v) — (ft)(v)| : f € B*} generates the
natural uniformity inherited from C(B*, B*). Now observe that
pu(8,t) = qu(s,t) by the Hahn-Banach theorem. This proves that
~ is a uniform (and hence, also, topological) embedding. O
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Lemma 2.5. Let'V be a Banach space. Suppose thatm : VxS —V
s a Tight action of a topologized semigroup S by linear contractive
operators. The following are equivalent:
(i) The co-homomorphism h : S — O(V), h(s)(v) := vs is
strongly continuous.
(ii) The induced affine action S x B* — B*, (s1)(v) := ¢ (vs)
on the weak star compact ball B* is jointly continuous.

Proof. (i) = (ii): Let h : S — O(V) be a strongly continuous
co-homomorphism. Then by Lemma 2.4 the composition y o h :
S — C(B*,B") is a continuous homomorphism. This yields (ii)
(see Example 2.2.2).

(i) <= (ii): Since the action S x B* — B* is continuous and B*
is compact the homomorphism S — C(B*, B*), s+ § = y(h(s)) is
continuous. Again by Lemma 2.4 we get that the co-homomorphism
h:S — ©(V) is strongly continuous. O

Definition 2.6. (1) [28, Definition 3.1] A (continuous) rep-
resentation of a flow (S,X) on a normed space V is an
equivariant pair

(h,a): (S, X)= (6(V)?,B")

where o : X — B* is weak™ continuous and h : S — O(V)
is a (resp.: strongly continuous) homomorphism.

(2) A representation of (S, X) on a uniform space (Y, p) is an
equivariant pair

(h,a) : (S, X) = (Unif(Y,Y),Y)

where h : S — Unif(Y,Y) is a continuous homomorphism
and o : X — (Y, top(n)) is a continuous map (cf. Definition
4.2.3).

Definition 2.7. (1) Let S x X — X be a semigroup action. A
uniformity g on X is equicontinuous if for every € € p and
any zg € X there exists a neighborhood O of zg such that
(sx, szq) € € for every x € O and every s € S. If there exists
d € p such that (sx,sy) € € holds for every pair z,y € ¢
then as usual we say that p is uniformly equicontinuous. In
the case of right actions the definitions are similar.

(2) A pseudometric d on a semigroup S is right contractive if
d(zs,ys) < d(x,y) for every z,y,s € S.
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(3) A uniform structure p on a semigroup S is right invariant
(see also [13, p. 98] and Lemma 2.8) if for every ¢ € p
there exists 0 € p such that § C € and (sz,tz) € ¢ for every
(s,t)€ed,z€S.

Lemma 2.8. Let y be a compatible uniform structure on a topo-
logical semigroup S. The following conditions are equivalent:

(1) p can be generated by a family of right contractive pseudo-
metrics.

(2) w is right invariant on S.

(3) The right action of S on itself is p-uniformly equicontinu-
ous (that is, for every e € p there exists & € p such that
(sx,tx) € € for every (s,t) €4, z € 5).

Proof. The implications (1) = (2) and (2) = (3) are trivial.

(3) = (1): Assume that the right action of S on itself is
p-uniformly equicontinuous. Choose a family {d;};c; of pseudo-
metrics on S which generates the uniformity u. For every i € [
define

d; (z,y) := max{sup d;(zs,ys), di(z,y)}

seS
Then the new system {d};cs consists by right contractive pseudo-
metrics and still generates the same uniformity p. O

Example 2.9. (1) For every topological group G the right uni-
formity R(G) of G is the unique right invariant compatible
uniformity on G, [36, Lemma 2.2.1].

(2) Let (X, p) be a uniform space and ps,p be the correspond-
ing natural uniformity on Unif(X, X). Assume that S is a
subsemigroup of Unif(X, X'). Then the subspace uniformity
Hsup|s on S is right invariant.

The following proposition is an equivariant version of the well
known Arens-Eells embedding construction [3].

Proposition 2.10. Let S x X — X be a continuous contractive
action of a semigroup S on a bounded metric space (X,d). Then
there exists a normed (equivalently: Banach) space E and an equi-
variant pair

(h,a): (S, X) = (6(FE), E)
such that h : S — O(E) is a strongly continuous homomorphism
and o : X — FE is an isometric embedding.
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Proof. By Remark 2.3 it suffices to give a proof for normed F.
Since the metric is bounded we can suppose that X contains a
fixed point z (adjoining if necessary a fixed point z and defining
d(z,z) = diam(X,d) < oo for every x € X). We can use the
Arens-Fells isometric embedding

i: X —>AX), z—z—2

(see [3]) of a pointed metric space (X, z,d) into a normed space
(A(X), ]| - 1])- The elements of A(X) are the formal sums of the
form 37 ¢i(z; — y;), where z;,y; € X and ¢; € R. Define the
natural left action

S xAX) — AX), SZCZ'(:EZ' — ;) = Z ci(sx; — sy;).
i=1

i=1

The desired norm on A(X) is defined by setting
[lul| :=inf > Jesld (i, vi)
i=1

where we compute the infimum with respect to all the presentations
of u € A(X) as the sums v = >, ¢;(z; — y;) with @, 4, € X.
This explicit description shows that ||su|| < ||u|| for every s € S
because d(sz;, sy;) < d(z;,y;). Therefore the action Sx X — X can
be extended to the canonically defined action S x A(X) — A(X)
by contractive linear operators. Moreover it is clear that every
orbit mapping S — A(X), s — su is continuous for every u €
A(X). Thus we get a continuous homomorphism A : S — O(A(X)).
Moreover, since i : X — A(X) is an isometric embedding it follows
that E := A(X) is the desired normed space. O

Remark 2.11. (1) This result in fact is known; (at least for
group actions) it can be derived from results of Pestov [33].

In the construction Arens-Eells space can be replaced by

Free Banach spaces, as in above mentioned work of Pestov.

(2) Proposition 2.10 provides only a sufficient condition for lin-
earizability of contractive actions because we assume that

the metric space (X, d) is bounded (which certainly is not

a necessary condition). The same restriction, as to our
knowledge, appears in each previous form of equivariant
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Arens-Eells embedding (see e.g. [33]). An elegant neces-
sary and sufficient condition has been recently found by
Schroder [38]. Specifically, he shows that the contractive
(nonexpansive, in other terminology) S-action on (X, d) is
linearizable if and only if all orbits Sz (z € X ) are bounded.

3. S-COMPACTIFICATIONS AND FUNCTIONS

Here we discuss how the classical Gelfand-Naimark 1-1 corre-
spondence between Banach subalgebras of C'(X) and the compact-
ifications of X can be extended to the category of S-flows. This
theory is well known for topological group actions (see, for exam-
ple, J. de Vries [44, 45]). One can easily extend it to the case
of semigroup actions (Ball and Hagler [6]). Separately continuous
compactifications are closely related to the theory of right topolog-
ical compactifications and LMC-functions (see Definition 3.13).

First we briefly recall some classical facts about compactifica-
tions. A compactification of X is a pair (Y, v) where Y is a compact
(Hausdorff) space and v is a continuous map with a dense range.
If v is a topological embedding then the compactification is said to
be proper.

Due to the Gelfand-Naimark theory there is a 1-1 correspon-
dence (up to the equivalence classes of compactifications) between
Banach wnital (that is, the containing the constants) subalgebras
A C C(X) and the compactifications v : X — Y of X. Any
Banach unital S-subalgebra A of C'(X), induces the canonical A-
compactification oy : X — XA, where X is the Gelfand space (or,
the spectrum — the set MM (A) of all multiplicative means [5]) of
the algebra A (see also Definition 2.6.1). The map a4 : X — X#is
defined by the Gelfand transform, the evaluation at x multiplicative
functional, aq(z)(f) := f(z). Conversely, every compactification
v : X — Y is equivalent to the canonical A, -compactification
oy, - X — X Av where the algebra A, is defined as the image
Ju(C(Y)) of the embedding j, : C(Y) — C(X), ¢ +— ¢ow.

Remark 3.1. If 11 : X — Y7 and 1n : X — Y5 are two compactifica-
tions then vy dominates vy, that is, 11 = g o 15 for some (uniquely
defined) continuous map ¢ : Yo — Y7 iff A,, C A,,. Moreover, if in
addition, 11 and 1» are S-equivariant maps and all s-translations
on X, Y7 and Y5 are continuous then ¢ is also S-equivariant.
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Definition 3.2. Let X be an S-flow.

(1)

(2)

A semitopological S-compactification of X is a continuous
S-map a : X — Y with a dense range into a compact
semitopological S-flow Y.

Let M C S. We say that a semitopological S-compactifi-
cation o : X — Y is M-topological if the action S XY — Y
is continuous at every (m,y) € M x Y. If M = S then we
say topological S-compactification.

A flow (S, X) is said to be compactifiable (semi-compactifi-
able) if there exists a proper topological (resp.: semitopo-
logical) S-compactification X <— Y. A topological semi-
group S is compactifiable (semi-compactifiable) if the flow
(S,S), left regular action, is compactifiable (resp.: semi-
compactifiable).

Definition 3.3. Let S be a topological semigroup.

(1)

[5] A right topological semigroup compactification of S is a
pair (T',7) such that T is a compact right topological semi-
group, and <y is a continuous homomorphism from
S into T, where v(S) is dense in 7" and the translation
As : T — T, x — ~(s)r is continuous for every s € S.
It follows that the associated action (the associated flow in
22])

Ty SxT =T, (s,x)— y(s)x = As(x)

is separately continuous. Moreover, a map v : S — T is
a semigroup compactification iff v is a semitopological S-
compactification of the S-flow S such that at the same time
~ is a homomorphism of semigroups.

A dynamical right topological semigroup compactification of
S in the sense of Ruppert [37] (see also monoidal com-
pactification of Lawson [22]) is a right topological semi-
group compactification (7, ) such that « is a topological
S-compactification. That is, the action 7, : § x T' — T is
jointly continuous.

Evidently every semi-compactifiable flow, as a space, must be
Tychonoff.
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Definition 3.4. (1) The enveloping (or Ellis) semigroup E(X)
= E(S, X) of the semitopological compact flow (S, X) is
defined as the closure in X* (with its compact, pointwise
convergence topology) of the set S = {§ : X - X}ses
considered as a subset of X*. With the operation of com-
position of maps this is a right topological semigroup.

(2) The associated homomorphism j : S — E(X), s +— §
is a right topological semigroup compactification of S.
More generally, for every semitopological S-flow X and a
semitopological S-compactification o : X — Y we have
the induced right topological semigroup compactification
Ja 1S — E(Y) such that the pair

(Jar @) (5, X) = (E(Y),Y)

is equivariant. The associated action 7; : SxE(Y) — E(Y)
is separately continuous. Furthermore, if Y is a topological
S-flow then 7; is jointly continuous.

Proposition 3.5. Let S be a topological semigroup.

(1) S is compactifiable if and only if S has a proper dynamical
compactification.

(2) S is semicompactifiable if and only if it admits a proper
right topological semigroup compactification.

Proof. (2): Let v :S — T be a proper right topological semigroup
compactification of S. The associated action 7, : S x T — T
is separately continuous. Hence 7 is a semitopological (proper)
compactification of S.

Conversely, let a.: S —Y be a semitopological S-compactification
of S (acting on itself by left translations). We can pass, as in
Definition 3.4, to the right topological semigroup compactification
Ja S — E(Y). We can suppose without restriction of generality
that S is a topological monoid (adjoining to S an isolated identity
es if necessary as in Remark 3.11.1) and j,(es) = idy. Then we
have the continuous map é : E(Y) — Y, p — p(a(e)) such that
€0 j, = a. It follows that if « is a proper compactification then j,
is also proper.

(1): This is similar. Observe that 7; is jointly continuous if « is
a topological S-compactification. O
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Remark 3.6. (1) For many natural monoids a separately con-
tinuous monoidal action 7 : .S X Y — Y on arbitrary com-
pact space Y is continuous at every (e,y) € {e} x Y. By a
result of Lawson [20, Corollary 5] this happens for instance
if S is a Namioka space (see also [21, 16] and [5, Theorem
1.4.2]). Every Cech-complete (e.g., locally compact or com-
plete metrizable) space is a Namioka space. It follows that
if the monoid S is a Namioka space then every semitopo-
logical S-compactification o : X — Y is {e}-topological
(or, equivalently, H (e)-topological, where H(e) denotes the
group of all invertible elements in 5).

(2) Recall also that by a result of Dorroh [11, Theorem 2.2]
every separately continuous monoid action of the one-para-
meter additive monoid ([0,00),+) on a locally compact
space X is jointly continuous.

The following fact is well known.

Lemma 3.7. Let G be a Cech-complete (e.g., locally compact or
complete metrizable) topological group. Then v : G — T is a right
topological semigroup compactification of G if and only if v is a
dynamical compactification of G.

Proof. In Definition 3.3, (2) implies (1). The converse is true for
every topological group S the underlying space of which is Cech-
complete (by Remark 3.6.1). O

Lemma 3.8. Every continuous representation (h, «) of an S-space
X on a normed space V induces the topological S-compactification

a: X —-Y =cla(X)) CB*
where cl(a(X)) is the weak star closure of a(X) in B*.

Proof. Indeed, by Lemma 2.4 the action S x B* — B* is continu-
ous. In particular, the restricted action S x Y — Y is continuous,
too. O

The following definition is well known (under different names and
sometimes replacing “right” by “left”) for topological group actions
[45, 46] and for semigroups [18, 5, 12, 37, 6].
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Definition 3.9. Let 7 : S x X — X be a given action. A bounded
function f € C(X) is said to be right uniformly continuous if the
orbit map f : S — C(X) is continuous. Or, equivalently, for every
so € S and ¢ > 0 there exists a neighborhood U of sy such that
|f(sx) — f(sox)| < € for every (s,z) € U x X.

For every S-flow X denote by RUCg(X), or, by RUC(X) (where
S is understood) the set of all functions on X that are right uni-
formly continuous. The set RUCg(X) is an S-invariant Banach
unital subalgebra of C(X). If X is a compact S-space then the
standard compactness arguments show that C(X) = RUCg(X). If
X = § with the left regular action of .S on itself by left translations,
then we simply write RUC(.S). If S = G is a topological group, then
RUC(G) is the set of all usual right uniformly continuous functions
on G.

Let gy : X — X be the canonical A-compactification of X.
If the Banach unital subalgebra A C C(X) is S-invariant (that is,
the function (fs)(z) := f(sz) lies in A for every s € S) then the
spectrum X# ¢ A* admits the natural adjoint action S x X4 —
X4 such that all translations § : X4 — X4 are continuous and
ay: X — XA is S-equivariant. We get a representation

(h, aa) = (5, X) = (6(A), BY)

on the Banach space A, where h(s)(f) := fs and aq(x)(f) =
f(x). We call it the canonical A-representation. Note that this
representation is not necessarily continuous because h need not be
continuous.

Proposition 3.10. Let X be an S-flow. Assume that A is an
S-invariant unital Banach subalgebra of C(X).

(1) a4 : X — XA s a topological (i.e. jointly continuous) com-

pactification of the S-flow X if and only if A C RUCs(X).

(2) The compactification apyc : X — XRUC (for the algebra

A := RUCs(X) ) is the maximal topological compactification
of the S-flow X.

Proof. (1): If A is ‘a subalgebra of RUCs(X) then by Definition
3.9 the orbit map f : S — A is norm continuous for every f € A.
Therefore the canonical representation

(h,a4) = (5, X) = (6(A), BY)
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is continuous (because h is continuous). By Lemma 3.8 we get
that the induced compactification aq : X — X is a topological
compactification of the S-flow X.

Conversely, if ay : X — Y := X4 is a topological compact-
ification then C(Y) = RUCg(Y). This easily implies that A C
RUCs(X).

(2): Follows from (1) and Remark 3.1. O

The maximal jointly continuous compactification agyc : S —
SRUC defined for the flow (S, S) is the semigroup version of the
so-called “greatest ambit”. Clearly, S is compactifiable iff aryc is
a proper compactification. Every Hausdorff topological group G :=
S is compactifiable because the algebra RUC(G) separates points
and closed subsets. It follows that the corresponding canonical
representation (call it the Teleman’s representation)

(h, aruc) : (G, G) = (6(V)™, B)

on V := RUC(G) is proper and h induces in fact a topological
group embedding of G into Is(V'). The corresponding proper com-
pactification agyc : G < GRYC is the greatest ambit of G (see, for
example, [39, 8, 47, 34, 43]). The induced representation (in the
sense of Definition 2.6.2) (h,«a) : (G,G) = (C(B*, B*), B*) on the
compact space B* is also proper and h induces an embedding of
topological groups G — Homeo (B*).

Note that the maximal S-compactification agyc : X — XRUC
may not be an embedding even for Polish topological group S := G
and a Polish phase space X (see [24]); hence X is not G-compactifi-
able. If S is discrete then 8gX = XRUC coincides with the usual
maximal compactification X = X (X)),

Remark 3.11. (1) Every topological semigroup S canonically
can be embedded into a topological monoid S, := SU{e} as
a clopen subsemigroup by adjoining to .S an isolated iden-
tity e. Furthermore, any action 7 : S x X — X naturally
extended to the monoidal action 7, : S, x X — X. It is
easy to check that RUCg, (X) = RUCg(X). Therefore, S-
space X is compactifiable iff S.-space X is compactifiable.
Similarly, f € RUC(S,) iff f|s € RUC(S). It follows that
Se is compactifiable iff S is compactifiable.
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(2) Let Z := X UY be a disjoint sum of S-spaces. Then f €
RUC(Z) iff flx € RUC(X) and f|y € RUC(Y). It follows
that Z is S-compactifiable iff X and Y are S-compactifiable.

Now we turn to the case of semitopological S-compactifications.

Let (h,a) : (S,X) =2 (©(V)°, B*) be a representation of a flow
(S, X) on a normed space V. Every pair of vectors (v,9) € V x V*
defines the function

Myt S = R, s 1(vs)
which is said to be a matriz coefficient of the given V -representation.

Lemma 3.12. Let V be a normed space, X is an S-space and the
pair

(h,a): (S5, X) = (6(V)?, BY)
is a representation (h is not necessarily continuous). The following
conditions are equivalent:

(1) The induced action SXY — Y, whereY := cl(a(X)) C B*,
is separately continuous (equivalently, « : X — 'Y is a semi-
topological S-compactification).

(2) The matriz coefficient m, 5 : S — R is continuous for every
veVandyp €Y.

Proof. Observe that the orbit map ¢ : S — Y (with ¢ € Y) is
weak star continuous if and only if the matrix coefficient m,, y is
continuous for every v € V. O

This lemma naturally leads to the following definition which is
well known at least for the particular case of the left action of S
on itself. It can be treated as a natural flow generalization of the
concept of LMC-functions introduced for semigroups by Mitchell
(see, for example, [32, 17, 4, 5]). However, in general context of
actions, this definition seems to be new even for group actions.

Definition 3.13. (LMC-functions — generalized version) Let X be
an S-space. We say that a function f € C(X) is left multiplicatively
continuous (notation: f € LMCg(X), or simpler f € LMC(X)) if
for every ¢ € Y := 3X the matrix coefficient my, : S — R of the
canonical C(X)-representation of (S, X) is continuous.

We omit a straightforward verification of the following lemma.
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Lemma 3.14. Let X be an S-space. The set LMCg(X) is an
S-invariant Banach subalgebra of C(X) and contains RUCs(X).

Proposition 3.15. Let X be an S-space. Assume that A is an
S-invariant unital Banach subalgebra of C(X) and f € A.

(1) f € LMCs(X) iff for every ¢ € XA C B* the matriz co-
efficient my .y, : S — R of the canonical A-representation is
CcoONntinuoUSs.

(2) a4 : X — XA is a semitopological compactification of
the S-flow X if and only if A C LMCg(X). That is, S-
invariant unital closed subalgebras of LMCs(X) correspond
to semitopological S-compactifications of X .

(3) The compactification apyc @ X — XMC (defined by the
algebra A := LMCg(X)) is the mazimal semitopological
compactification of the S-flow X.

(4) (S, X) is semicompactifiable iff LMCgs(X) separates points
and closed subsets in X .

(5) (compare [4, Ch. III, Theorem 4.5]) A topological semigroup
S is semicompactifiable iff LMC(S) separates points and
closed subsets in S iff it admits a proper right topological
semigroup compactification.

Proof. (1): The canonical C(X)-representation of (S, X) induces
the usual maximal compactification § : X — (X. Denote by
ag : X — Y = cl(aa(X)) the induced compactification of the
A-representation (h,ayr) : (5, X) = (©(A),B*). Then there
exists a continuous S-equivariant onto map ¢ : X — Y such that
qo B = ay. It follows that the matrix coefficient my, coincides
with my ., for every p € fX.

(2): Combine Lemma 3.12 and the first assertion.

(3): Easily follows from (2).

(4): Follows from assertion (3).

(5): Use (4) and Proposition 3.5.2. O

Let S be a topological semigroup. Then by results of [4, Chapter
III] (or by the results of the present section) we get in fact that the
universal LMC-compactification upyc : S — STMC (induced by the
whole algebra LMC(S)) of the S-flow S is the universal right topo-
logical semigroup compactification of S. Therefore our definitions
and the traditional semigroup approach to LMC-compactifications
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agree. Recall that if G is a topological group that is a Namioka
space then LMC(G) = RUC(G) (see [4, Ch. III, Theorem 14.6],
Remark 3.6.1 and Lemma 3.7).

4. S-COMPACTIFIABILITY: NECESSARY AND SUFFICIENT
CONDITIONS

Let (X, u) be a uniform space. Denote by jx or j the comple-
tion (X, ) — (X, 7). As usual, (X, p) is precompact (or, totally
bounded) means that the completion (X, 7i) is compact. Every uni-
form structure p contains the precompact replica of p. It is the

finest precompact uniformity jir;, C . Denote by
the corresponding uniform map. This map is a homeomorphism
because top(u) = top(pfin). The uniformity pipi, is separated
and hence the corresponding completion (X, pfin) — (X, fifin) =
(uX, py) (or simply uX) is a proper compactification of the topo-
logical space (X, top(u)). The compactification

ux =ux) X —uX

is the well known Samuel compactification (or, universal uniform
compactification) of (X, p). The corresponding algebra A,, C C(X)
consists with all g-uniformly continuous real valued bounded func-
tions. Here we collect some known auxiliary results.

Lemma 4.1. (1) For every uniform map f : (X,u) — (Y, &)
the canonically associated maps

f(Xm) — (Y€
fYruX - uY
are uniform.

(2) ux : X »uX andugoj: X — uX (forug: X — uX) are
equivalent compactifications. More precisely, there exists a
unique homeomorphism j* : uX — uX such that j*oux =
ug o j. In particular, the natural uniform map

bx = (i) Lo ug X —uX

s a topological embedding.
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3
¥ Unif X, X) — Unif X, X), fef
1 a uniform embedding,
Unif(X, X) — Unif( X fin, Xgin), [ f
and
Unif X, X) — UnifluX,uX), f f"
are uniform injective maps.
Proof. (1) and (3) are straightforward. For (2) use the natural map
Unif(X, R) — Unif(X,R), f— f

and observe that the same algebra Unif(X,R) correspond to the
compactifications ux : X — uX and ug oj: X — uX and hence
these compactifications are equivalent. O

Another direct proof of the fact that ¢x : X — uX is a uniform
embedding can be found in [13].

Definition 4.2. Let p be a uniformity on X and 7: S x X — X
be a semigroup action. We call this action:

(1) p-saturated if every s-translation § : X — X is p-uniform
(thus the corresponding homomorphism

hy:S — Unif(X, X), s— §

is well defined).

(2) p-bounded at sy if for every ¢ € u there exists a neighbor-
hood U(sp) such that (soz,sz) € € for each z € X and
s € U. If this condition holds for every sqg € S then we
simply say: p-bounded.

(3) (see [23]) p-equiuniform if p is saturated and bounded. It
is equivalent to say that the corresponding homomorphism
hr S — Unif(X, X) is continuous.

(4) (&, p)-equiuniform if £ is a compatible uniformity on S such
that the left actions v : S xS — Sand7: S x X — X
are saturated (with respect to £ and p respectively) and
the associated homomorphisms h, : S — Unif(X, X), h,:
S — Unif(S, S) are uniform maps.
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Sometimes we say also that the uniformity p is saturated, bound-
ed and equiuniform, respectively.

For group actions bounded uniformities appear in [45] and in [9]
(see also “uniform action” in the sense of [1]). We collect here some
simple examples.

Examples 4.3. (1) Every p-equiuniform action is continuous.

(2) Every compact S-space X is equiuniform (with respect to
the unique compatible uniformity on X).

(3) For every uniform space (X,u) and every subsemigroup
S of Unif(X, X) endowed with the subspace uniformity ¢
inherited from Unif(X, X') the natural action S x X — X
(see Example 2.2.1) is (£, u)-equiuniform.

(4) For every (&, p)-equiuniform action S x X — X the left
action S x S — S is (&, £)-equiuniform.

(5) Let S be a semigroup with a right invariant uniformity £ on
S such that all left translations are uniformly continuous.
Then the left action S x S — S is (£, £)-equiuniform.

We need some notation. Let S x X — X be a semigroup action.
For every element s € S and a subset A C X define s™'A4 =
{x € X : sz € A}. Let pu be a uniformity on X and € € p. Then
e is a subset of X x X. For every s € S U {idx} we can define
similarly the following set

sle:={(z,y) € X x X : (sz, sy) € €}
where idy'e = ¢.

Lemma 4.4. Let p be a uniformity on X such that the semigroup
action of a topological semigroup S on (X, top(u)) is continuous.
(1) The family {s~'e : s € SU{idx},e € u} is a subbase of a
saturated uniformity p° O p generating the same topology
(that is, top(u) = top(p®)).
(2) If the action is p-bounded then it is also u°-bounded (hence,
w -equiuniform,).
(3) If the action is p-bounded (u-saturated, p-equiuniform, or
(&, p)-equiuniform) then the same action is also i fin-bound-
ed (Lfin-saturated, [ipin-equiuniform, or (&, lfin)-equiuni-
form respectively).

Proof. The proofs of (1) and (2) are trivial.
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(3): The boundedness of fi;, is clear because p s, C p. In order
to show that the action is jf;,-saturated we have to check that
5: (X, prin) — (X, pifin) is uniform for every s € S. Let € € puyip.
Since s(s'e) C e we have only to show that s™'e € pfi,.

Pick a symmetric entourage 0 € jif;, such that 6 od C e. Since
0 € pipin there exists a finite subset {y1, 42, -, yn} in X which is J-
dense in X (that is, U?_,0(y;) =X, where §(y) :={x € X: (z,y) €J}).
Passing to a subfamily if necessary we can suppose in addition that
d(y;) NsX # () for every i € {1,2,---,n}. Choose z; € X such that
sz; € 8(y;) for each i. Then {21, 20, -+, 2,} is a finite s~'e-dense
subset in X. Indeed, for every zg € X there exists i¢g such that
(Yig, Sx0) € 0. Since (sziy, Yiy) € 0 we get (sz;,,5x0) € 0 C €.
Thus, (zi,, z0) € s~ 'e.

Checking that the action is (&, ptfin)-equiuniform (provided that
it is (&, u)- equiuniform) observe that the map

Unif(X, X) — Unif(X fin, Xfin), f— f
is uniform. This implies that the homomorphism
(S,€) — Unif(X fin, Xrin)
is also uniform. O

Lemma 4.5. (1) Let p be a saturated uniformity on X with
respect to the action S x X — X. LetY be an S-invariant
dense subset of X such that the induced action S XY — Y
is uly-bounded. Then the given action S x X — X is
u-equiuniform and continuous.
(2) Let m: S x X — X be a continuous p-equiuniform action.
Then the induced action on the completion T : S x XX
is well-defined, [i-equiuniform and continuous.

Proof. (1) Let sp € S and € € pu. There exists an element €1 €
such that €1 C € and €7 is a closed subset of X x X. Choose a
neighborhood U (sg) such that (spy, sy) € &1 for every s € U and
y € Y. Then (soz,sz) € ¢ for every s € U and x € X. Thus the
given (saturated) action is y-bounded. The action is continuous by
Example 4.3.1.

(2) Easily follows from (1). O

Lemma 4.6. Let X and P be Hausdorff spaces. Assume that:
(i) S is a dense subset of P.
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(ii) S is a semigroup w.r.t. the operation wg: S x S — S.

(iii) ¥ : Sx P — P is a semigroup action with continuous trans-
lations.

(iv) m : Px P — P is a right continuous mapping which extends
wg and 9.

(v) mg : S x X — X is a semigroup action with continuous
translations.

(vi) mp : P x X — X s a right continuous mapping which
extends mg.

Then we have:

(1) (P,m) is a right topological semigroup.

(2) mp: P x X — X is a semigroup action.

(3) If X is reqular and g is continuous at (sg,xg) with some
(so,z0) € S x X then wp remains continuous at (Sg, o).

Proof. First of all we check the associativity

(p1p2)x = p1(paz)

for every given triple (p1,p2,z) € P x P x X, where (pip2)x :=
mp(m(p1,p2), ¥) and p1(p2z) := 7p(p1, Tp(p2, T)).

Choose nets a; and b; in P such that a;,b; € S and lim; a; =
p1,1im; b; = pa. Then by our assumptions we have

(p1p2)r = lim(a;p2)x = (limlim(a;b;))r =
i i g

= lilm lijm(ai(bjzn)) = lilm ai(lijm(bjw)) = lilm(ai(pgzn)) = p1(p2x).
Apply this formula to the particular case of the mapm : PxP —
P (where X := P). Then we get that (p1p2)ps) = p1(pa2ps) for all
triples (p1, pa, p3) € P3. This proves (1). Moreover, now the general
formula means that 7mp is a semigroup action.
For (3) use Lemma 2.1. O

Proposition 4.7. Let & be a compatible uniformity on a topological
semigroup S such that the left action v : S x S — S is (£,€)-
equiuniform. Identify S with its image under the comziletion map
j: 8 — S. Then there evists a map m : SxS — 3§ such that
(g, m) is a topological semigroup, S is a subsemigroup of S and the
left action m is (E, E)-equiuniform.
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Proof. The natural homomorphism
hy : (S, &) — Unif(S, S), s— Ag
is uniform. Consider the uniform embedding
Unif(S, §) — Unif(S,S), fr— f.

Denote by h the corresponding uniform _composition h:S8 —
Unif(S, S). Since the uniform space Unlf(S S) is complete there
exists a unique uniform extension  : § — Un1f(S S) of h. Then
the evaluation map m : § x § — 5, m(t,p) = h(t)(p) is jointly
continuous and extends the original multiplication ¥ on S. On the
other hand by Lemma 4.5.2 we get that there exists a unlquely de-
termined continuous semigroup action 9 : S X S — S which also
extends v. It follows that m extends ¥. By Lemma 4.6 (for the
setting P := g, X = §) we obtain that (g, m) is a semigroup and
S is its subsemigroup. Furthermore, Sis a topological semigroup
because m is continuous. Since h, is a uniform homomorphism
and ﬁ| s = h, it follows that the uniform map % also is a homo-
morphism of semigroups. This means that the left action m is
(é\, 3 )-equiuniform. O

Proposition 4.8. Let 7 : S x X — X be a (&, p)-equiuniform
action. Then there exist (uniquely determined) continuous semi-
group actions:

~

(i) 7 : S x X — X which is (&, 1) -equiuniform and naturally
extends T ;
(i) 7 : S % Xpin — Xpin which is (&, pin)-equiuniform;
(iii) 7, : S x uX — uX which is (E, ) -equiuniform and natu-
rally extends 7.

o~ o~

Proof. (i) By Proposition 4.7 we know that the left action is (¢, £)-
equiuniform on the topological semigroup S. Since Unif(X, X) —
Unif()?, )?), f— fis a uniform embedding and Unif()?, )?) is com-
plete there exists a (unique) uniform map h:S — Unif()A( X )
which extends the homomorphism h = h; : S — Unif(X, X).
In fact % is a homomorphism because h and h agree on a dense
subsemigroup S of S and Unlf(X ,X ), S are Hausdorff topologi-
cal semigroups. This proves that the corresponding (evaluation)
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action 7 is (E, i)-equiuniform. The action 7 extends the original
action 7 because h extends h.

(i1) Is clear by Lemma 4.4.3.

(i1i) Combine (i) and (7i) taking into account that uX is the
completion of ffip.

The continuity of these actions are trivial by Example 4.3.1. [

Proposition 4.9. (1) If the semigroup action m:S x X — X
is p-equiuniform then the induced action m, : S xuX — uX
on the Samuel compactification uX = w(X, u) is a proper
S-compactification of X.

(2) (S, X) is compactifiable iff the action on X is p-bounded
with respect to some compatible uniformity p.

Proof. (1) The action is p-equiuniform means that the homomor-
phism h, : S — Unif(X, X) is continuous. It suffices to prove
our assertion for the action of h,(S) x X — X. Hence we can
suppose that in fact S is the semigroup h,(S). Now the action is
(&, p)-equiuniform where £ is the uniformity induced on h,(S) from
Unif(X, X). Using Proposition 4.8(iii) we get a continuous action
Tu © S x uX — uX which is (E, iy )-equiuniform and naturally
extends 7. Then its restriction 7, : S x uX — uX is continuous,
too. Hence u : X — uX is a (proper) S-compactification of X.

(2) Assume that X is y-bounded. Then by Lemma 4.4 the action
is p¥-equiuniform (which is a compatible uniformity). Now by the
first assertion X is S-compactifiable. For the converse use Example
4.3.2. O

Corollary 4.10. There exists a 1-1 correspondence between proper
topological S-compactifications of X and precompact compatible equi-
uniformities on X.

Note that Corollary 4.10 is well known for group actions [8, 23].
Theorem 4.11. Let 7 : S x X — X be a (&, 7)-equiuniform semi-

group action. Then

(a) u:S — uS is a proper right topological semigroup compact-
ification of S.
(b) There exists a right continuous semigroup action

oyt uS x uX — uX
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which extends the action
w S x uX — uX

(hence also T : SxX — )A() and 1is continuous at every
(p,2) € S xuX.

Proof By Proposition 4.8(7ii) there exists a continuous action
: S x uX — uX which extends 7 and is (5 fy)-equiuniform.
Then in particular, the orbit map Z : S — uX, t — tz is uniform
for every z € uX. By the universality of Samuel compactifications
there exists a uniquely defined continuous extension uS — uX
of Z. The compactifications S — uS and S — uS are naturally
equivalent (Lemma 4.1.2). Hence we have a continuous function
Zy + uS — uX which extends the map Z : S — uX, where S is
treated as a topological subspace of u.S.
Now we define 7wy : uS x uX — uX by mi(p,z) := Z,(p) for
every p € uS and z € uX. Clearly, my is right continuous and
TU(t, z) = Tu(t, z) for every t € S. On the other hand again by
Proposition 4.8(iii) (for X := 5) we have the continuous action
S x uS — uS which extends the multlphcatlon m:Sx8—8 (via
the natural dense embedding S = os(S ) — uS). We can apply
Lemma 4.6 (for the dense subset S = ¢5(§ ) of uS and natural maps
7y and ). It follows that S is a right topological semigroup with
the subsemigroup S and mewS X uX — uX is a right continuous
semigroup action extending 7,. By Lemma 4.6.3 we get that 7/ is
jointly continuous at every (p, z) € S x uX. O

Corollary 4.12. Let S be a semigroup with a right invariant
uniformity & on S such that all left translations are uniformly con-
tinuous.
(1) (Kocak and Strauss [19]) S — uS is a right topological
semigroup compactification of S.
(2) (Ferri and Strauss [13]) The multiplication uS X uS — uS
is jointly continuous at every (p, z) € S x usS.

Proof. The left action S x S — S is (&, £)-equiuniform by Example
4.3.5. Now apply Theorem 4.11. O

Now we give a compactifiability criterion for semigroup actions.
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Theorem 4.13. For ecvery S-space X the following conditions are
equivalent:
(1) X is S-compactifiable.
(2) RUCs(X) separates points from closed subsets.
(3) There exists a Banach space V' and a proper continuous
representation

(h, @) : (S, X) = (6(V)?, BY).
(4) There exists a compact spaceY and a proper representation
(h, @) : (5, X) = (C(Y,Y),Y).

(5) There exists a uniform space (Y, 1) and a proper represen-
tation

(hya) : (S, X) = (Unif[lY,Y),Y).

Proof. (1) = (2): Let v: X — Y be a proper S-compactification.
Then C(Y) = RUCg(Y). Now use the obvious hereditarity prop-
erty of right uniformly continuous functions. That is the fact that
for e RUCg(X) for every f € RUCg(Y).

(2) = (3): Consider the canonical V' := RUCg (X )-representation
of (S, X) on V and apply Proposition 3.10.

(3) = (4): Apply Lemma 2.4 to V := RUCg(X) and define
Y = B*.

(4) = (5): For a compact space K (and its uniquie compatible
uniformity) the uniform spaces Unif(K, K) and C(K, K) are the
same.

(5) = (1): By Example 4.3.3 there exists a compatible uniformity
won X such that the action is p-equiuniform. Then the correspond-
ing Samuel compactification of (X, i) is an S-compactification by
virtue of Proposition 4.9.1. O

The following theorem shows that a topological semigroup S is
compactifiable iff S “lives in natural monoids”.

Theorem 4.14. Let S be a topological semigroup. The following
are equivalent:

(1) S is compactifiable;

(2) RUC(S) determines the topology of S.

(3) The monoid Se (from Remark 3.11.1) is compactifiable;

(4) S has a proper dynamical compactification.
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(5) S° (the opposite semigroup of S) is a topological subsemi-
group of O(V') for some normed (equivalently, Banach) space
V;
(6) S° is a topological subsemigroup of ©(M,d) for some met-
ric space (M, d);
(7) S is a topological subsemigroup of C(Y,Y") for some compact
space Y ;
(8) S is a topological subsemigroup of Unif(Y,Y") for some uni-
form space (Y, ).
(9) There exists a compatible right invariant uniformity p on
S.
(10) There exists a compatible uniformity p on S such that the
right action of S on (S, u) is equicontinuous.
(11) The topology of S can be generated by a family {d;}icr of
right contractive pseudometrics on S.

If S is a monoid then we can ensure in the assertions (5), (6),
(7) and (8) that S is a topological submonoid of the corresponding
topological monoid.

Proof. (1) < (2): Follows from Proposition 3.10.

(1) & (3): See Remark 3.11.1.

(2) & (4): RUC(S) determines the topology of S iff the universal
dynamical compactification uguc : S — SRUC is proper.

(1) = (5): First of all observe that by Remark 2.3.2, “normed”
and “Banach” cases of (5) are equivalent.

By our assumption S is S-compactifiable. Theorem 4.13 implies

that there exists a proper continuous representation
(h,a): (5,5) = (6(V)”, BY)

where V := RUC(S). By (1) & (3) we can assume that S is a
monoid. Since a : S — B* is an S-embedding and the pair (h, «)
is equivariant it follows that the homomorphism h : S — O(V) is
a topological embedding, too.

(5) = (6): ©(V) is embedded into O(M, d) where M :=V and

d(z,y) = ||z —yll.
(5) = (7): Immediate by Lemma 2.4.
(7) = (8): Trivial.
(8) = (9): Follows by Example 2.9.2.
(9) = (10): Trivial by Definition 2.7.
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(10) = (11): If a family {d;} of bounded pseudometrics gener-
ates an equicontinuous uniformity p then the family {d;} of right
contractive pseudometrics

di (z,y) := maX{Slellg di(zs, ys), di(z,y)}
S
generates a uniformity p* which is topologically equivalent to u.

(11) = (1): Let p be the uniformity generated by the given
family of pseudometrics on S. Since the pseudometrics are right
contractive it follows that the action of S on S is u-bounded. Now
Proposition 4.9.2 implies that S is a compactifiable S-flow.

(6) = (11): Denote by (S, *) the opposite semigroup O(M, d)P
of ©(M,d). The family of pseudometrics {p,, }men generates the
topology of S where

Pm(81, 82) := d(sym, sgm).

Now observe that each p,, is right contractive on the topologi-
cal semigroup S. Indeed, for every triple ¢, s1,s50 € S we have
Pm(s1 % t, 89 xt) = ppy(tsy, tse) = d(tsym,tsom) < d(sym, sam) =
Pm (81, 82).

Finally, note that if S is a monoid then by the proof of (1) =
(5) the homomorphism h : S — O(V) is a topological embedding
of monoids. O

Corollary 4.15. Each of the following semigroups is compactifi-
able:

(1) ©(X,d)°P for every metric space (X,d). In particular,
O(V)P (endowed with the strong operator topology) for
every normed space V.

(2) Unif(Y,Y) for every uniform space (Y, ).

(3) C(Y,Y) for every compact space Y .

(4) The multiplicative monoid (By,T,) endowed with the
uniform topology for every normed algebra V (e.g., for the
algebra V := L(E) for arbitrary normed space E ).

(5) Let G be a topological group and R its right uniformity.
Then the completion S := (C?, 7A2) 1s a topological semigroup
and this semigroup is compactifiable.
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Proof. All assertions easily follow from Theorem 4.14. For (4)
observe that the original metric of the original norm on By is right
(and also left) contractive ||zs —ys|| < ||z —y|| - ||s|| < ||z — y|| for
every z,vy,s € By.

(5): G x G — G is R(G)-equiuniform. Apply now Propositions
4.7 and 4.9. (]

It is well known that (é, ﬁ) is a topological semigroup (see for
example [36, Proposition 10.12(a)]) containing G as a subsemi-

group. For several important semigroups of the form S := (é, 7A2)
see Pestov [35, Ch. 8].

Remark 4.16. (1) Kocak and Strauss proved in [19, Theorem
14] that if a topological semigroup S admits a right invariant
left saturated uniformity then .S is compactifiable. One can
remove “saturated” as Theorem 4.14 shows. Furthermore
by assertion (9) the existence of right invariant uniformity
is also a necessary condition.

(2) As we already have seen O(E)° is compactifiable for every
normed space E. It is not true for ©(F), in general, as
we will see later in Examples 6.3. So we cannot substitute
O(FE)°? by O(FE) in Theorem 4.14. However, we can repair
this situation for involutive subsemigroups S of ©(F) (see
Corollary 4.18).

(3) We cannot replace By by the multiplicative monoid V' in
Corollary 4.15.4 as the example of the multiplicative monoid
V := R shows (Examples 6.3.2).

(4) Our results suggest a semigroup version of the right uni-
formities R(S). For a compactifiable topological semigroup
one can define R(.S) as the finest right invariant compatible
uniformity on S. Then Corollary 4.15.5 admits a natural
semigroup generalization for the completion of (S, R(S)).

Theorem 4.17. Let G be a paratopological group. Then G is com-
pactifiable iff G is a topological group.

Proof. If G is compactifiable then by Theorem 4.14 we have an
embedding h : G — C(K, K) of topological monoids. Then h(G) C
Homeo (K'), where Homeo (K) is a topological group. The converse
is clear by the Teleman’s representation. O
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Recall that a semigroup S is said to be an inverse semigroup if
for every s € S there exists a unique s* € S such that ss*s = s
and s*ss* = s*. Topological inverse semigroup will mean that the
multiplication is continuous and in addition the map S — S, s — s*
is continuous.

By an involution on a semigroup S we mean a map i : S —
S such that i(i(s)) = s and i(s182) = i(s2)i(s1). If S admits a
continuous involution then we say that S is topologically involutive.
Actually, topologically involutive semigroup S is just a semigroup
which is topologically isomorphic with the opposite semigroup S°.
For example, S is involutive if S is a topological inverse semigroup;.
This happens in particular if either S is a commutative topological
semigroup or a topological group.

Proposition 4.18. Let S be a topological subsemigroup of ©(F)
for a normed space E. Suppose that S is topologically involutive.
Then S is compactifiable.

Proof. S is topologically involutive means that S is topologically
isomorphic to the opposite semigroup S°° which is compactifiable
by Corollary 4.15.1 and the assumption that S is embedded into
O(F). O

5. A UNIVERSAL COMPACTIFIABLE SEMIGROUP

Denote by U the topological monoid C(1¥, I¥), where I := [0, 1]
is the closed interval. Theorem 4.14 implies that U is compacti-
fiable. It contains the subgroup Homeo (I*) of all selfhomeomor-
phisms of the Hilbert cube I*. Recall that Homeo (I*) is a universal
second countable topological group (see Uspenskij [41]). Moreover,
by [26] the group action Homeo (I¥) x I¥ — I“ is universal for all
second countable compactifiable G-flows X with a second count-
able acting group G. We can now give a natural generalization for
semigroups and semigroup actions.

Theorem 5.1. Let S be a compactifiable second countable semi-
group. Then every compactifiable second countable S-flow X is
a part of the flow (U,I*). That is, there exists a representation
(hya) : (S, X) = (U, I¥) such that h : S < U is an embedding of
topological semigroups and o : X — I¥ is a topological embedding.
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Proof. By Remark 3.11.1 we can assume that S is a monoid with
the identity e and S x X — X is a monoidal action.

Furthermore, we can suppose in addition that the action is topo-
logically exact. This means (see [26]) that: (a) sz =z for allz € X
implies that s = e; (b) there exists no strictly weaker topology on
S which makes the action on X continuous. Indeed, we can pass,
if necessary, to the following new (but still S-compactifiable by Re-
mark 3.11.2) second countable phase space X' := X U S, a disjoint
sum of the S-flows X and S, where the monoid S acts on itself by
left multiplications. Thus, by our assumption X is a compactifiable
S-flow with the topologically exact action. The algebra RUC(X)
separates points and closed subsets of X. Since X is second count-
able we can choose a separable closed subalgebra A of RUC(X)
having the same property. Moreover since S is also second count-
able we can assume that A is even S-invariant. Indeed if T' C A
and S7; C S are countable dense subsets then TS| is a countable
dense subset in the S-invariant closed subalgebra A’ > RUC(X)
topologically generated by AS.

Now consider the corresponding representation

(h,a): (S, X)= (6(A)P, BY)

of the flow (S, X) on the separable Banach space A. Now, as in
[41], we use the fact that the unit ball B* being a convex compact
subset of a separable Frechet space (A, weak*) is homeomorphic by
Keller’s theorem (see for example [7]) to the Hilbert cube I¥. By
our assumption A separates points from closed subsets in X. There-
fore the map o : X — B* is a topological embedding. Moreover,
since the action of S on X is topologically exact and the pair (h, «)
is equivariant it follows that the homomorphism h : S — ©(A) is
in fact an embedding of topological monoids. Observe that

(v,id) : (©(A)?, BY) = (C(B*, B), BY)

is an equivariant pair with the embedding ~ of topological monoids
(see Lemma 2.4). Now substituting B* by the Hilbert cube I* we
complete the proof. O

As a corollary we get
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Theorem 5.2. (Semigroup version of Uspenskij’s theorem) The
monoid U := C(I¥,1¥) is universal in the class of all separable
metrizable compactifiable semigroups.

6. SOME EXAMPLES

Recall that if G is a Hausdorff (Tychonoff) topological group
then a Tychonoff G-flow X is compactifiable in each of the following
cases:

G is locally compact [46];

X is locally compact [44];

X admits a G-invariant metric [48];

X is a normed space and each g-translation X — X is linear
[25];

G is second category, (X, d) is a metric G-space and each
g : X — X is d-uniformly continuous [25].

e X is Baire, GG is separable or Lindel6f and acts transitively
on X [42].

Examples below show that for the case of monoidal actions anal-
ogous results do not remain true, in general.

Answering de Vries’ “compactification problem” negatively in
[24] we construct a noncompactifiable Polish G-space X with a
Polish acting group G. Moreover by [30] for every Polish group G
which is not locally compact there exists a suitable noncompact-
ifiable Polish G-space. We can use this fact below (see Example
6.3.10) providing many non-semi-compactifiable Polish topological
semigroups.

Lemma 6.1. Let S x X — X be a monoidal action of a monoid S
(with the identity e). Assume that there exists a proper semitopo-
logical compactification v : X — Y of X which is {e}-topological
(that is, the action S x Y — Y is continuous at every (e,y)). If
F C X is a closed subset and a ¢ F then there exist neighborhoods
U(e), V(F) and O(a) such that UV NUO = {.

Proof. Since v : X — Y is an embedding the closure cl(v(F)) of
v(F) in Y does not contain the point v(a). By the continuity of
the action at every point (e, y) (making use the Hausdorff axiom)
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it follows that for every b € cl(v(F')) there exist a neighborhood
Up of e and neighborhoods Oy of v(a) and V; of b in Y such that
UV, NU,Op = (. Now the standard compactness argument easily
completes the proof. O

Let m: S x X — X be a jointly continuous semigroup action.
Up to an S-isomorphisms we can assume that S and X are disjoint
sets. Denote by S LIy X a new semigroup defined as follows. As a
set it is a disjoint union S U X. The multiplication is defined by
setting:

aob:=szxifa=se S, b=zec X

aob:=s159ifa=s1€8, b=sy€ S8

and

aob:=aifac X.

Then (S U, X,0) is a topological semigroup which we call a
T-generated semigroup.

Lemma 6.2. Let X be an S-space.

(1) The topological semigroup P := S U; X is compactifiable
(semi-compactifiable) if and only if (S, X) is a compactifi-
able (resp.: semi-compactifiable) flow and at the same time
S is a compactifiable (resp.: semi-compactifiable) semigroup.

(2) The opposite topological semigroup PP := (S U, X) is
compactifiable if and only if S°P is a compactifiable semi-
group and the topology of X admits a system of S-contractive
pseudometrics.

Proof. (1): Observe that we have naturally defined equivariant
inclusion of flows

(hya) : (S, X)= (P,P)=(SU; X,SU; X).

Therefore if (P, P) is compactifiable then the same is true for (5, X)
and (S, 9).

Conversely, every pair ¥1 : S <— Y7 and 99 : X — Y5 of proper
S-compactifications (one may assume that Y7 and Y3 are disjoint)
defines a proper P-compactification ¢ : P =S U, X — Y7 UY5.

(2): If P°P is compactifiable then S° being a subsemigroup of
P°P is also compactifiable. Moreover, by Theorem 4.14 there exists
a system of right contractive pseudometrics on PP = (S L, X)°.
Such a system is clearly left contractive on P. It induces the desired
system of S-contractive pseudometrics on X.
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Conversely, suppose that S°P is compactifiable and the topol-
ogy of X is generated by a family F; := {d;},c; of S-contractive
pseudometrics. By the first assumption and Theorem 4.14 there
exists a system Fy := {p;}jcs of left contractive pseudometrics on
S. One can suppose in addition that d; < 1 and p; < 1 for every
(i,7) eI xJ.

Now define a new system F3 = Fy U F,U{D}on P = S U, X
by setting D(s,z) = D(xz,s) = 1 for every s € S, x € X and
D(s1,82) = D(x1,22) = 0 for every s1,s80 € S, 1, 29 € X. It is
easy to verify that F3 is a system of left contractive pseudometrics
on P generating its topology. The same system is right contrac-
tive on P°P. Hence by Theorem 4.14 we can conclude that P is
compactifiable. O

Examples 6.3. Here we give some examples of noncompactifiable
topological semigroups and actions.

(1) The linear action of the compact multiplicative monoid S :=
([0,1],-) on X :=1[0,00) is not compactifiable. Moreover,
every f € RUCg(X) is necessarily constant.

Assuming the contrary let f € RUCs(X) be noncon-
stant. Then f(a) — f(b) = ¢ > 0 for a pair a,b € X.
By definition of RUCg(X) there exists 6 > 0 such that
| f(urz)— f(ugz)| < e for every triple (uy, ug, z) € UxU XX,
where U := [0,9). Choose zyp € X such that a < dxg and
b < dxg. Take uy := 2 and uy := %. Then (uq,ug, xg) €

Zo

U xUx X but |f(urzg) — fugzg)| = €.

Note that in this example the acting monoid is a sub-
monoid of ©(V) for V := R. As a corollary we get that
the action ©(V) x V' — V is not compactifiable for any
nontrivial normed space V.

(2) The multiplicative monoid S := ([0,00),-) (and hence also
the multiplicative monoid (R, ) of all reals) is not compact-
ifiable. In fact the corresponding universal dynamical com-
pactification S — STUC s q singleton.

This follows directly from example (1).
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Since O(V)P is compactifiable and R is involutive (being

commutative) by Proposition 4.18 we get that (R, -) is not
embedded into © (V) for arbitrary normed space V. As well
as (R, -) is not embedded as a topological subsemigroup into
U:=C(I¥,I*) (Corollary 4.15.3).
The universal right topological semigroup compactification
S — SEMC of § = ([0,00),-) is injective but not proper
(that is, LMC(S) separates the points but does not deter-
mine the original topology). Hence, [0,00),) is not semi-
compactifiable.

Let M be the additive topological monoid RU {6} where
topologically 6 is a point at 400 and algebraically 8 4+ x =
x4+ 6 = 0 for every x € M. In fact this semigroup M
is a copy of the multiplicative semigroup ([0, c0), ) via the
topological isomorphism RU{#} — [0, 00), a(0) = 0, a(x) =
277 for all x € R. Now note that by results of Hindman
and Milnes [17, Chapter 5] the algebra LMC(M) separates
the points but does not determine the original topology (see
also the results of Section 3).

A one-parameter additive semigroup action on a Polish phase
space which is not semi-compactifiable.

This construction was inspired by Ruppert [37, Ch. II,
Example 7.8]. Let Ry = ([0,00),+) be the one parameter
additive semigroup. Denote by [0, oo] the Alexandrov com-
pactification of Ry. In the product space [0, 0] x [0, 0]
consider the following subspace

X :=10,00) x [0,00) U {(0c0,00)}

Then X is Polish being homeomorphic to a Gs-subset of
the 2-cell [0,1] x [0, 1]. Define now the desired continuous
action by

7T:R+ XX_)Xv t($7y) = (ZL’,t!E—FZJ), t(OO, OO) = (OO, OO)

Define in X the closed subset F':=[0,00) x {0} and the
point a := (00,00). Then for every neighborhood O(a) of
a in X and every neighborhood U(0) of 0 in R, we have
UFNO # (. Now Remark 3.6.2 and Lemma 6.1 imply that
X is not semi-compactifiable.
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A compact monoid action on a discrete space which is not
semi-compactifiable.

Consider the 2-point multiplicative monoid {0,1} and
endow the Cantor cube C' := {0,1}N0 with the topologi-
cal monoid structure of pointwise multiplication. Let X =
Np := NUO0. Define an action by:

m:C xNg— Ny, 7(c,n)=cyn,

where ¢ = (cx)ken, € C. In Ny choose the point a := 0
and the closed subset F' := N. Let 1 := (1,1,---) denote
the identity of C'. Then for every neighborhood U of 1 we
have a € UF. Hence Lemma 6.1 and Remark 3.6.1 finish
the proof.

A topological semigroup Q such that Q is compactifiable and
the opposite semigroup Q°P is not semi-compactifiable.

We construct the desired semigroup as the w-generated
semigroup P := {0, 1}o1; Ny for the flow (S, X) = (C, Ny)
described in (5). Now P is not semi-compactifiable by
Lemma 6.2.1. Then the opposite semigroup @ := P is
the desired one. Indeed, first of all Q°? = P is not semi-
compactifiable.

Clearly, S = {0, 1} is compactifiable being a compact
semigroup. Define the standard 0, 1 metric on the discrete
space X := Ny. Then this metric is contractive with respect
to the action of S on X. By Lemma 6.2.2 we conclude that
P°P = () is compactifiable.

There exists a Banach space V' such that the monoid O(V)
18 not semi-compactifiable.

Let @ be the topological semigroup defined in (6). Then
P := @Q° is not semi-compactifiable. On the other hand P,
being the opposite semigroup of a compactifiable semigroup
@, is a topological subsemigroup of O(V') for some Banach
space V' (see Theorem 4.14). Therefore (V') is not semi-
compactifiable, too.
Sorgenfrey line (Rg,+) is a noncompactifiable topological
monoid.
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This follows directly from Theorem 4.17. Moreover it is
not hard to see that RUC(R;) = RUC(R). That is, the uni-
versal dynamical compactification REVC is just the greatest
ambit RRUC (for the usual topological group R of the reals).

(9) For every Polish not locally compact topological group G
there exists a continuous action w: G x X — X on a Pol-
ish space X such that the corresponding w-generated Polish
semigroup P := G U, X 1is not semi-compactifiable.

By [30] there exists a noncompactifiable Polish G-space X.
Then the semigroup P := GU, X is not semi-compactifiable.
Indeed assuming the contrary it follows by Lemma 6.2.1
that (G,X) is semi-compactifiable. Since G is Cech-complete
we get (see Remark 3.6.1) that X is G-compactifiable, a
contradiction.
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