

Pages 47–53

http://topology.auburn.edu/tp/

SOME REMARKS ON MAXIMAL CONNECTED HAUSDORFF SPACES

by V. Tzannes

Electronically published on March 29, 2008

Topology Proceedings

Web: http://topology.auburn.edu/tp/

Mail: Topology Proceedings

> Department of Mathematics & Statistics Auburn University, Alabama 36849, USA

E-mail: topolog@auburn.edu

ISSN: 0146-4124

COPYRIGHT © by Topology Proceedings. All rights reserved.

E-Published on March 29, 2008

SOME REMARKS ON MAXIMAL CONNECTED HAUSDORFF SPACES

V. TZANNES

ABSTRACT. We prove that there exists a connected Hausdorff space containing a maximal connected subspace for which every open superset is dense and which, under the restriction that its maximal connected subspace remains connected, does not have a maximal connected expansion. We also prove that there exists an uncountable connected separable Hausdorff submaximal space with a dispersion point.

1. Introduction

In [6], G. J. Kennedy and S. D. McCartan pose the question of whether every space containing a maximal connected subspace for which every open superset is dense has a maximal connected expansion. We prove that there exists a connected Hausdorff space having these properties which, under the restriction that its maximal connected subspace remains connected, does not have a maximal connected expansion. The required space is obtained by attaching two specific spaces. The first is a countable connected Hausdorff submaximal space, having a dispersion point. The use of a space with a dispersion point is that such a space does not have a maximal connected expansion [4]. The second space is the Katětov extension of any maximal connected Hausdorff space.

²⁰⁰⁰ Mathematics Subject Classification. Primary 54D05, 54D35.

 $Key\ words\ and\ phrases.$ dispersion point, Katětov extension, maximal connected.

^{©2008} Topology Proceedings.

A space is called submaximal [2], if every dense subset of it is open. A point p of a connected space Y is called (1) a dispersion point [7] if the subspace $Y \setminus \{p\}$ is totally disconnected, (2) a cut point if the subspace $Y \setminus \{p\}$ is disconnected. The Katětov extension and its properties are described in detail by Jack R. Porter and R. Grant Woods in [10]. The existence of maximal connected Hausdorff spaces of every cardinality is proved by A. G. El'kin in [3]. The concept of a maximal connected topology was introduced by J. Pelham Thomas in [12].

In [1], A. V. Arhangel'skiĭ and P. J. Collins pose the problems of whether there exists a dense-in-itself uncountable separable Hausdorff (Tychonoff) submaximal space. Both these problems have been answered by Ronnie Levy and Porter in [8]. Based on [8] and [2], we observe that if we start with any countable Hausdorff space without isolated points and consider any regularly open-maximal topology [9], we get a countable Hausdorff submaximal space without isolated points whose Katětov extension answers the first of the above problems. It is obvious that if the initial space is a countable connected Hausdorff space, then any regularly open-maximal topology is a countable connected Hausdorff submaximal space whose Katětov extension is an uncountable connected separable Hausdorff submaximal space. We prove that this result can be extended to the Hausdorff submaximal spaces with a dispersion point.

2. Main Results

The following space (Y, τ) is due to Prabir Roy [11]. It is a countable connected Hausdorff space having the point p as a dispersion point.

Let C_i , i=1,2,... be a countable collection of disjoint dense subsets of the rationals Q. On the set $Y=\{p\} \cup \{(r,i) \in Q \times Z^+ : r \in C_i\}$, we define a topology τ as follows.

For every point of the form (r, 2n), a basis of open neighborhoods includes the sets $U_{\epsilon}(r, 2n) = \{(t, 2n) : |t - r| < \epsilon\}$ for every $\epsilon > 0$.

For every point of the form (r, 2n-1), a basis of open neighborhoods includes the sets $U_{\epsilon}(r, 2n-1) = \{(t, m) : |t-r| < \epsilon, m = 2n-2, 2n-1, 2n\}$ for every $\epsilon > 0$.

For the point p, a basis of open neighborhoods includes the sets $U_n(p) = \{(s,i) \in Y : i \geq 2n\}, n = 1, 2,$

On each C_i , i=1,2,..., we consider two disjoint dense subsets L_i , M_i such that $C_i = L_i \cup M_i$. We set $L = \bigcup_{i=1}^{\infty} L_i$ and $M = \bigcup_{i=1}^{\infty} M_i$. Obviously, the sets L, M are disjoint and dense. We consider the simple expansion $\tau \vee \tau_M$ (where τ_M is the topology generated by $\{M\}$) and any regularly open-maximal topology equivalent to $\tau \vee \tau_M$. We denote this topology by σ .

Proposition 2.1. The space (Y, σ) has the following properties.

- (1) It is countable connected Hausdorff having the point p as a dispersion point.
- (2) It is submaximal.
- (3) The subset L is a closed discrete subspace for which every open superset is dense.

Proof: (1) That (Y, σ) is countable Hausdorff is obvious. Since the topologies $\tau, \tau \vee \tau_M, \sigma$ have the same regularly open subsets, then (Y, σ) is connected. That p remains the dispersion point is obvious.

- (2) By [9, 2.2], every regularly open-maximal topology is sub-maximal.
- (3) The subset M is open dense in $\tau \vee \tau_M$, hence open in σ . By [9, 1.1(3)], it follows that $Cl_{\tau \vee \tau_M}M = Cl_{\sigma}M$; that is, M is dense in σ . Since Y is submaximal, L is a closed discrete subspace of (Y, σ) . Let $U \in \sigma$ and $L \subseteq U$. By [9, 1.1(2)], $Cl_{\tau}U = Cl_{\sigma}U$. Since L is dense in τ , U is dense in σ .

The following proposition is mentioned by El'kin in [3] without proof. That every maximal connected space is submaximal is proved by Thomas in [13].

Proposition 2.2. Let (X,τ) be a Hausdorff maximal connected space. Then the Katětov extension κX of X is maximal connected.

Proof: We first prove that κX is submaximal. Let D be a dense subset of κX . Since X is open, $D \cap X$ is dense in X and hence is also dense in κX . As $D \cap X \subseteq D \subseteq \kappa X = Cl_{\kappa X}(D \cap X)$, D is open in κX

Suppose there exists a connected topology τ'' strictly finer than the Katětov extension of X. We denote by τ' the induced topology by τ'' on (X,τ) . Since X is maximal connected, there exists $U \in \tau''$ such that the subset $A = U \cap X$ is open and closed in τ' . Since κX

is submaximal, it follows that $Int_{\kappa X}U \neq \emptyset$. For if $Int_{\kappa X}U = \emptyset$, then U is a closed discrete subspace of κX ; hence, U is open and closed in τ'' , which is impossible, because τ'' is connected.

Let $s \in Cl_{\tau''}U \setminus U$. By the definition of the Katětov extension and since $U \cap X$ is open and closed in τ' , it follows that $s \in \kappa X \setminus X$ and $s \in Cl_{\tau''}A$. Hence, $s \in Cl_{\kappa X}A$ and therefore, s is an accumulation point of $Int_{\tau}A$ in κX . Thus, s belongs to the open subset $Int_{\tau}A \cup \{q \in \kappa X \setminus X : Int_{\tau}A \in q\}$ in κX . Since A is open in τ'' , the subset $Cl_{\tau''}U = A \cup \{q \in \kappa X \setminus X : Int_{\tau}A \in q\}$ is open and closed in τ'' , contradicting the fact that τ'' is connected.

We attach the spaces (Y, σ) and κX by attaching only the closed discrete subspace L of Y to the closed discrete subspace $\kappa X \setminus X$ of κX and the spaces $Y \setminus L$ and X remaining disjoint. That is, we consider a one-to-one function f of L into $\kappa X \setminus X$, and we identify each $l \in L$ to $f(l) \in \kappa X \setminus X$. The remaining points of $(\kappa X \setminus X) \setminus f(L)$ may be removed.

On the set $Z = X \cup Y$, we define a topology ρ as follows. X and $Y \setminus L$ keep their own topology. For every point $l \in L$, a basic open neighborhood is the set $B_Z(l) = B_{\kappa X}(f(l)) \cup B_Y(l)$, where $B_{\kappa X}(f(l))$ is a basic open neighborhood of f(l) in κX and $B_Y(l)$ is a basic open neighborhood of l in (Y, σ) .

Proposition 2.3. The space (Z, ρ) has the following properties.

- (1) It is Hausdorff connected submaximal.
- (2) The subspaces $Z \setminus X \cup L$ and $Z \setminus Y$ are open.
- (3) L is a closed discrete subspace of Z.
- (4) The subspace $X \cup L$ is maximal connected.
- (5) Every open superset of $X \cup L$ is dense.

Proof: (1), (2), and (3) follow from the definition of the space Z.

- (4) By [5, Theorem 7], every connected subspace of a maximal connected space is maximal connected. Hence, $X \cup L$ is maximal connected.
- (5) Every open superset V of $X \cup L$ is of the form $X \cup U$, where U is open in (Y, σ) containing L. Hence, by Proposition 2.1.(3), V is dense.

Proposition 2.4. If the space (Z, ρ) has a maximal connected expansion ρ_m , then the subspace $(X, \rho_m \mid X)$ is not connected.

Proof: Suppose ρ has a maximal connected expansion ρ_m in which X remains connected. By [4, Theorem 14], the space (Z, ρ_m) has a cut point in the boundary of every nondense open subset. Let A be an open and closed subset of Y in σ . The subset $A \setminus L$ is open in σ , hence open in ρ and therefore open in ρ_m . For the open $A \setminus L$, the cut points of (Z, ρ_m) are either the point p or a point of L.

Suppose p is a cut point. Then there exist two open subsets F, G in ρ_m such that $F \cap G = \emptyset$ and $F \cup \{p\} \cup G = Z$. Obviously, the subsets $F \cup \{p\}$ and $G \cup \{p\}$ are closed connected in ρ_m and hence connected in ρ . Since $p \notin X$, the point p cannot cut the connected subspace X. Hence, one of the above subsets contains X. Let $X \subseteq G \cup \{p\}$. Then for the connected subspace $F \cup \{p\}$ of (Z, ρ_m) , it holds that

- (a) $F \cup \{p\}$ is maximal connected in (Z, ρ_m) because it is a connected subspace of a maximal connected space, by [5, Theorem 7];
- (b) $F \cup \{p\}$ is connected in (Z, ρ) , having the point p as a dispersion point, because $F \cup \{p\} \subseteq Y$.

Hence, $F \cup \{p\}$ has a maximal connected expansion which is impossible by [4, Theorem 15]. Therefore, the point p cannot be a cut point.

Suppose $l \in L$ is a cut point. Therefore, similarly as above, there exist two open subsets S, T in ρ_m such that $S \cap T = \emptyset$ and $S \cup \{l\} \cup T = Z$. Hence, one of the closed connected subsets $S \cup \{l\}$, $T \cup \{l\}$ in ρ_m contains X. Let $X \subseteq T \cup \{l\}$. But then $S \cup \{l\} \subseteq Y$; that is, the subspace $S \cup \{l\}$, which is connected with a dispersion point in (Z, ρ) , is expanded in a maximal connected space, which is impossible.

Proposition 2.5. Let X be a countable connected Hausdorff submaximal space with a dispersion point p. Then the Katětov extension κX of X is an uncountable connected separable Hausdorff submaximal space having the point p as a dispersion point.

Proof: That the space κX is connected separable Hausdorff is obvious.

By the proof of Proposition 2.2., it is submaximal. Since every countable H-closed space contains isolated points [2, Excercise 23, p. 147], κX is uncountable.

It remains to prove that p is a dispersion point of κX . Let M be a connected subset of $\kappa X \setminus \{p\}$. Since κX is submaximal, it follows

that $Int_{\kappa X}M \neq \emptyset$. Let $s \in \kappa X \setminus X$ and $s \in M \setminus Int_{\kappa X}M$. We set $N = M \cap X$. Since $M \setminus Int_{\kappa X}M$ is a closed discrete subspace of κX , then s is an accumulation point of Int_XN in κX . For if not, then there exists an open set U in κX containing s such that $U \cap M = \{s\}$; that is, M is not connected. Hence, $s \in Int_{\kappa X}M$ and therefore, $M \setminus Int_{\kappa X}M \subseteq X$. Obviously, $Int_{\kappa X}M \cap X \subseteq Int_XN$. Since N is not connected, there exist two open subsets A, B in X such that $A \cap N \cap B = \emptyset$ and $(A \cap N) \cup (B \cap N) = N$. Hence, the subsets $A \cap Int_XN$ and $B \cap Int_XN$ are disjoint open in X. Therefore, the subsets $(A \cap Int_XN) \cup \{q \in \kappa X \setminus X : A \cap Int_XN \in q\}$ and $(B \cap Int_XN) \cup \{q \in \kappa X \setminus X : B \cap Int_XN \in q\}$ are disjoint open in κX such that their union covers $Int_{\kappa X}M$. Since N has no isolated points, it follows that the subsets $Cl_{\kappa X}(A \cap Int_XN)$ and $Cl_{\kappa X}(B \cap Int_XN)$, whose union covers M, are disjoint on M, contradicting the fact that M is connected.

References

- A. V. Arhangel'skiĭ and P. J. Collins, On submaximal spaces, Topology Appl. 64 (1995), no. 3, 219–241.
- [2] Nicolas Bourbaki, Elements of Mathematics: General Topology. Part 1. Paris: Hermann; Reading, Mass.: Addison-Wesley Pub. Co., 1966.
- [3] A. G. El'kin, Maximal connected Hausdorff spaces (Russian), Mat. Zametki, translated in Math. Notes 26 (1979), no. 6, 974–978.
- [4] J. A. Guthrie, D. F. Reynolds, and H. E. Stone, Connected expansions of topologies, Bull. Austral. Math. Soc. 9 (1973), 259–265.
- [5] J. A. Guthrie and H. E. Stone, Spaces whose connected expansions preserve connected subsets, Fund. Math. 80 (1973), no. 1, 91–100.
- [6] G. J. Kennedy and S. D. McCartan, Maximal connected expansions, Proceedings of the First Summer Galway Topology Colloquium (1997). Topol. Atlas, North Bay, ON, 1998 (electronic).
- [7] B. Knaster and K. Kuratowski, Sur les ensembles connexes, Fund. Math. 2 (1921), 206–255.
- [8] Ronnie Levy and Jack R. Porter, On two questions of Arhangel'skii and Collins regarding submaximal spaces, Topology Proc. 21 (1996), 143–154.
- [9] J. Mioduszewski and L. Rudolf, H-closed and extremally disconnected Hausdorff spaces, Dissertationes Math. Rozprawy Mat. 66 (1969) 55 pages.
- [10] Jack R. Porter and R. Grant Woods, Extensions and Absolutes of Hausdorff Spaces. New York: Springer-Verlag, 1988.

SOME REMARKS ON MAXIMAL CONNECTED HAUSDORFF SPACES 53

- [11] Prabir Roy, A countable connected Urysohn space with a dispersion point, Duke Math. J. $\bf 33$ (1966), 331–333.
- [12] J. Pelham Thomas, Maximal connected topologies, J. Austral. Math. Soc. 8 (1968), 700–705.
- [13] _____, Maximal connected Hausdorff spaces, Pacific J. Math. 57 (1975), no. 2, 581–583.

Department of Mathematics; University of Patras; Patras, Greece T.K. 26504

 $E ext{-}mail\ address: tzannes@math.upatras.gr}$