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A TOPOLOGICAL ANALOGUE
OF THE LIPSCHITZ CONDITION
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Abstract. The paper shows that a notion, similar to the no-
tion of a Lipschitz function, can be defined in a purely topo-
logical way. A concept of a topologically Lipschitz function is
defined and some properties of topologically Lipschitz func-
tions are investigated. Possible applications to fixed-point
theory are discussed.

1. Introduction

The classical notion of a Lipschitz function is defined with the
aid of a metric. There are some other notions, such as contractivity,
uniform convergence, and measure of noncompactness, that seem
to work only in metric spaces or in uniform spaces. Nevertheless,
a topological analogue of contractivity was defined in [7] and gen-
eralized in [4]. The concept of strong convergence from [5] serves
as a topological analogue of uniform convergence and in [6], a kind
of measure of noncompactness was defined in purely topological
terms. In the papers mentioned above, open covers are often used
to describe and define new notions.

In this paper, we define the notion of a topologically Lipschitz
function using only the language of topological spaces. Although
this theory could be applied very easily in uniform spaces, we omit
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76 I. KUPKA

this part because it is too obvious and we prefer to concentrate on
investigating some important properties of topologically Lipschitz
functions.

In what follows, we will use these notions concerning topological
spaces and functions: a net of points, a limit of a net, a net of
functions, pointwise convergence (see e. g., [1] or [2]).

We use the following notation: if p is an open cover of a topo-
logical space X and x is an element of X we denote

stp(x) =
⋃

V ∈p,x∈V

V.

The set stp(x) is called the star of x in the cover p.
By induction, we can define the n-th star of x by

stnp (x) =
⋃

V ∈p,V ∩stn−1
p (x) 6=∅

V.

If x, y are elements of a topological space X and p is an open
cover of X, then x ∈ stnp (y) is equivalent to y ∈ stnp (x).

It is quite easy to see that a topological space X is connected
if and only if for each x, y from X and each open cover p of X,
there exists an integer n such that x ∈ stnp (y). (This was shown,
for example, in [8].)

2. Main results

We will use the following notation: If X is a topological space,
we denote the set of all open covers of X by PX . We denote the
set of all real numbers with its usual topology by R.

For each ε > 0, we define pε = {(a + ε
2 , a − ε

2); a ∈ R}, and we
denote E = {pε; ε > 0}.

Now we are going to define a notion of scale. A scale will be a
set of open covers that will measure or, more exactly, determine
whether a function is topologically Lipschitz or not.

Definition 2.1. Let (X, T ) be a topological space. Let PX be the
set of all open covers of X. If C is a nonempty subset of PX , we
call it a scale.

If
(i) for all x ∈ X and for all V ∈ T such that x ∈ V , there

exists p ∈ C such that stp(x) ⊂ V ,
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we call C a simple scale.
If
(ii) for all x ∈ X and for all V ∈ T such that x ∈ V , and for all

m ∈ N there exists p ∈ C such that stmp (x) ⊂ V ,
we call C a fine scale.

Remark 2.2. Using the notation defined above, we can see that E
is a fine scale in R, so it is a simple scale in R, too. Of course, similar
scales, created by open balls of the same radius, can be defined in
metric spaces. Analogously, we see that fine scales exist in uniform
spaces, too. It would be interesting to find a characterization of
spaces having fine scales, but this is not the goal of the present
article.

Definition 2.3. Let X be a topological space and let C be a scale
in X. Let f : X → X be a function and x ∈ X a point.

We say that f is 1− C Lipschitz at x if, for all p ∈ C,

f(stp(x)) ⊂ stp(f(x)).

If m,n are positive integers, we say that f is (m,n)−C Lipschitz
at x if, for all p ∈ C,

f(stnp (x)) ⊂ stmp (f(x)).

We say that f is 1− C Lipschitz if it is 1− C Lipschitz at all x
from X. Analogously, we say that f is (m,n)− C Lipschitz if it is
(m,n)− C Lipschitz at all x from X.

We have defined a topological analogue of the Lipschitz con-
dition. Now we show that topologically Lipschitz functions and
classical Lipschitz functions have some similar properties.

The proofs of the following two theorems are easy and very sim-
ilar. Therefore, we provide only the proof of the second theorem.

Theorem 2.4. Let X be a topological space, x a point from X, and
f : X → X a function. Let C be a simple scale in X. If f is 1−C
Lipschitz at x, then f is continuous at x.

Theorem 2.5. Let X be a topological space, x a point from X,
and f : X → X a function. Let C be a fine scale in X. Let m,n
be positive integers. If f is (m,n) − C Lipschitz at x, then f is
continuous at x.
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Proof: Let V be an open subset of X such that f(x) ∈ V . Since
C is a fine scale, there exists an open cover p from C such that
stmp (f(x)) ⊂ V . The function f is (m,n)− C Lipschitz at x, so

f(stnp (x)) ⊂ stmp (f(x)).

Denote U = stp(x). We see that U is an open neighborhood of x.
Since U ⊂ stnp (x), we obtain f(U) ⊂ V . The function f is proved
to be continuous at x. ¤

It is known that if a differentiable function f : R → R has a
derivative 0, then f is constant. The following theorem shows that
a topological analogue of this is true, too.

Theorem 2.6. Let X be a connected T1 space and C a simple scale
in X. Let f : X → X be a function and z an element of X. If f
is (1, n)−C Lipschitz at z for every positive integer n, then f is a
constant function.

Proof: We will prove that for all x from X, f(x) = f(z). The
space X is connected; so, for each p ∈ C, we have X =

⋃
n stnp (z)

for some positive integer n. Thus, we have f(X) ⊂ stp(f(z)) for
each open cover p from C. As C is a simple scale and X is T1,
we have f(X) ⊂ ⋂

p∈C stp(f(z)) = {f(z)}. Hence, f(X) = {f(z)},
and so f is constant. ¤

3. Pointwise limits of
topologically Lipschitz functions

In this section, we show that a pointwise limit of a net of topo-
logically Lipschitz functions is a topologically Lipschitz function.

Theorem 3.1. Let X be a topological space and C be a scale on
X. Let {fγ}γ∈Γ be a net of (m,n)−C Lipschitz functions from X
to X converging pointwise to a function f : X → X. Then f is
(m + 2, n)− C Lipschitz.

Proof: It suffices to show that for f , C, and an arbitrary z from
X, the following statement is true.

(*) For all p ∈ C and for all x ∈ X, if x ∈ stnp (z), then f(x) ∈
stm+2

p (f(z)).



A TOPOLOGICAL ANALOGUE OF THE LIPSCHITZ CONDITION 79

Let z be an arbitrary element of X. Let p be an element of C and
let x ∈ stnp (z). Fix U1 and U2 from p such that f(x) ∈ U1 and
f(z) ∈ U2 and fix an index α such that fα(x) ∈ U1 and fα(z) ∈ U2

(such an index exists because {fγ}γ∈Γ converges to f pointwise).
The following are true.

(1) f(x) ∈ stp(fα(x)).
(2) fα(x) ∈ stmp (fα(z)).
(3) fα(z) ∈ stp(f(z)).

Together, (1), (2), and (3) imply f(x) ∈ stm+2
p (f(z)). Since z

was arbitrary, f is proved to be (m + 2, n)− C Lipschitz. ¤

4. Contractivity

Topological methods are used largely when solving a fixed point
problem (see e. g., [3], [4], and [7]). Intuitively, we feel that a
topologically Lipschitz function f with a small Lipschitz constant
should be contractive. In that case, we should be able to obtain
some results concerning the existence of fixed points for f . In this
section, we suggest one way that results of this kind could be ob-
tained. We will need some further research into the properties of
scales to be able to prove a fixed point theorem similar to Theorem
4.3.

The main result of this section will concern some results from
[4].

Definition 4.1 ([4, Definition 2]). Let (X, T ) be a topological
space. Let f : X → X be a function. Then f is said to be feebly
topologically contractive if for every open cover p of X and for every
pair of points x, y ∈ X, there exists k ∈ N and U ∈ p such that
fk(x) ∈ U and fk(y) ∈ U holds.

Remark 4.2. We can see that a function f : X → X is feebly
topologically contractive if and only if for every open cover p of X
and for every pair of points x, y ∈ X, there exists k ∈ N such that
fk(x) ∈ stp(fk(y)) holds.

In [4], the following result was obtained.

Theorem 4.3 ([4, part of Theorem 2]). Let X be a T1 topological
space. Let f : X → X be a feebly topologically contractive function
with closed graph. Then f has a unique fixed point.
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Now we are going to show that in connected topological spaces,
some topologically Lipschitz functions will have a contractivity prop-
erty.

Theorem 4.4. Let X be a connected topological space, C a scale
in X, and f : X → X a function. Let f be (1, n)−C Lipschitz for
some integer n ≥ 2. Then

(contr) for all p ∈ C and for all x, y ∈ X, there exists m0 ∈ N
such that for all m ≥ m0, fm(x) ∈ stp(fm(y)).

Proof: Since f is (1, n) − C Lipschitz, (contr) will be shown to
be true if we prove that the following is true.

(4) For all p ∈ C and for all x, y ∈ X, there exists m0 ∈ N such
that fm0(x) ∈ stp(fm0(y)).

Suppose, contrary to what we wish to prove, that

(5) there exists p ∈ C and there exists x, y ∈ X such that for
all m ∈ N, fm(x) /∈ stp(fm(y)).

From now on, we consider a fixed open cover p and two chosen
points x and y for which (5) is true. Statement (5) implies

(6) for all m ∈ N, fm(x) /∈ stnp (fm(y)).

To see this, if (6) were not true, then for some m, fm(x) ∈
stnp (fm(y)) would be true and, since f is (1, n) − C Lipschitz,
fm+1(x) ∈ stp(fm+1(y)) would follow and this would be a con-
tradiction.

Now for each m ∈ N, define

km = min{k; fm(x) ∈ stkp(f
m(y))}.

The numbers km exist because of the connectedness of X.
Put l = min{km; m ∈ N}. Take o such that l = ko. We see

immediately that l > n; otherwise, fo(x) ∈ stnp (fo(y)) would be
true and this would imply fo+1(x) ∈ stp(fo+1(y)). Therefore, we
have

l = rn + s for some r ∈ N, s ∈ N.

Denote u = fo(x) and v = fo(y). Since u ∈ stlp(v), there exist
points u0, u1, . . . ur from X such that u0 = u, ur = v and

for all i = 0, 1, . . . , r − 1, ui ∈ stnp (ui+1)
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is true. Since f is (1, n)− C Lipschitz, we obtain

for all i = 0, 1, . . . , r − 1, f(ui) ∈ stp(f(ui+1)).

This implies f(u) ∈ str+1
p (f(v)); so, fo+1(x) = f(u) ∈ str+1

p (f(v)) =
str+1

p (fo+1(y)) is true. But we can see that r + 1 < l and this con-
tradicts the minimality of l.

We have proved by contradiction that (4) is true. ¤
The results obtained above imply, in fact, that every (1, n)−PX

Lipschitz function in connected Hausdorff spaces has a unique fixed
point. But the system PX is too large and it can be shown that
such a function is constant. To obtain an interesting fixed point
theorem, we would need to work with a smaller system of open
covers, probably with a fine scale with special properties.
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