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LINEARLY ORDERED TOPOLOGICAL SPACES

ZIQIN FENG AND ROBERT HEATH

Abstract. The authors use techniques and results from the
theory of generalized metric spaces to give a new, short proof
that every connected, linearly ordered topological space that
is a cancellative topological semigroup is metrizable, and hence
embeddable in R. They also prove that every separable, lin-
early ordered topological space that is a cancellative topolog-
ical semigroup is metrizable, so embeddable in R.

1. Background and introduction

A linearly ordered topological space (LOTS) L is a linearly or-
dered set L with the open interval topology. A cancellative topo-
logical semigroup on L is a semigroup with a continuous semigroup
operation such that ab = ac, ba = ca, and b = c are equivalent for
any a, b, c ∈ L. A question that can be traced to both Nils Henrik
Abel and Sophus Lie, and was listed as the second half of Hilbert’s
fifth problem, essentially asks whether a cancellative topological
semigroup on a connected LOTS can be embedded in the real line.
The history of the problem, and the various solutions and partial
solutions and related questions, are most thoroughly documented
by K. H. Hofmann and J. D. Lawson. In [7], they note Otto Hölder’s
(1901) contribution [p. 19], and continue,
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Clifford pointed out ... that the arguments and re-
sults of Aczél and Tamari remain valid for general
connected linearly ordered sets. Aczél later pointed
out that cancellativity implies strict monotonicity
..., and thus his result could also be formulated for
cancellative threads. Recently, Craigen and Palés
... have simplified the overall proof. [p. 24]

Additionally, a proof using generalized metric techniques is given
by Ronald E. Barnhart in [3]. That proof, however, is restricted
to the abelian case. Here, we give a fairly short proof using only
generalized metric techniques. We also show that the theorem still
holds if “connected” is replaced by “separable.” One might assume
that would be a corollary of the theorem in [7] that “ ‘a totally
ordered set can be embedded in R if and only if it contains a count-
able subset C such that for any x < y there is a c ∈ C with
x ≤ c ≤ y’ ” [with no mention of a semigroup]. The assumption
that that hypothesis follows from separability is seen to been false.
The space obtained from [0, 1] by replacing each point by a pair of
adjacent points (the double-arrow space) is a compact, separable
LOTS that can’t be embedded in R, and of course does not have
the aforementioned property.

2. Metrizability

Theorem 1. Every connected LOTS L which is a cancellative topo-
logical semigroup is metrizable and hence, embeddable in R.

The theorem follows from the following propositions. Below, L
satisfies the conditions of the theorem. Note that every closed and
bounded subset of L is compact.

Proposition 2. For any a ∈ L, the maps fa given by fa(x) = ax
and ga given by ga(x) = xa are autohomeomorphisms of L.

Proof: Fix a ∈ L. Since L is a topological semigroup, fa and ga

are continuous by the properties of topological semigroups. Also by
the cancellativity of L, fa and ga are both one-to-one. Take b, c ∈ L
with b < c. Then [b, c] is compact and connected, so fa maps [b, c]
into the closed interval with endpoints fa(b) and fa(c). Therefore,
fa maps open intervals to open intervals, and so f−1

a is continuous.
Similarly, g−1

a is continuous. ¤
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From Proposition 2, we know directly that fa and ga are both
either order-preserving or order-reversing.

Proposition 3. The space L is first countable.

Proof: Pick a ∈ L and an increasing sequence {aα : α < γ}
which converges to a from the left. Pick a countable subsequence
{an : n ∈ ω} of {aα : α < γ}. Then since L is connected and
{an} has an upper bound, b = sup{an : n ∈ ω} exists. If b = a,
then we have nothing to do from the left. If not, consider fa.
Since fa is a homeomorphism, fa(an) converges to ab. Also gb is a
homeomorphism which maps a to ab. Therefore, the preimage of
{anb : n ∈ ω} is a sequence which converges to a from the left.

By similar reasoning, we get a countable sequence {bn : n ∈ ω}
converging to a from the right. Then we get that {(an, bn) : n ∈ ω}
is a countable local base at a. ¤

Proposition 4. The sequence {an : n ∈ ω} is either constant or
strictly monotone and unbounded for any a ∈ L.

Proof: Three cases arise.

Case 1. Assume a = a2. Then the sequence is obviously con-
stant.

Case 2. Assume a < a2. Since fa is order-preserving, we know
we need only to show a2 < a3. Suppose, for contradiction, a3 < a2.

If p, q ∈ [a, a2] and p < q, then we have the following two condi-
tions.

i) If ap < p, then aq < ap < p < q. Therefore, aq < q.
ii) If aq > q, then ap > aq > q > p. Therefore, ap > p.
Thus, we can take I = inf{p : p ∈ [a, a2], ap < p} and S =

sup{p : p ∈ [a, a2], ap > p}. It is obvious that I, S ∈ [a3, a2] and
I ≤ S.

Consider the relationship between I and S. If I = S, then aI =
I, and this contradicts a < a2. If I < S, then for any m with
I ≤ m ≤ S, we have am = m, and again, we get a contradiction.

Case 3. Assume a2 < a. Using an argument similar to that in
Case 2, we can show a3 < a2, as required.

Thus, {an : n ∈ ω} is strictly monotone in Case 2 and Case 3.
Unboundedness is easy to prove by contradiction. ¤
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Note that from the above proof, if a < a2, then {x ∈ L : a ≤ x}
is a union of almost disjoint homeomorphic closed intervals. Also
note that we now know fa and ga are both order-preserving.

Proposition 5. Take a ∈ L and assume, without loss of generality,
a < a2 and a 6= min L. Then La = [a,∞) is metrizable.

Proof: By Proposition 2, there exists sequences x1 < x2 < · · ·
and y1 > y2 > · · · that both converge to a. Define gn(a) = (xn, yn).
For each p ∈ [a3, a4], take q ∈ [a2, a3] with p = aq and let gn(p) =
(xnq, ynq). Now we show that the neighborhood system {gn(p), n ∈
ω, p ∈ (a3, a4)} satisfies the requirements of semi-metrizability.

Suppose y ∈ [a3, a4] and for each n, y ∈ gn(pn) = gn(aqn) =
(xnqn, ynqn). Without loss of generality, assume qn −→ z, then
xnqn −→ az and ynqn −→ az. Thus, since y ∈ (xnqn, ynqn) for each
n, we have that y = az. Therefore, pn −→ y. It follows that [a3, a4]
is semi-metrizable and hence, it is metrizable by the equivalence
of the semi-metrizability and metrizability in LOTS [4]. Hence,
La = {x ∈ L : a ≤ x} is metrizable. And since La is connected and
locally compact, it is separable. Hence, La is embeddable in R. ¤

Proof of Theorem 1: Here, without loss of generality, we can
assume there is an a ∈ L with a < a2. Next, we will prove the
theorem in three cases.

Case 1. minL = m. Then it is easy to see that m ≤ m2. If
m < m2, then L is metrizable by Proposition 5. Otherwise, by
Proposition 3, we can find {xn : n ∈ ω} which converges to m
from the right. Then for each n ∈ ω, xn < (xn)2. Hence, Lxn is
metrizable for each n by Proposition 5. Therefore, L is metrizable.

Case 2. minL does not exist and there is some b ∈ L with b2 < b.
Then we can take m = inf{a : a < a2}. This follows because we
can get c < c2 from a < c and a < a2 from Proposition 4. Then it is
easy to check m = m2. Let x1 < x2 < · · · and y1 > y2 > · · · both
converge to m, and let Rxi = {a ∈ L : a ≤ xi}. A proof similar to
that of Proposition 5 shows that Rxi is metrizable for each i. Since
Lyi is also metrizable, we get that L is metrizable.

Case 3. minL does not exist and a < a2 for any a ∈ L. If there
is a countable co-initial decreasing sequence {xn : n ∈ ω} which
is unbounded, then L =

⋃
n∈ω Lxn is metrizable because Lxn is

metrizable for each n ∈ ω. If not, we take {xα : α ∈ ω1} which
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is strictly decreasing and unbounded below without countable co-
initial subsequence. Then we take a ∈ L. Consider the set {(xα)m :
m ∈ ω, α ∈ ω1}. Then we can find n0, m0, and α0 such that
(xα)m0 ∈ [an0 , an0+1] for α > α0. This is because x < y ⇒ xn <
yn. Then we can suppose {(xα)m0 : α > α0} converges to b ∈
[an0 , an0+1]. This contradicts the first countability of L. So we get
a contradiction. ¤

Next, we have another nice theorem about the metrizability of a
separable LOTS.

Theorem 6. Every separable LOTS which is also a cancellative
topological semigroup is metrizable.

Proof: Recall that a separable LOTS is metrizable if and only if
its set of endpoints (points with either an immediate predecessor
or an immediate successor) is at most countable. Also, note that
in a separable LOTS every uncountable set contains a limit point,
since every LOTS is monotonically normal

Assume L is a separable LOTS with uncountably many end-
points, and let L be a cancellative topological semigroup. Since
L is separable, L has at most countably many isolated points. So
we may assume, without loss of generality, that L has no isolated
points (because the sum of nonisolated points can not be isolated,
and L is a semigroup). Then the endpoints occur in pairs of ad-
jacent points. Let E be the set of all such adjacent point pairs,
x = (x1, x2) with x1 < x2.

Let L∗ be the space obtained by identifying each pair (x1, x2) to
a point x. Then L∗ is metrizable with metric δ which induces a
pseudometric d on L. Let E = {(x1, x2) : d(x1, x2) = 0}.

For each x = (x1, x2) ∈ E, we know x1 + x2 /∈ {2x1, 2x2} by the
cancellativity of addition. Notice that 2x1 = 2x2 is possible. So if
diamd{x1 +x2, 2x1, 2x2} = 0, then we can get 2x1 = 2x2, and (p, q)
or (q, p) is in E if x1 + x2 = p and 2x1 = q.

Consider the subset, F = {x ∈ E : diamd{x1 + x2, 2x1, 2x2} >
0}, of L∗. Two cases arise.

Case 1. F is uncountable. Then since L is separable and mono-
tonically normal, F has cluster points in L. That leads to a contra-
diction to the continuity of the operation and the distance function.
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Case 2. F is countable. Then, without loss of generality, we can
assume B′ = {x ∈ E : (2x1, x1+x2) ∈ E} is uncountable [otherwise,
{x ∈ E : (x1+x2, 2x1) ∈ E} is uncountable]. Then, by separability,
all but countably many points of B′ are limit points of B′. By the
continuity of the semigroup operation, for each x ∈ B′, there is
nx ∈ ω such that if δ(x, t) < 1/nx, then t1 + t2 ≤ 2x1 = 2x2 <
x1 + x2. Then there is ε > 0 such that G = {x ∈ B′ : 1/nx > ε}
is uncountable. Now we can pick x, z ∈ G such that δ(x, z) < ε. It
follows that

z1 + z2 < x1 + x2 < z1 + z2,

which is a contradiction.
Thus, L is metrizable, and the proof is complete. ¤
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