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PARTITION RELATIONS AND
POWER HOMOGENEITY

N. A. CARLSON AND G. J. RIDDERBOS

Abstract. Applying the Erdös-Rado Theorem, we prove that
the cardinality of any power homogeneous Hausdorff space X
is bounded by 2c(X)πχ(X). This answers a question of Jan
van Mill and provides a new proof of van Douwen’s Theorem.
We also give an improvement of a bound proved by Ryszard
Frankiewicz on the size of H(X), the group of autohomeo-
morphisms of X.

1. Introduction

All spaces under consideration are Hausdorff. A space X is ho-
mogeneous if for every x, y ∈ X there is a homeomorphism h of
X such that h(x) = y. A space X is called power homogeneous if
Xµ is homogeneous for some cardinal number µ. By πχ(X) and
πw(X), we denote the π-character and π-weight of a space X. By
d(X), c(X), and χ(X), we denote density, cellularity, and charac-
ter, respectively.

In 1978, Eric K. van Douwen [3] proved that if X is power homo-
geneous, then the size of X is bounded by 2πw(X). In 2005, Jan van
Mill [7] showed that if X is in addition compact, then the size of X

is bounded by 2c(X)πχ(X). Since always c(X)πχ(X) ≤ πw(X), and
strict inequality is possible, this improves van Douwen’s result for
the class of compact spaces. Van Mill asked in [7] if his inequality
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is also true without the assumption of compactness. A positive an-
swer for regular spaces was provided by G. J. Ridderbos in [9], and
Nathan A. Carlson showed in [2] that the assumption of regularity
may be weakened to either quasi-regular or Urysohn.

In this note we prove that these separation axioms can be dropped
entirely and that van Mill’s inequality is valid for arbitrary power
homogeneous Hausdorff spaces. We also give an improvement of a
cardinality bound proved by Ryszard Frankiewicz [4]. All of our
results depend on the well-known Erdös-Rado Theorem. This par-
tition theorem was previously used by A. Hajnal and I. Juhász in [5]
to show that the size of any space X is bounded by 2c(X)χ(X). So in
the presence of power homogeneity, the character can be replaced
by the π-character in this cardinality bound.

To the best of our knowledge, the use of a partition relation
in the proof of cardinality bounds on homogeneous spaces is new.
It should be noted that our results provide a new proof of van
Douwen’s Theorem.

2. Power homogeneous spaces

All product spaces carry the standard product topology. When-
ever µ is a cardinal number and A ⊆ µ, then by πA we denote the
projection of Xµ onto XA. If α ∈ µ, then we write πα for π{α},
which is the projection on the α-th coordinate. This notation is
ambiguous because α is also a subset of µ. As a rule, we will al-
ways use πα and πβ as projections on the respective coordinates
and for κ ⊆ µ, we will use πκ for the projection onto Xκ. Finally,
if x ∈ Xµ, then we write xA instead of πA(x), and π is always the
projection onto the first coordinate, i.e. π = π0.

By ∆(X, κ), we denote the diagonal in Xκ which is given by{
x ∈ Xκ : ∀α, β ∈ κ (xα = xβ)

}
.

We will call a space Xµ ∆-homogeneous if for all points x, z ∈
∆(X, µ) there is a homeomorphism of Xµ mapping x onto z. A
space X is power homogeneous if and only if there is a cardinal µ
such that Xµ is ∆-homogeneous. This was proved by Ridderbos in
[10].

The set of all autohomeomorphisms of a space X is denoted by
H(X) and we let tpe(x,X) = {h(x) : h ∈ H(X)} be the type of x
in X. Recall that a set R ⊆ X is regular open if Int Cl R = R. We
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denote the collection of regular open subsets of X by RO(X). The
semiregularization of a space X, denoted by Xs, is the space with
underlying set X and RO(X) as a basis for its topology. A space
X is semiregular if X = Xs.

The well-known Erdös-Rado Theorem states that if f : [X]2 → κ
is a function and |X| > 2κ, then there is some subset Y of X with
|Y | ≥ κ+ such that f(y) = f(z) for all y, z ∈ [Y ]2. We shall use
this theorem to prove our main result. To indicate the use of this
partition relation in the presence of homogeneity, we first prove the
following proposition.

Proposition 2.1. Suppose f : X → Y is an open and continuous
map. If A is some type in X, then

|f [A]| ≤ 2πχ(X)c(Y ).

Proof: Let κ = πχ(X)c(Y ). We may fix B ⊆ A, such that
f¹B : B → f [A] is a bijection. Fix p ∈ B, and for every x ∈ B,
fix a homeomorphism hx ∈ H(X) such that hx(p) = x. Let U be a
local π-base at p in X with |U| ≤ κ and fix a well-ordering on U.
We now define a map G : [B]2 → U by

G({x, z}) = min{U ∈ U : fhx[U ] ∩ fhz[U ] = ∅},
where {x, z} ∈ [B]2. We invite the reader to check that this is
well-defined. We now prove that the size of B is bounded by 2κ by
contradiction; so assume that |B| > 2κ. Then it follows from the
Erdös-Rado Theorem that there is some set Z ⊆ B and U ∈ U such
that G({x, z}) = U for all x, z ∈ Z. This means that the collection
C = {fhz[U ] : z ∈ Z} is a family of pairwise disjoint open subsets
of Y . Since |C| = |Z| ≥ κ+ and c(Y ) ≤ κ, this is impossible. ¤

It follows from the previous proposition that the size of homo-
geneous spaces X is bounded by 2c(X)πχ(X). We now turn towards
proving that this inequality is also valid for power homogeneous
spaces. We fix a power homogeneous space X and a cardinal num-
ber µ such that Xµ homogeneous. We also fix a cardinal number
κ with πχ(X) ≤ κ. Without loss of generality, we may assume
that κ ≤ µ. Fix p ∈ ∆(X, µ) and a local π-base U at π(p) in X.
For B ⊆ A ⊆ µ, let πA→B be the projection of XA onto XB. For
A ⊆ µ, define U(A) by{

π−1
A→B

[∏
b∈B

Ub

]
: B ∈ [A]<ω, ∀ b ∈ B

(
Ub ∈ U

)}
.
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Observe that U(A) is a local π-base at pA in XA; see [9] for de-
tails. We shall need the following lemma which is a consequence of
Theorem 2.2 in [1].

Lemma 2.2. For every x ∈ ∆(X,µ) there is a homeomorphism
hx : Xµ → Xµ such that hx(p) = x and the following conditions
are satisfied.

(1) For all z ∈ Xµ, if zκ = pκ then π(hx(z)) = π(x),
(2) For all U ∈ U(κ), there is a point q(U) ∈ π−1

κ [U ] and a
basic open neighborhood Ux of hx(q(U))κ in Xκ such that
(a) q(U)α = pα for all α ∈ µ \ κ and
(b) π−1

κ [Ux] ⊆ hx[π−1
κ [U ]].

Proof: Since Xµ is homogeneous, we pick h : Xµ → Xµ such
that h(p) = x. Applying [1, Theorem 2.2], we find A ∈ [µ]≤κ such
that (1) is satisfied for A instead of κ. Next for all U ∈ U(A),
we pick q(U) ∈ π−1

A [U ] as in (2)(a),where κ is replaced by A. For
(2)(b),we may just pick a basic open neighborhood of h(q(U)) in
Xµ which is contained in h[π−1

A [U ]]. Since |U(A)| ≤ κ, we obtain a
set B of at most κ many coordinates such that all the basic open
sets obtained in this way depend only on the coordinates in B.

By applying suitable coordinate changes (see [9, §3]), we obtain
hx as required. ¤

We point out that the points q(U) from the previous lemma
depend on x. In the proof of the following theorem we will not
write q(x,U) to express this dependence because we only consider
points of the form hx(q(U)). We will implicitly assume that in this
notation, the point q(U) is the point q(x, U).

Theorem 2.3. If X is power homogeneous, then |X| ≤ 2πχ(X)c(X).

Proof: We let κ = πχ(X)c(X) and we fix µ ≥ κ such that Xµ

is homogeneous. For every x ∈ ∆(X, µ), we fix a homeomorphism
hx : Xµ → Xµ as in the previous lemma. For x ∈ ∆(X, µ) and
U ∈ U(κ), the open set Ux is a basic open subset of Xκ, so we may
fix a collection {Ux,α : α ∈ κ} of open subsets of X such that

Ux =
⋂
α<κ

π−1
α [Ux,α].

For every α ∈ κ, we also fix a local π-base {V (x,U, α, β) : β < κ}
of the point hx(q(U))α in X. We first observe the following claim.
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Claim 1. Whenever x, y ∈ ∆(X,µ) are different, there are some
U ∈ U(κ) and α, β < κ such that

V (x,U, α, β) ⊆ Ux,α \ Uy,α.

Proof of Claim: Since π(x) 6= π(y), we have that h−1
y (x)κ 6= pκ.

Fix an open neighborhood W of pκ in Xκ such that h−1
y (x)κ 6∈ W

and let
W =

{
U ∈ U(κ) : U ⊆ W

}
.

Note that W is a local π-base at pκ in Xκ and h−1
y (x)κ 6∈ Cl

⋃
W.

So we have
x ∈ Cl

{
hx(q(U)) : U ∈ W

}
,

and since π−1
κ [Uy] ⊆ hyπ

−1
κ [U ] for all U ∈ W, we have

x 6∈ Cl
⋃{

π−1
κ [Uy] : U ∈ W

}
.

But this means that there is some U ∈ W such that

hx(q(U))κ 6∈ Uy.

Since Uy is a basic open subset of Xκ, it follows that there is some
α < κ such that

hx(q(U))α 6∈ Uy,α.

Since {V (x,U, α, β) : β < κ} is a local π-base at hx(q(U))α in X
and hx(q(U))α ∈ Ux,α, we may pick β < κ such that V (x,U, α, β) ⊆
Ux,α \ Uy,α and this completes the proof of the claim.

We now prove the desired inequality. So assume that |X| > 2κ.
We fix a well-ordering ≺ on X and define a map G : [X]2 →
U(κ)× κ× κ as follows: Let {x, y} ∈ [X]2 and assume that x ≺ y.
Applying the previous claim, we may let G({x, y}) = 〈U,α, β〉 be
such that

V (x,U, α, β) ⊆ Ux,α \ Uy,α.

Here we have identified ∆(X,µ) with X. Note that |U(κ)×κ×κ| =
κ. Since |X| > 2κ, we apply the Erdös-Rado Theorem to find
Y ⊆ X and 〈U,α, β〉 ∈ U(κ) × κ × κ such that |Y | = κ+ and
for all {x, y} ∈ [Y ]2, G({x, y}) = 〈U,α, β〉. By possibly removing
the ≺-largest element from Y , we may assume that for all y ∈ Y ,
V (y, U, α, β) ⊆ Uy,α.
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Consider the collection C = {V (x, U, α, β) : x ∈ Y } of open
subsets of Xκ. If x, y ∈ Y are different with x ≺ y, then we have

V (x, U, α, β) ∩ Uy,α = ∅ and V (y, U, α, β) ⊆ Uy,α,

and, therefore, V (x,U, α, β) and V (y, U, α, β) are disjoint. But this
means that the collection C consists of pairwise disjoint open sub-
sets of X. Since |C| = |Y | = κ+ and c(X) ≤ κ, this is impossi-
ble. ¤

It is well-known that if X is regular, then its density is bounded
by πχ(X)c(X). This was proved by B. Šapirovskĭı in [11], and
Carlson, in [2], showed that this inequality is also valid for quasi-
regular spaces. This bound is not true in general, (see, for exam-
ple, section 4), but we have just proved that the density of power
homogeneous spaces X is bounded by 2c(X)πχ(X). Since always
|RO(X)| ≤ πw(X)c(X) we obtain the following corollary.

Corollary 2.4. If X is power homogeneous, then

|RO(X)| ≤ 2c(X)πχ(X).

In [2], Carlson introduced the πθ-character of a space X denoted
by πχθ(X) and proved that πχθ(X) ≤ πχ(X) (see [2, Corollary
2.7]). It was also proved there that Theorem 2.3 is equivalent to the
following result which solves Question 4.8 in [2]. By Proposition 2.1
in [2], the class of spaces with (power) homogeneous semiregular-
ization contains the class of spaces that are (power) homogeneous.

Corollary 2.5. If X has power homogeneous semiregularization,
then |X| ≤ 2c(X)πχθ(X).

Proof: This follows from Theorem 2.3 and Observation 4.9 in
[2]. ¤

It was proved by Ridderbos in [9, Theorem 4.5] that if X is
power homogeneous and πw(X) = µ, then Xµ is ∆-homogeneous.
This fact yields a quick proof of van Douwen’s Theorem, see [9,
Theorem 4.6]. Note that it follows from Proposition 2.1 that if Xκ

is ∆-homogeneous where κ = c(X)πχ(X), then |X| ≤ 2κ. So this
raises the following question.

Question 2.6. Suppose X is power homogeneous and let κ =
c(X)πχ(X). Is Xκ ∆-homogeneous?
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3. The group of homeomorphisms H(X)

In this section, we study the size of the group H(X) for arbitrary
Hausdorff spaces X. Frankiewicz proved in [4] that the size of
H(X) is bounded by 2πw(X). Since |X| ≤ |H(X)| whenever X is
homogeneous, this improves van Douwen’s Theorem from [3] for
homogeneous spaces. In view of Theorem 2.3, it is natural to ask
if the size of H(X) is also bounded by 2c(X)πχ(X). We do not know
the answer to this question, but using the Erdös-Rado Theorem,
we will present an improvement of the Frankiewicz result.

We say that a subset Z of X separates a subset G of H(X), if
for all f, g ∈ G with f 6= g there is some z ∈ Z with f(z) 6= g(z).
The separation degree of X, denoted by sd(X), is defined as

sd(X) = min{|Z| : Z separates H(X)}.
It is always the case that sd(X) ≤ d(X). Carlson observed in [2]
that if X is (power) homogeneous then Xs is (power) homogeneous.
As a corollary, we have the following simple observation.

Observation 3.1. If X is any space, then H(X) ⊆ H(Xs) and
therefore sd(X) ≤ sd(Xs). In particular it follows that sd(X) ≤
d(Xs).

Proof: The first statement is proved by Carlson in [2, Proposition
2.1]. The inequalities are immediate consequences. ¤
Proposition 3.2. The size of H(X) is bounded by 2c(X)πχ(X)sd(X).

Proof: Let κ = c(X)πχ(X)sd(X) and fix a subset Z of X which
separates H(X) such that |Z| ≤ κ. For every z ∈ Z, we fix a
local π-base Uz at z of size ≤ κ and we set U =

⋃{Uz : z ∈ Z}.
Note that |U| ≤ κ. Fix a well-ordering on U and define a map
G : [H(X)]2 → U as

G({f, g}) = min{U ∈ U : f(U) ∩ g(U) = ∅},
where f, g ∈ H(X) are different. It is routine to check that G is
well-defined; this follows from the fact that Z separates H(X). As
before, it follows from the Erdös-Rado Theorem that |H(X)| ≤
2κ. ¤

In the next section, we shall provide examples to show that the
previous proposition really improves Frankiewicz’s result from [4].
However, we do not know whether the separation degree can be
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dropped from the bound in Proposition 3.2, so we ask the following
question.

Question 3.3. Is the size of H(X) always bounded by 2c(X)πχ(X)?

On close inspection of the proof of Theorem 1 in [4], it is not
hard to realize that it is actually shown that the size of H(X) is
always bounded by d(X)πχ(X)sd(X). The separation degree cannot
be dropped from this bound; simply observe that if X is a discrete
space of size c, then any bijection on X is a homeomorphism and
therefore, |H(X)| = 2c, whereas d(X)πχ(X) = c.

4. Examples

In this section, we construct spaces in which the π-character
and separation degree are both strictly less than the density. An
example of a space X for which sd(X) < d(X) can be found in [2,
Example 4.4]. We shall modify the example from [2] to also get the
π-character less than the density.

Proposition 4.1. Fix an infinite cardinal number κ and let Z be
any space of size κ+ such that πχ(Z) ≤ κ. Furthermore, assume
that |U | = κ+ whenever U is a non-empty open subset of Z. Then
there is a space X such that Xs ≈ Zs, πχ(X) = κ and d(X) = κ+.

Proof: We enumerate Z faithfully by {xα : α < κ+}. Of course,
the underlying set of X will be Z, but we modify the topology on it.
We have just defined a well-ordering on X. If x ∈ X and x = xα,
then we write pred(x) = {xβ : β < α}. Consider the following
collection of subsets of X:

B =
{
U \ pred(x) : x ∈ U & U is an open subset of Z

}
.

This collection may serve as a basis for a topology on X; suppose
B = U \ pred(x) and B′ = U ′ \ pred(x′) are both members of B

such that y ∈ B∩B′. In order to show that B may serve as a basis,
we need to show that y ∈ E ⊆ B ∩ B′ for some E ∈ B. But since
y ∈ B ∩ B′, it follows that y 6∈ (pred(x) ∪ pred(x′)) and therefore
pred(x)∪pred(x′) ⊆ pred(y). Now let E = (U∩U ′)\pred(y). Then
y ∈ E since y ∈ U ∩ U ′ and we have just shown that E ⊆ B ∩B′.

From now on we will write X to denote the set X with the
topology determined by B. Since {xα : α < κ+} is an enumeration
of X, it follows that d(X) = κ+; simply observe that if D ⊆ X
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and |D| ≤ κ, then by regularity of κ+, there is some α < κ+ such
that D ⊆ pred(xα). But then X \ pred(xα) is a neighborhood of
xα which misses D, showing that D is not dense in X.

To show that πχ(X) ≤ κ, fix x ∈ X and let U be a local π-
base at x in Z of size ≤ κ. Since |U | = κ+ for every U ∈ U

and |pred(x)| ≤ κ, we may pick yU ∈ U \ pred(x). Note that
pred(x) ⊆ pred(yU ). We leave it to the reader to verify that the
collection

{
U \ pred(yU ) : U ∈ U

}
forms a local π-base at x in X.

It remains to show that RO(X) = RO(Z). This follows from the
fact that |U | = κ+ whenever U is a non-empty open subset of Z
and it is the same as in [2, Example 4.4]. ¤

A space X is called Urysohn provided that distinct points of X
can be separated by open neighborhoods with disjoint closures. By
R and I, we denote the real line and the unit interval, respectively.

Corollary 4.2. There exists a c.c.c. Urysohn space X such that
d(X) = ω1 and sd(X)πχ(X) ≤ ω.

Proof: Let Z be a dense subgroup of R of size ω1. Note that
πw(Z) = ω. Proposition 4.1 yields a space X for which d(X) = ω1,
πχ(X) = ω, and Xs ≈ Zs. Since Z is regular, we have that Zs ≈ Z.
It follows from Observation 3.1 that sd(X) ≤ d(Z) ≤ ω, and since
c(X) = c(Xs), the space X is c.c.c. Since Z is Urysohn, it follows
from [8, 4K(7)] that X is Urysohn. ¤

So assuming CH, we obtain a Hausdorff space X such that

2c(X)πχ(X)sd(X) = c < 2c = 2πw(X).

This shows that the bound provided by Proposition 3.2 is stronger
than Frankiewicz’s result from [4]. Note that in this case for Z,
we can also take R or the unit circle in the plane. The previous
construction also yields a Urysohn space X for which Šapirovskĭı’s
inequality d(X) ≤ πχ(X)c(X) from [11] fails; assuming c+ = 2c, one
can take Z = Ic. The Urysohn space X provided by Proposition 4.1
is c.c.c. (since Z is c.c.c.); its π-character equals c and d(X) = c+,
so, in this case, we have

d(X) = 2c > c = πχ(X)c(X).

This shows that [2, Corollary 2.5] cannot be proved for Urysohn
spaces. Note that since Z is separable (cf. [6, 5.5]), the space X has
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countable separation degree, showing that the following sequence
of strict inequalities is possible:

c(X)sd(X) < πχ(X) < d(X).
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