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LINEARLY LINDELÖF SPACES

AND DUAL PROPERTIES

LIANG–XUE PENG AND FRANKLIN D. TALL

Abstract. In the first part of this note, we discuss some
sufficient conditions for linearly Lindelöf spaces to be Lindelöf
spaces. We prove that if X is a linearly Lindelöf space and for
any discrete subspace A of X, A \A is a Gδ-set of X, then X
is a Lindelöf space. We also discuss some sufficient conditions
for discretely Lindelöf spaces to be Lindelöf. Additionally,
we draw some conclusions concerning σ-discretely Lindelöf
spaces. In the second part of this note, we make some remarks
on some questions related to “dually property P” and D-
spaces.

1. Introduction

D-spaces were introduced by Eric K. van Douwen in his thesis
[11]. A neighborhood assignment for a space X is a function φ from
X to the topology of the space X, such that x ∈ φ(x) for any
x ∈ X. A space X is called a D-space, if for any neighborhood
assignment φ for X there exists a closed discrete subspace D of X,
such that X =

⋃{φ(d) : d ∈ D} (see [11] and [12]). There has been
much work on D-spaces (see [6], [7], [13], [14], and [26]).
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In [22], J. van Mill, V. V. Tkachuk, and R. G. Wilson further
developed ideas related to D-spaces by defining for a topological
property P, a space X to be dually P if for each neighborhood as-
signment {φ(x) : x ∈ X}, there is a subspace Y ⊆ X with property
P such that X =

⋃{φ(x) : x ∈ Y }. This concept was then further
investigated by Ofelia T. Alas, Tkachuk, and Wilson in [3]. We
shall make some remarks related to this latter paper in the second
part of this note.

A space X is called linearly Lindelöf if every open cover that is
totally ordered by ⊆ has a countable subcover (see [5]). It is nat-
ural to consider the general question: Which additional conditions
entail that a linearly Lindelöf space is Lindelöf? We know that
every countably metacompact linearly Lindelöf space is Lindelöf
(see [16]). In the first part of the note, we obtain some sufficient
conditions for linearly Lindelöf spaces to be Lindelöf.

A space X is strongly discretely Lindelöf if the closure of every
discrete subspace of X is Lindelöf (see [4] and [5]). In [8], such a
space is just called discretely Lindelöf, so we will also call such a
space discretely Lindelöf. Every discretely Lindelöf space is linearly
Lindelöf (see [4]). In [1], Alas proved that if X is a discretely
Lindelöf space, and the tightness t(X) is less than ℵω, then X is
Lindelöf. In this note, we also get some sufficient conditions for
discretely Lindelöf or linearly Lindelöf spaces to be Lindelöf. We
also draw some conclusions concerning σ-discretely Lindelöf spaces.

Let N be the set of all positive natural numbers, and ω = N∪{0}.
Let X be a space. The concepts of s(X) and t(X) can be found in
[15]. All the spaces in this note are assumed to be T1-spaces. In
notation and terminology, we will follow [10], [15], and [19].

2. On linearly Lindelöf spaces and
discretely Lindelöf spaces

Let’s recall that a space X is scattered if every subspace A of X
has at least one isolated point of A. The proof of Lemma 2.1 follows
the argument of B. É. Šapirovskǐi (see [15, Proposition 4.8]).

Lemma 2.1. Let X be a space. If φ is a neighborhood assignment
for X, then there is a discrete subspace A of X and an open family
{V (x) : x ∈ A} of X, such that X =

⋃{φ(x) : x ∈ A}, and



LINEARLY LINDELÖF SPACES AND DUAL PROPERTIES 229

X \⋃{V (x) : x ∈ A} = A \ A, V (x) ∩ A = {x}, and x ∈ V (x) ⊆
φ(x) for each x ∈ A.

Proof: Let φ be any neighborhood assignment for X. We can
construct sequences {xα : α < γ} of points of X and {V (xα) : α <
γ} of open sets of X for some ordinal γ, such that

(1) x0 ∈ V (x0) ⊆ φ(x0), and
(2) xα ∈ V (xα) ⊆ φ(xα) \ {xβ : β < α}, and
(3) xα ∈ X \(⋃{V (xβ) : β < α}∪{xβ : β < α}) for each α < γ,

and also
(4) X =

⋃{V (xα) : α < γ} ∪ {xα : α < γ}.
Let A = {xα : α < γ}. So we have that X =

⋃{φ(x) : x ∈ A}.
For each α < γ, Vxα ∩ A = {xα}. Thus, X \ ⋃{V (x) : x ∈ A} =
A \A. ¤

Lemma 2.2. Let X be a space. If φ is a neighborhood assignment
for X, then there is a family {Pα : α ∈ Λ} of decreasing closed
subsets of X and a family {Dα : α ∈ Λ} of discrete subspaces of X,
where Dα ⊆ Pα, and for each x ∈ Dα, there is an open subset V (x)
of X, such that x ∈ V (x) ⊆ φ(x) satisfying:

(1)
⋂{Pα : α ∈ Λ} = ∅, and

(2) Pγ =
⋂{Pα : α < γ} for each limit ordinal γ ∈ Λ, and

(3) (Pα \
⋃{V (x) : x ∈ Dα}) = Pα+1 = Dα \Dα,

(4) and |V (x) ∩ Dα| = 1 for each x ∈ Dα, such that X =⋃{φ(x) : x ∈ A}, where A =
⋃{Dα : α ∈ Λ}, and

(5) A is a scattered subspace of X.

Proof: Let P0 = X. Then we can get a discrete subspace D0

which satisfies the conditions appearing in Lemma 2.1. Assume we
have sequences {Pα : α < λ} and {Dα : α < λ} which satisfy the
conditions. If

⋂{Pα : α < λ} = ∅, then we are done. We may
assume that

⋂{Pα : α < λ} 6= ∅. We let Pλ =
⋂{Pα : α < λ}.

Thus, Pλ ⊆
⋃{φ(x) : x ∈ Pλ}. By the argument of Lemma 2.1, we

can get a discrete subspace Dλ ⊆ Pλ and an open family {Vx : x ∈
Dλ} of X, such that Pλ \

⋃{V (x) : x ∈ Dλ} = Dλ \Dλ = Pλ+1 and
V (x) ∩Dλ = {x} for each x ∈ Dλ.

For any B ⊆ A, let β = min{α : B ∩ Dα 6= ∅, α ∈ Λ}. For
each x ∈ B ∩ Pβ, we have V (x) ∩B = {x}. Thus, A is a scattered
subspace of X. ¤
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By Lemma 2.2, we have the following theorem.

Theorem 2.3. Any space X is dually scattered.

Theorem 2.4. If X is a linearly Lindelöf space and for any discrete
subspace A of X, A\A is a Gδ-set of X, then X is a Lindelöf space.

Proof: Let U be any open cover of X. For any x ∈ X, there
is some U(x) ∈ U , such that x ∈ U(x). Let φ(x) = U(x) for each
x ∈ X. Thus, φ = {φ(x) : x ∈ X} is a neighborhood assignment for
X. By Lemma 2.2, we know that there is a family {Pα : α ∈ Λ} of
decreasing closed subsets of X, and there is a family {Dα : α ∈ Λ}
of discrete subspaces of X, satisfying the conditions in Lemma 2.2.
For each α ∈ Λ, Pα+1 = Dα \Dα. Thus, Pα+1 is a Gδ-set of X. So
X \ Pα+1 is an Fσ-set of X. Thus, Dα is an Fσ-set of X. X is a
linearly Lindelöf space. So |Dα| ≤ ω for each α ∈ Λ.

Claim. For any closed subset F ⊆ X, if there is some α ∈ Λ,
such that F ⊆ X \Pα, then there is a countable subfamily UF ⊆ U ,
such that F ⊆ ⋃UF .

Proof of Claim: (1) If F ⊆ X \ P1, then the claim is obviously
true following from |D0| ≤ ω.

Let β ∈ Λ. Suppose we have proved the claim for each α < β.
We will prove that it is true for β.

(2) β = α + 1 for some ordinal α. So F ⊆ X \ Pα+1. Thus,
F ∩ (Pα \ Pα+1) ⊆

⋃{φ(x) : x ∈ Dα} and |Dα| ≤ ω. By induction,
we know that F \⋃{φ(x) : x ∈ Dα} can be covered by a countable
subfamily of U . Then so can F .

(3) If β is a limit ordinal and F ⊆ X \ Pβ, then we know that
F ⊆ ⋃{X \ Pα : α < β}. So there is a sequence {αn : n ∈ ω},
αn < β for each n ∈ ω, such that F ⊆ ⋃{X \ Pαn : n ∈ ω}.

(i) If cf(β) > ω, then there is some α < β, such that αn < α
for each n ∈ ω. Thus, F ⊆ X \ Pα. By induction, we know that
there is some countable subfamily of U which covers F .

(ii) If cf(β) = ω, then we may find an increasing sequence
{αn + 1 : n ∈ ω}, such that sup{αn + 1 : n ∈ ω} = β. Thus,
F ⊆ ⋃{X \Pαn+1 : n ∈ ω}. For each n ∈ ω, X \Pαn+1 is an Fσ-set
of X. Thus, X \Pαn+1 can be covered by a countable subfamily of
U for each n ∈ ω. Then so can F . This concludes the proof of the
claim.
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In the following, we will finish the proof of the theorem. We
prove it by induction.

(1) If Λ = 1, then X =
⋃{φ(x) : x ∈ D0} and |D0| ≤ ω.

(2) If Λ = α+1 for some ordinal α, then Pα ⊆
⋃{φ(x) : x ∈ Dα}

and |Dα| ≤ ω. Thus, X \ ⋃{φ(x) : x ∈ Dα} can be covered by a
countable subfamily of U by the claim. Then so can X.

(3) If Λ = β and β is a limit ordinal, then there is an increasing
sequence {αn + 1 : n ∈ ω}, such that X =

⋃{X \ Pαn+1 : n ∈ ω}
by the linearly Lindelöf property of X. X \ Pαn+1 is an Fσ-set of
X, for each n ∈ ω. Thus, X \Pαn+1 can be covered by a countable
subfamily of U . So X is covered by a countable subfamily of U . ¤

Theorem 2.5. Let X be a space. X is a Lindelöf space if and only
if X is linearly Lindelöf and every closed nowhere dense subset of
X is Lindelöf.

Proof: The forward implication is obvious.
We prove the reverse implication. Let U be any open cover of

X. Let V be a maximal disjoint family of open sets inscribed in
U . Thus, A = X \ ⋃V is nowhere dense. By hypothesis, there
exists a countable subfamily U1 ⊆ U that covers A. Since X is
linearly Lindelöf, all elements of V, except maybe countably many
of them, are subsets of

⋃U1. Since V is inscribed in U , U includes
a countable subcover of X \⋃U1. ¤

In the following, we summarize which additional conditions make
a linearly Lindelöf space Lindelöf. We know that every linearly
Lindelöf D-space is Lindelöf. So we have the following corollary.

Corollary 2.6. If X is a linearly Lindelöf space, then any of the
following conditions imply X is Lindelöf.

(1) X is metalindelöf (in fact, any condition which, with count-
able extent, implies Lindelöf will do, e.g., subparacompact);

(2) X is a D-space;
(3) the boundary of every discrete subspace of X is a Gδ-set

of X;
(4) every closed nowhere dense subspace of X is Lindelöf.

By Lemma 2.1, we have the following conclusion.

Theorem 2.7. Every discretely Lindelöf space is dually Lindelöf.
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Proof: Let φ be a neighborhood assignment for X. Then there
is a discrete subspace A of X, such that X =

⋃{φ(x) : x ∈ A} by
Lemma 2.1. Since X is discretely Lindelöf, A is Lindelöf. Thus, X
is dually Lindelöf. ¤

Let’s discuss what additional conditions entail that a discretely
Lindelöf space is Lindelöf.

The following definition is due to A. V. Arhangel’skii [4]. Let κ
be an ordinal number. A κ-long free sequence in a space X is a
transfinite sequence S = {xα : α < κ} of elements of X, such that,
for every α < κ, the closures in X of the sets Ls(α) = {xβ : β < α}
and Rs(α) = {xβ : α ≤ β < κ} are disjoint. Let F (X) = sup{κ: S
is a κ-long free sequence in X}. We know that |F (X)| ≤ s(X).

Lemma 2.8 (see [1]). If X is a discretely Lindelöf space and F (X)
(t(X) or s(X)) is less than ℵω, then X is Lindelöf.

Theorem 2.9. If 2ℵ0 < 2ℵn for some n ∈ ω and X is a dis-
cretely Lindelöf, locally separable, hereditarily normal space, then
X is Lindelöf.

Proof: Let A be any discrete subspace of X; therefore, A is Lin-
delöf. Thus, by the locally separable property, there is a separable
open set V of X, such that A ⊆ V . So V is a separable and hered-
itarily normal subspace of X. A is a discrete subspace of V . So
|A| < ℵn. Thus, s(X) ≤ ℵn < ℵω. Hence, X is Lindelöf by Lemma
2.8. ¤

It is fact (noted, e.g., in [9]) that 2ℵ0 < ℵω implies separable,
regular, linearly Lindelöf spaces are Lindelöf. Similarly, we have
the following theorem.

Theorem 2.10. If 22ℵ0 < ℵω and X is a T2 linearly Lindelöf space
with no uncountable discrete subspace, then X is Lindelöf.

Proof: T2-spaces with countable spread have cardinality ≤ 22ℵ0 .
¤

Theorem 2.11. PFA implies a linearly Lindelöf space with count-
able spread is hereditarily Lindelöf.

Proof: Suppose not, then there is a right-separated subspace of
size ℵ1 (see [27]). By countable spread, that subspace is hereditarily
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separable. But then it’s hereditarily Lindelöf by PFA (see [32]), a
contradiction. ¤

An S-space is a regular hereditarily separable space which is not
hereditarily Lindelöf (see [27] and [29]). A Lindelöf S-space which
exists under ♦ (see [27]), for example, shows the independence of
Lindelöf spaces with countable spread being hereditarily Lindelöf.

Here is another variation. Recall that a space is of pointwise
countable type if each point is included in a compact set of countable
character.

Theorem 2.12. A discretely Lindelöf, hereditarily normal space of
pointwise countable type satisfying the countable chain condition is
Lindelöf provided either 2ℵ0 < ℵω or 2ℵ0 < 2ℵ1.

Proof: In [31], it is shown that 2ℵ0 < 2ℵ1 implies normal spaces
of pointwise countable type are weakly ℵ1-collectionwise Hausdorff.
So the space is of spread < ℵω. In order to prove the second half
of the theorem, it suffices to show that pointwise countable type
is inherited by open subspaces. But this is an easy exercise (see
[10]). For the first half, we observe that the weakly collectionwise
Hausdorff technique of [30] enables us to prove that in a normal
space of pointwise countable type, for each closed discrete subspace
B of size 2ℵ0 , there is an uncountable subspace A of B which is
separated by disjoint open sets. Thus, if 2ℵ0 were less than ℵω

and the space’s spread were ≥ ℵω, then there would be a discrete
subspace of size 2ℵ0 , and hence, ℵ1 disjoint open sets. ¤

In the following, we will discuss some properties of σ-discretely
Lindelöf spaces. A space X is σ-discretely Lindelöf if the closure
of every σ-discrete subspace of X is Lindelöf.

Theorem 2.13. If X is discretely Lindelöf and the closure of every
Lindelöf subspace of X is Lindelöf, then X is σ-discretely Lindelöf.

Proof: Let Y =
⋃{Yn : n ∈ ω}, each Yn is discrete. Then⋃{Yn : n ∈ ω} is dense in Y . But

⋃{Yn : n ∈ ω} is Lindelöf. So Y
is Lindelöf. ¤

Corollary 2.14. A locally separable, discretely Lindelöf space is
σ-discretely Lindelöf if and only if closures of Lindelöf subspaces
are Lindelöf.
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Proof: By local separability, every Lindelöf subspace Y is in-
cluded in a separable open set U . Let D be countable–hence, σ-
discrete, and dense in U . Then D ⊇ Y and so Y is Lindelöf. ¤

In [9], the Axiom CC is introduced and the following two results
proved.

Lemma 2.15. CC implies that if X is a locally compact Hausdorff
space which is either normal or countably tight, then either

(1) X is the countable union of countably compact closed sub-
spaces, or

(2) X has an uncountable closed discrete subspace, or
(3) X has a countable subset with non-Lindelöf closure.

Proposition 2.16. CC +2ℵ0 < ℵω implies that locally compact,
normal, linearly Lindelöf spaces are Lindelöf.

Theorem 2.17. CC implies that locally compact, normal, σ-discretely
Lindelöf spaces are Lindelöf.

Proof: Alternatives (2) and (3) of Lemma 2.15 are excluded,
leaving us with (1), which yields countable metacompactness and
hence, Lindelöfness. ¤

CC follows from PFA and is consistent with CH (see [9]). Since
PFA implies 2ℵ0 = ℵ2 (see [17, p. 609]), we also have the following
theorem.

Theorem 2.18. PFA implies that locally compact, countably tight,
linearly Lindelöf spaces are Lindelöf.

We know that every σ-discretely Lindelöf space is discretely Lin-
delöf and every discretely Lindelöf space is linearly Lindelöf. The
space constructed by Oleg Pavlov ([24]), by assuming MA + ℵω <
2ℵ0 , is first countable, linearly Lindelöf and not Lindelöf; thus, it is
not discretely Lindelöf by Lemma 2.8. We don’t have an example
of a discretely Lindelöf space that is not σ-discretely Lindelöf.

3. Some remarks on “dually P” and D-spaces

In [3], Alas, Tkachuk, and Wilson note that A. J. Ostaszewski’s
space [23] is a consistent example of a weakly Lindelöf, perfectly
normal space which is not Lindelöf. There is actually a ZFC exam-
ple: Heikki J. K. Junnila [18] gave an example of a countable chain
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condition (hence, weakly Lindelöf), perfectly normal, metacompact
space with an uncountable closed discrete subspace (hence, not Lin-
delöf).

Problem 4.6 of [3] asks whether every dually hereditarily separa-
ble space is weakly Lindelöf. As noted earlier, under PFA, heredi-
tarily separable regular spaces are hereditarily Lindelöf (see [32]),
so a dually hereditarily separable regular space is dually heredi-
tarily Lindelöf. But then by Theorem 2.8 of [22], such a space is
Lindelöf.

In an earlier paper [2], Alas, Tkachuk, and Wilson note that a
compact Souslin line is an example of a compact space in which the
closure of every discrete subspace is hereditarily separable, but the
space is not hereditarily separable. Assuming MA + ∼CH, how-
ever, this cannot happen. If the closure of every discrete subspace
is hereditarily separable, then the space has countable spread. By
Šapirovskǐi [28], MA + ∼CH implies such compact spaces are hered-
itarily Lindelöf and hereditarily separable.

Theorem 3.1. If it is consistent there is a supercompact cardinal,
it is consistent that every locally compact, perfectly normal space is
a D-space.

Proof: In [21], Paul B. Larson and Franklin D. Tall prove that if
it is consistent that there is a supercompact cardinal, it is consistent
that every locally compact perfectly normal space is paracompact.
They also remark that it is likely that the large cardinal assumption
can be removed. A locally compact paracompact T2-space is a D-
space (see [25]), so it follows that so are locally compact, perfectly
normal spaces in the model used by Larson and Tall. ¤

On the other hand, Ostaszewski’s space is locally compact, per-
fectly normal, countably compact, but not compact, so it is not a
D-space.

Acknowledgment. The authors thank the referee for his/her
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