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A BASE, A QUASI-BASE, AND
A MONOTONE NORMALITY OPERATOR

FOR Ck(P )

KENICHI TAMANO

Abstract. The following three constructions are given for
the space Ck(P ) of all continuous real-valued functions on
the space of irrationals with the compact-open topology:

(1) a σ-closure-preserving base,
(2) a σ-closure-preserving quasi-base, and
(3) a monotone normality operator.

We prove more generally that Ck(X) is an M1-space for any
Polish space X, which answers a question of P. M. Gartside
and E. A. Reznichenko.

Introduction

A space X is stratifiable if for each closed set F of X and n ∈ ω,
we can assign an open set Gn(F ) (called a stratification) such that
F =

⋂
n∈ω Gn(F ) =

⋂
n∈ω cl Gn(F ), Gn(F ) ⊂ Gn+1(F ) for any

n ∈ ω, and Gn(F ) ⊂ Gn(F ′) whenever F ⊂ F ′. A space is an M1-
space if it has a σ-closure-preserving base. It is an old problem of
Jack G. Ceder [1] whether or not every stratifiable space is an M1-
space. The problem is sometimes called the M3 ⇒ M1-question,
since a space is stratifiable if and only if it is an M3-space.
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278 K. TAMANO

Let Ck(X) be the space of all continuous real-valued functions
on a space X with the compact-open topology. P. M. Gartside
and E. A. Reznichenko [2] have shown that Ck(X) is stratifiable
whenever X is a complete separable metrizable space, i.e., a Polish
space. They asked whether Ck(X) is an M1-space for any Polish
space X or not.

In §1, we provide a positive answer to the question by using an
idea of T. Mizokami and N. Shimane [12], [13].

Theorem 1. Ck(X) is an M1-space for any Polish space X.

We don’t know the answer to the following question, whose nega-
tive answer implies the negative answer to the M3 ⇒ M1-question.

Question 1. Is every subspace of Ck(X) an M1-space for any Pol-
ish space X?

Also, the following question, whose positive answer implies a
positive answer to Question 1, remains open. Recall that a space is
a µ-space if it is embeddable in some

∏
n∈ω Xn, where each Xn is

paracompact and a countable union of closed metrizable subspaces.

Question 2. Is Ck(P ) a µ-space?

More generally, we can ask the following question.

Question 3 ([11], [10], [14]). Is every stratifiable space a µ-space?

To show that Ck(X) is stratifiable for any Polish space X, Gart-
side and Reznichenko proved that it has a σ-cushioned pair base,
i.e,. it is an M3-space. Heikki J. K. Junnila [9] and Gary Gru-
enhage [3] proved that a space is an M3-space if and only if it is
an M2-space, i.e., it has a σ-closure-preserving quasi-base B, i.e.,
for each point x in an open set U , there is some B ∈ B with
x ∈ Bo ⊂ B ⊂ U , and B =

⋃
n∈ω Bn where each Bn is closure-

preserving. By Theorem 1, Ck(X) has a σ-closure-preserving base.
But there might be simpler or more natural ways to get such a
base or a σ-closure-preserving quasi-base. In §2, we show a method
to construct a σ-closure-preserving quasi-base for Ck(P ), which is
different from the way in §1. The construction, which is inspired
by Gruenhage’s technique in [3], might be interesting in itself.

Construction 1. We construct a σ-closure-preserving quasi-base
for Ck(P ).
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In §3, we show the following construction.

Construction 2. We construct a monotone normality operator
for Ck(P ).

Constructions 1 and 2 might be helpful for further investigation
of Ck(P ) to get answers to the open questions 1 through 3.

We adopt the following notation: Let ω be the set of nonnegative
integers. The letters n,m, k, l, . . . always denote members of ω, so,
for example, n ≥ 1 means n ∈ ω − {0}.

For f ∈ Ck(X), a compact set K ⊂ X, and ε > 0, define
B(f,K, ε) = {g ∈ Ck(P ) : |g(x)− f(x)| < ε for any x ∈ K}.

For the background information on stratifiable spaces, see [4] or
[15]. For a current survey, see [5].

1. A σ-closure-preserving base for Ck(P )

Theorem 1. Ck(X) is an M1-space for any Polish space X.

Proof: Let Y be a Polish space and put X = Ck(Y ). It is shown
by Gruenhage and Kenichi Tamano [6] that if Y is a σ-compact
Polish space, in particular, if Y is a locally compact Polish space,
then Ck(Y ) is an M1-space. So we may assume that Y is not locally
compact. Then there is a point p0 ∈ Y such that Y is not locally
compact at p0. Take a decreasing neighborhood base {Un : n ∈ ω}
of p0. Define Fn = {f ∈ X : |f(p) − f(q)| ≤ 1 for any p, q ∈ Un}.
Then we can show that

(a) Fn ⊂ Fn+1 for each n ∈ ω,
(b) {Fn : n ∈ ω} is a closed cover of X, and
(c) for each f ∈ Fn, there is a sequence {g(f, i)}i∈ω in X\Fn

converging to f .
Properties (a) and (b) are easy to see. To show (c), fix n ∈ ω.

Since clUn is not compact, we can take a countable family {Vi}i∈ω

of nonempty open sets in Un such that {Vi}i∈ω is discrete in Y .
Take a point qi ∈ Vi for each i ∈ ω. For each i ∈ ω, take a function
g(f, i) ∈ Ck(Y ) satisfying that g(f, i) = f(p) for any p ∈ Y \Vi, and

(1) g(f, i)(qi) = f(qi+1) + 2.

By (1), we have that g(f, i) /∈ Fn. To show that {g(f, i)}i∈ω

converges to f , let B(f, K, ε) be a neighborhood of f . Since K is
compact, only finitely many Vi’s can meet K. Thus, there is i0 ∈ ω
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such that K ∩ Vi = ∅ for any i ≥ i0. Then g(f, i) ∈ B(f,K, ε) for
any i ≥ i0.

Now Theorem 1 follows from (a), (b), and (c) above and the
following Lemma 1. ¤

Lemma 1 is essentially proved in Mizokami and Shimane’s papers
(see Lemma 2.6 in [12], or Lemma 12 in [13]). We give a short proof
here to make this paper self-contained.

Lemma 1 ([12]). Let X be a stratifiable space with an increasing
sequence {Fn}n∈ω of closed sets of X such that for any n ∈ ω and
x ∈ Fn, there is a sequence {y(x, i)}i∈ω in X\Fn converging to x.
Then X is an M1-space.

To show Lemma 1, we need the following two lemmas. Lemma 2
gives us a method to fatten a closed set to a regular closed set. For
each triple (B, F,H), fix some B′ constructed in Lemma 2, which
will be denoted by B′ = Φ(B, F,H).

Lemma 2. Let F and H be closed sets of a stratifiable space X
with H ⊂ F . Assume that for each x ∈ F\H, there exists a se-
quence {y(x, i)}i∈ω in X\F converging to x. Then for each closure-
preserving closed family B of X\H, there is a closure-preserving
closed family B′ = ⋃

B∈B B′(B) of X\H such that
(a) for each B′ ∈ B′(B), we have B∩F = B′∩F , and B∩F ⊂

clX intX B′;
(b) for any neighborhood U of B ∩ F , there exists B′ ∈ B′(B)

with B ∩ F ⊂ B′ ⊂ U ; and
(c) for any closure-preserving closed family C =

⋃{C(B) : B ∈
B} of X with B ⊂ C for any C ∈ C(B), we have that
{C ∪ B′ : C ∈ C(B), B′ ∈ B′(B), B ∈ B} is a closure-
preserving closed family of X.

Proof: Since {B ∩ F : B ∈ B} is a closure-preserving closed
family of X\H and since F\H is an Fσ-set of X, there exists a
subset D = ∪i∈ωDi of F\H such that each Di is a discrete closed
set of X, Di∩Dj = ∅ for i 6= j, and B∩F = clX\H(B∩D) for each
B ∈ B ([7]). For each point x ∈ D, take a sequence {y(x, i)}i∈ω

in X\F converging to x satisfying the following: For each y(x, i),
there is an open subset U(x, i) of X\F containing y(x, i) such that

(2) F ∩ cl U(x, i) = ∅;
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(3) for each x ∈ D, we have U(x, i) ∩ U(x, j) = ∅ for i 6= j;

(4) for each n ∈ ω, {{x} ∪
⋃

i∈ω

clU(x, i) : x ∈ Dn}

is a discrete closed family in X; and

(5) {U(x, i) : x ∈ D, i ∈ ω} is locally finite in X\F.

This can be done because, for example, every stratifiable space is
submetrizable. X has a metrizable subtopology τ such that F is a
closed set, and each Di is a closed discrete set in (X, τ).

Let E(x, i) be a closure-preserving closed quasi-neighborhood
base of y(x, i) in X contained in U(x, i). Let {Gn(·)} be a stratifi-
cation of X. For each B ∈ B, let B′(B) be the set of all B′ which
can be expressed as

(6) B′ = (B ∩ F ) ∪
⋃
{E(x, i) : x ∈ B ∩D, i ≥ s(x)},

where s : B ∩D → ω is a function, E(x, i) ∈ E(x, i)
and E(x, i) ⊂ Gj(B) for each i ≥ s(x) and the unique
j ∈ ω with x ∈ Dj .

Now it is not difficult to check (a), (b), and (c). We only show
(c). Suppose that for each λ ∈ Λ, Bλ ∈ B, Cλ ∈ C(Bλ), and
B′

λ ∈ B′(Bλ). We show that
⋃

λ∈Λ Cλ ∪B′
λ is closed in X. Suppose

that p /∈ ⋃
λ∈Λ Cλ ∪ B′

λ. Since C is a closure-preserving closed
family of X and p /∈ ⋃

λ∈Λ Cλ, there is m ∈ ω such that p /∈
clX Gm(

⋃
λ∈Λ Cλ). For each λ, let Bλ be expressed as in (6), i.e.,

B′
λ = (Bλ ∩ F ) ∪

⋃
{Eλ(x, i) : x ∈ Bλ ∩D, i ≥ sλ(x)}, where sλ :

Bλ ∩D → ω is a function, Eλ(x, i) ∈ E(x, i) and Eλ(x, i) ⊂ Gj(B)
for each i ≥ s(x) and the unique j ∈ ω with x ∈ Dj .

Then we have

Eλ(x, i) ⊂ Gj(Bλ) ⊂ Gm(
⋃

λ∈Λ

Bλ) ⊂ Gm(
⋃

λ∈Λ

Cλ)

for any i ≥ sλ(x) and j ≥ m with x ∈ Bλ ∩Dj . Put

U = X\ clGm(
⋃

λ∈Λ

Cλ)).

Then {B′
λ : λ ∈ Λ} ∩ U is the intersection of U and the union

of a subfamily of the closure-preserving closed family
⋃{E(x, i) ∪

{x} : E(x, i) ∈ E(x, i), x ∈ D0 ∪ D1 ∪ · · · ∪ Dm−1, i ∈ ω}. Thus,
p /∈ cl(

⋃
λ∈Λ B′

λ). ¤
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Lemma 3 takes care of the preservation of the closure-preserving
property at lower levels in the proof of Lemma 1.

Two subsets A and B of a space X are called separated if (clA)∩
B = A∩ (cl B) = ∅. Recall that a space X is monotonically normal
([8]) if and only if for each pair (A,B) of separated subsets of X,
one can assign an open set D(A,B) such that

(a) A ⊂ D(A, B) (hence, B ⊂ D(B,A));
(b) D(A, B) ∩D(B, A) = ∅; and
(c) if (A′, B′) is a pair of separated sets with A ⊂ A′ and

B ⊃ B′, then D(A,B) ⊂ D(A′, B′).
The function D is called a monotone normality operator for X.

Lemma 3. Let X be a monotonically normal space with a mono-
tone normality operator D(H, K). Let F be a closed set of X and
B a closure-preserving closed family of X. Suppose that for each
B ∈ B, we have B′ with B′ ⊂ D(B\F, F\B). Then {B ∪ B′ : B ∈
B} is closure-preserving at any point of F .

Proof: Suppose that x ∈ F , C ⊂ B, and x /∈ ∪{B ∪ B′ : B ∈
C}. Since B is closure-preserving, ∪C is a closed set. Let U =
D(F\(∪C), (∪C)\F ) \ (∪C). Then U is a neighborhood of x missing
∪{B∪B′ : B ∈ C}. Indeed, let B ∈ C. Then B′ ⊂ D(B\F, F\B) ⊂
D((∪C)\F ), F\(∪C)). Hence, B′ ∩ U = ∅. ¤

Now we are in a position to prove Lemma 1.

Proof of Lemma 1: Let {Fn}n∈ω be the sequence of closed sets
satisfying the assumption of Lemma 1. Put F−1 = ∅. Let S be the
set of all finite increasing sequences in ω.

For s = 〈n0, n1, . . . , nk−1, nk〉 ∈ S, the number k +1 is called the
length of s. The length of ∅ is defined to be 0. The length of s is de-
noted by |s|. For s = ∅, let san = 〈n〉; and for s = 〈n0, n1, . . . , nk〉
and n ∈ ω with n > nk, let san = 〈n0, n1, . . . , nk, n〉.

Let
⋃

n∈ω Bn be a σ-closure-preserving closed quasi-base for X.
By fattening

⋃
n∈ω Bn, we construct a σ-closure-preserving regular

closed quasi-base
⋃

n∈ω Cn,
To do that, it suffices to show that for each closure-preserving

family B of closed sets of X, there is a closure-preserving family
C = C(B) of regular closed sets satisfying

(7) for each B ∈ B and an open set U of X there is C ∈ C such
that B ⊂ C ⊂ U .
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Indeed, put Cn = C(Bn). Then
⋃

n∈ω{intC : C ∈ Cn} is the desired
σ-closure-preserving base for X.

To complete the proof, let B be a closure-preserving closed family.
We construct C satisfying the conditions above.

For each s ∈ S, we define a family Bs of sequences of subsets of
X of length |s| + 1 by induction on the length of s. Let B∅ = B.
Suppose that Bs is defined. Let n ∈ ω. For s = ∅, let n ∈ ω be
arbitrary. For s = 〈n0, n1, . . . , nk〉 6= ∅, we assume that n > nk.

The definition of Bsan =
⋃

B∈Bs
Bsan(B) is as follows. We use

the operation Φ(·, ·, ·) from Lemma 2.

(8) Suppose that s = ∅. Then for any B ∈ Bs, define
Bsan(B) = B〈n〉(B) =

{〈B, B′〉 : B′ ∈ Φ(B∅|(X − Fn−1), Fn, Fn−1)(B\Fn−1),
B′ ⊂ Gn(B) and B′ ⊂ ⋂

m<n D(B\Fm, Fm\B)}.
(9) Suppose that s = 〈n0, n1, . . . , nk〉 6= ∅.

For any B = 〈B−1, B0, . . . , Bk〉 ∈ Bs, let B∗ =
⋃k

i=−1 Bi.
For any −1 ≤ i ≤ k, let B|i = 〈B−1, B0, . . . , Bi〉.
We put nk+1 = n and define Bsan(B) =

{〈B, B′〉 : B′ ∈ Φ({Ck\Fn−1}C∈Bs , Fn, Fn−1)(Bk\Fn−1),
B′ ⊂ Gn0(B−1) and B′ ⊂ D((B|i)∗\Fm, Fm\(B|i)∗)
for each −1 ≤ i ≤ k and m < ni+1}.

Finally, define Bsan =
⋃{Bsan(B) : B ∈ Bs}. Then, by induc-

tion on the length of s ∈ S, and by using Lemma 3, we can show
that for each s ∈ S,

(10) Cs = {B∗ : B ∈ Bs} is a closure-preserving closed family
of X.

Indeed, suppose that s = 〈n0, . . . , nk〉 ∈ S\{∅}. Take s− ∈ S

with s = s−a
n and assume that Cs− = {B∗ : B ∈ Bs−} is a

closure-preserving closed family. Note that by (8) and (9), for each
B = 〈B−1, B0, . . . , Bk〉 ∈ Bs, we have

Bk ⊂ D((B|k − 1)∗\Fnk−1, Fnk−1\(B|k − 1)∗).

Hence by Lemma 3, {B∗ : B ∈ Bs} is a closure-preserving closed
family of X.

Let C = {⋃s∈S(Bs)∗ : the family {Bs : s ∈ S} satisfies that
Bs ∈ Bs and Bs ⊂ Bs′ (i.e., Bs is an initial segment of a sequence
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Bs′) for any s, s′ ∈ S with s ⊂ s′}. By Lemma 2, it is easy to check
(7) and that C ⊂ cl intC for each C ∈ C.

It remains to show that C is a closure-preserving closed fam-
ily. Assume that {Cλ : λ ∈ Λ} ⊂ C. For each λ ∈ Λ, let
Cλ =

⋃
s∈S(Bλ

s )∗, and let Bλ
s = 〈Bλ

−1, B
λ
0 , . . . , Bλ

|s|〉. We show that⋃
λ∈Λ Cλ is closed. To show this, let p ∈ X\(⋃λ∈Λ Cλ).
Note that Bλ

−1 ∈ B∅ = B for each λ ∈ Λ. Let E =
⋃

λ∈Λ Bλ
−1.

Since B is a closure-preserving closed family, E is a closed set. It
follows from p /∈ E that there is m ∈ ω such that

(11) p ∈ Fm\ clG(E, m).

Define S(m) = {s = 〈n0, . . . , nk〉 ∈ S\{∅} : nk ≤ m}. For each
s = 〈n0, . . . , nk〉 ∈ S(m), let T (s) be the set of all t ∈ S such that
t ⊂ s, or s ⊂ t with t = 〈n0, . . . , nl〉, l > k, and nk+1 > m.

Put T =
⋃

s∈S(m) T (s) and S′ = S\({∅}∪T ) = {s = 〈n0, . . . , nk〉
∈ S\{∅} : n0 > m}. Define V = X\ clG(E, m). Then by (8), (9)
and (11), we have (Bλ

s )∗ ∩ V = ∅ for any s ∈ S′ ∪ {∅} and λ ∈ Λ.
For each s ∈ S(m), define T (s) = {(Bλ

t )∗ : t ∈ T (s), λ ∈ Λ}.
To complete the proof of the closure-preserving property of C, it

suffices to show that

(12) p /∈ cl(
⋃ ⋃

s∈S(m)

T (s)).

Note that S(m) is a finite set. Hence, it suffices to show that for
each s ∈ S(m), we have

(13) p /∈ cl(
⋃
T (s)) = cl(

⋃
{(Bλ

t )∗ : t ∈ T (s), λ ∈ Λ}).
Put H =

⋃{(Bλ
s )∗ : λ ∈ Λ}. Then p /∈ H, and by (10), H is a

closed set. Define a neighborhood W of p by

W = D(Fm\H,H\Fm) \ H.

Recall that Cλ =
⋃

t∈S(Bλ
t )∗. Let s = 〈n0, . . . , nk〉, s ⊂ t, and

s 6= t. Then t can be written as t = 〈n0, . . . , nk, nk+1, . . . , nl〉 with
nk+1 > m. Then for any λ ∈ Λ and for any j with k + 1 ≤ j ≤ l,
by (9), we have

Bλ
j ⊂ D((Bλ

s )∗\Fm, Fm\(Bλ
s )∗) ⊂ D(H\Fm, Fm\H).

Hence, (Bλ
t )∗ ∩W = ∅. Thus,

⋃
λ∈Λ Cλ ∩W = ∅, which completes

the proof of the closure-preserving property of C. ¤
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2. A σ-closure-preserving quasi-base for Ck(P )

Construction 1. We construct a σ-closure-preserving quasi-base
for Ck(P ).

Let P be the set of nondecreasing functions of ωω. Note that P
is homeomorphic to both ωω and the set of irrational numbers with
the usual topology. For each x, y ∈ P , x ≤ y means that x(n) ≤
y(n) for any n ∈ ω. For each p ∈ P , define Kp = {x ∈ P : x ≤ p},
and let K = {Kp : p ∈ K}. For A ⊂ P , define m(A) = {a ∈ A :
a′ = a for any a′ ∈ A with a′ ≤ a}. Let Q = {q ∈ P : q is bounded,
i.e., there is n ∈ ω such that q(i) = q(i + 1) for any i ≥ n}.

Lemma 4 ([2]). If U is a clopen set of P , then m(U) is a finite
set in Q. For any K ∈ K and any clopen set U of P , if K ∩U 6= ∅,
then K ∩m(U) 6= ∅.

For f ∈ Ck(P ) and n ≥ 1, define V (f, n) = B(f, nω, 1
2n ). Let

W (f) =
⋃{B(0,Kp,

1
4) : p ∈ P, |f(p)| > 3

4}. Note that since Kp∩Q

is dense in Kp for any p ∈ P , we have W (f) =
⋃{B(0,Kq,

1
4) : q ∈

Q, |f(q)| > 3
4}.

Lemma 5. For any f ∈ Ck(P ), there is n ≥ 1 such that V (f, n)∩
W (f) = ∅.

Proof: If |f |−1[34 ,∞) = ∅, then W (f) = ∅, and any n ≥ 1 satisfies
the condition.

Assume that |f |−1[34 ,∞) 6= ∅. Let U be clopen with |f |−1[34 ,∞)
⊂ U ⊂ |f |−1(1

2 ,∞). We show that

(14) B(f,m(U),
1
4
) ∩W (f) = ∅,

which implies that V (f, n) ∩ W (f) = ∅ for any n ≥ 2 satisfying
m(U) ⊂ nω.

To show (14), assume that p ∈ P satisfies |f(p)| > 3
4 . We show

that

(15) B(f, m(U),
1
4
) ∩B(0,Kp,

1
4
) = ∅.

Since |f |−1[34 ,∞) ⊂ U , we have p ∈ U ∩Kp. Hence, there exists
q ∈ m(U) ∩ Kp. Since q ∈ U ⊂ |f |−1(1

2 ,∞), we have f(q) > 1
2 ,

which implies (15). ¤



286 K. TAMANO

Define a closed set M0 of Ck(P ) by M0 = {f ∈ Ck(P ) : |f(p)| ≤ 3
4

for any p ∈ P}.
For each f ∈ Ck(P ) −M0, define n(f) = min{n ≥ 1 : V (f, n) ∩

W (f) = ∅}, and for each n ≥ 1, define Mn = M0∪{f ∈ Ck(P )\M0 :
n(f) ≤ n}. Note that Mn ⊂ Mn+1, for each n ∈ ω, and Ck(P ) =⋃{Mn : n ∈ ω}.
Lemma 6. Each Mn, n ∈ ω, is a closed set of Ck(P ).

Proof: Let n ≥ 1. We show that Mn is closed in Ck(P ). Suppose
that f ∈ Ck(P )\Mn. Then V (f, n)∩W (f) 6= ∅. Hence, there exists
q ∈ Q such that |f(q)| > 3

4 and V (f, n) ∩B(0,Kq,
1
4) 6= ∅. Take

(16) h ∈ V (f, n) ∩B(0, Kq,
1
4
).

Take m ∈ ω, satisfying

(17) h ∈ V (g, n) for any g ∈ V (f, m),

(18) q ∈ mω, and

(19)
1

2m
< |f(q)| − 3

4
.

To get (17), define ε = sup{|f(p)− h(p)| : p ∈ nω}. Then 0 ≤ ε <
1
2n . Take m ∈ ω with m ≥ n and 1

2m < 1
2n − ε. Then m satisfies

(17).
To complete the proof, let V = V (f, m)\M0. Then V is a neigh-

borhood of f with V ∩ Mn = ∅. To show this, let g ∈ V . Since
g ∈ V (f,m), by (18), we have |f(q) − g(q)| < 1

2m . Hence by (19),
we have |g(q)| ≥ |f(q)| − |f(q)− g(q)| > |f(q)| − 1

2m > 3
4 . Further-

more, by (16) and (17), we have h ∈ V (g, n) ∩B(0,Kq,
1
4). Hence,

V (g, n)∩W (g) 6= ∅. Thus, g /∈ Mn, which completes the proof. ¤
For each n ≥ 1, take a locally finite open refinement Gn of the

open cover {V (f, n + 1) : f ∈ Ck(P )} of Ck(P ). For any n ∈ ω, let
Un = Gn|(X\Mn−1), where M−1 = ∅. Then U =

⋃
n∈ω Un is a point

finite open cover of Ck(P ), hence is interior-preserving. For each
f ∈ X −M0, take an element U(f) of Un(f) containing f . This can
be done because Gn(f) is an open cover of Ck(P ) and f /∈ Mn(f)−1.

For each K = Kp ∈ K, define

E(0,K) = X\
⋃
{U(f) : f /∈ B(0,K, 1)}.
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Then we have E(0,K) ⊂ B(0,K, 1), and E = {E(0,K) : K ∈ K}
is a closure-preserving closed family.

Lemma 7. For each K ∈ K, 0 ∈ intE(0, Kp).

Proof: Let K = Kp. It suffices to show B(0,Kp,
1
4) ⊂ E(0,Kp).

Suppose that f ∈ Ck(P )\B(0,Kp, 1). We show that

(20) B(0, Kp,
1
4
) ∩ U(f) = ∅.

Note that f /∈ M0 because M0 ⊂ B(0,Kp, 1). Since f /∈ B(0,Kp, 1),
there exists p′ ≤ p such that f(p′) ≥ 1 > 3

4 . Then

(21) B(0,Kp,
1
4
) ⊂ B(0,Kp′ ,

1
4
) ⊂ W (f).

Note that U(f) ⊂ V (f, n(f)). Indeed, since U(f) ∈ Un(f) and
Un(f) is a refinement of Gn(f), there exists g ∈ Ck(P ) with U(f) ⊂
V (g, n(f) + 1). For any e ∈ U(f), since e ∈ V (g, n(f) + 1), we
have |e(x) − g(x)| < 1

2n(f)+1 for any x ∈ (n(f) + 1)ω. Note that
f, h ∈ U(f). Hence, |f(x)− h(x)| < 1

2n(f) for any x ∈ n(f)ω, which
implies U(f) ⊂ V (f, n(f)).

By the definition of n(f), we have V (f, n(f))∩W (f) = ∅, which
implies that

(22) U(f) ∩W (f) = ∅.
Thus, by (21) and (22), we get (20). ¤

Now for each n ≥ 1, let Hn : Ck(P ) → Ck(P ) be the homeomor-
phism defined by Hn(f) = 1

nf . Define En = {Hn(E(0, K)) : K ∈
K}. Then we have the following lemma.

Lemma 8. E =
⋃

n≥1 En is a σ-closure preserving neighborhood
base of 0 consisting of closed sets.

Proof of Construction 1: Let D be a countable dense subset of
Ck(P ). Let E be as in Lemma 8. Then {E + f : E ∈ E , f ∈ D} is
the desired σ-closure-preserving quasi-base for Ck(P ). ¤

3. A monotone normality operator for Ck(P )

Construction 2. We construct a monotone normality operator
for Ck(P ).
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Proof: Let {Hn : n ∈ ω} be a family of finite subsets of Ck(P )
such that

⋃
n∈ω Hn is dense in Ck(P ).

For example, let {Pn : n ∈ ω} be a sequence of finite partitions
of P such that Pn+1 ≺ Pn for each n ∈ ω, and

⋃
n∈ω Pn is a

base of P . Let {Qn : n ∈ ω} be an increasing sequence of finite
subsets of rational numbers such that Q = ∪Qn. Define Hn by
Hn = {f ∈ Ck(P ) : f has a constant value in Qn on each A ∈ Pn}.
Then {Hn : n ∈ ω} satisfies the condition stated above.

To get a monotone normality operator, it is sufficient to define
B(f,K, ε)f for each f ∈ Ck(P ), K ∈ K, and ε > 0 satisfying:
if

(23) B(f, K, ε)f ∩B(g, L, µ)g 6= ∅,
then

(24) f ∈ B(g, L, µ) or g ∈ B(f,K, ε).

To define B(f,K, ε)f , take nf = n(f,K, ε), mf = m(f, K, ε) ∈
ω, and hf = h(f, K, ε) ∈ Hmf

such that

(25) mf ≥ nf , and

(26) |f(p)− hf (p)| < 1
2nf

<
5

2nf
< ε for any p ∈ K.

For each m,n ≤ mf , and h ∈ Hm, take a clopen set Uf,h,m,n such
that

(27) |f − h|−1[
4
2n

,∞) ⊂ Uf,h,m,n ⊂ |f − h|−1(
2
2n

,∞).

Define

(28) K ′ = K ∪
⋃

h∈Hm,m,n≤mf

m(Uf,h,m,n), and

B(f,K, ε)f = B(f, K ′,
1

2mf+2 ).

Now assume (23). To show (24), we may assume, without loss of
generality, that

(29) mf ≤ mg.

By (25) and (29), we have nf ≤ mf ≤ mg. Hence, the set
U = Ug,hf ,mf ,nf appears in the construction of B(g, L, h)g.

Case 1. U ∩K = ∅.
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By the definition of U in the construction of B(g, L, h)g, we have

|g − hf |−1[
4

2nf
,∞) ∩K = ∅. Hence, we have |g − hf | < 4

2nf
on K.

On the other hand, by the definition of hf in the construction of

B(f,K, ε), we have |f − hf | < 1
2nf

on K. Thus, |f − g| < 5
2nf

< ε

on K. Hence, g ∈ B(f, K, ε).

Case 2. U ∩K 6= ∅.
By (23) and (28), we have

B(f, K,
1

2mf+2 ) ∩B(g, m(U),
1

2mg+2
) 6= ∅.

Hence, |f − g| < 1
2mf+1 ≤

1
2nf+1 on m(U)∩K(6= ∅). On the other

hand, by the definition of U , we have U ⊂ |g − hf |−1(
2

2nf
,∞).

Hence, |g − hf | > 2
2nf

on U . Hence,

|f − hf | ≥ |g − hf | − |f − g| > 2
2nf

− 1
2nf+1 =

3
2nf+1

on m(U) ∩K (6= ∅), contradicting that |f − hf | < 1
2nf

on K. ¤

Remark 1. In the definition of U , we can replace “m,n ≤ mf” by
“n ≤ m ≤ mf .”
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