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A BASE, A QUASI-BASE, AND
A MONOTONE NORMALITY OPERATOR
FOR Cy(P)

KENICHI TAMANO

ABSTRACT. The following three constructions are given for
the space Ci(P) of all continuous real-valued functions on
the space of irrationals with the compact-open topology:

(1) a o-closure-preserving base,

(2) a o-closure-preserving quasi-base, and

(3) a monotone normality operator.
We prove more generally that Cr(X) is an M;i-space for any
Polish space X, which answers a question of P. M. Gartside
and E. A. Reznichenko.

INTRODUCTION

A space X is stratifiable if for each closed set F' of X and n € w,
we can assign an open set G, (F') (called a stratification) such that
F = Mhew Gn(F) = Nhew LGr(F), Gn(F) C Gpy1(F) for any
n € w, and G, (F) C G,(F’) whenever F C F'. A space is an M-
space if it has a o-closure-preserving base. It is an old problem of
Jack G. Ceder [1] whether or not every stratifiable space is an M;-
space. The problem is sometimes called the Ms = M;i-question,
since a space is stratifiable if and only if it is an Mjz-space.
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278 K. TAMANO

Let Ci(X) be the space of all continuous real-valued functions
on a space X with the compact-open topology. P. M. Gartside
and E. A. Reznichenko [2] have shown that Cj(X) is stratifiable
whenever X is a complete separable metrizable space, i.e., a Polish
space. They asked whether Cx(X) is an Mj-space for any Polish
space X or not.

In §1, we provide a positive answer to the question by using an
idea of T. Mizokami and N. Shimane [12], [13].

Theorem 1. Cy(X) is an Mj-space for any Polish space X.

We don’t know the answer to the following question, whose nega-
tive answer implies the negative answer to the M3 = Mj-question.

Question 1. Is every subspace of Cj(X) an M;j-space for any Pol-
ish space X7

Also, the following question, whose positive answer implies a
positive answer to Question 1, remains open. Recall that a space is
a p-space if it is embeddable in some [], .., Xn, where each X, is
paracompact and a countable union of closed metrizable subspaces.

Question 2. Is Cy(P) a u-space?
More generally, we can ask the following question.
Question 3 ([11], [10], [14]). Is every stratifiable space a p-space?

To show that Ck(X) is stratifiable for any Polish space X, Gart-
side and Reznichenko proved that it has a o-cushioned pair base,
ie, it is an Ms-space. Heikki J. K. Junnila [9] and Gary Gru-
enhage [3] proved that a space is an Ms-space if and only if it is
an Ms-space, i.e., it has a o-closure-preserving quasi-base B, i.e.,
for each point z in an open set U, there is some B € B with
r € BC BCU, and B = UnEw B,, where each B,, is closure-
preserving. By Theorem 1, Ci(X) has a o-closure-preserving base.
But there might be simpler or more natural ways to get such a
base or a o-closure-preserving quasi-base. In §2, we show a method
to construct a o-closure-preserving quasi-base for Cj(P), which is
different from the way in §1. The construction, which is inspired
by Gruenhage’s technique in [3], might be interesting in itself.

Construction 1. We construct a o-closure-preserving quasi-base

for Cr.(P).
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In §3, we show the following construction.

Construction 2. We construct a monotone normality operator
for Ci(P).

Constructions 1 and 2 might be helpful for further investigation
of Cx(P) to get answers to the open questions 1 through 3.

We adopt the following notation: Let w be the set of nonnegative
integers. The letters n,m, k,[,... always denote members of w, so,
for example, n > 1 means n € w — {0}.

For f € Ci(X), a compact set K C X, and ¢ > 0, define
B(f,K,2) = {g € Ck(P) : |g(x) — f(2)| < ¢ for any = € K}.

For the background information on stratifiable spaces, see [4] or
[15]. For a current survey, see [5].

1. A 0-CLOSURE-PRESERVING BASE FOR C(P)
Theorem 1. Cy(X) is an M;-space for any Polish space X .

Proof: Let Y be a Polish space and put X = C,(Y). It is shown
by Gruenhage and Kenichi Tamano [6] that if Y is a o-compact
Polish space, in particular, if Y is a locally compact Polish space,
then C%(Y') is an Mj-space. So we may assume that Y is not locally
compact. Then there is a point pg € Y such that Y is not locally
compact at pg. Take a decreasing neighborhood base {U, : n € w}
of po. Define F,, ={f € X : |f(p) — f(¢)| <1 for any p,q € Up}.
Then we can show that

(a) F,, C Fp41 for each n € w,

(b) {F), : n € w} is a closed cover of X, and

(c) for each f € F,, there is a sequence {g(f,7)}icw in X\F),

converging to f.

Properties (a) and (b) are easy to see. To show (c), fix n € w.
Since cl U, is not compact, we can take a countable family {V;};c.
of nonempty open sets in U, such that {V;};c, is discrete in Y.
Take a point ¢; € V; for each ¢ € w. For each i € w, take a function
g(f,1) € Cx(Y) satisfying that g(f,i) = f(p) for any p € Y'\V;, and

(1) g(f,i)(qi) = fgi+1) + 2.

By (1), we have that g(f,i) ¢ F,. To show that {g(f,1)}icw
converges to f, let B(f, K,&) be a neighborhood of f. Since K is
compact, only finitely many V;’s can meet K. Thus, there is ig € w
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such that K N'V; = ( for any ¢ > i9. Then g(f,7) € B(f, K,¢) for
any i > ig.

Now Theorem 1 follows from (a), (b), and (c¢) above and the
following Lemma 1. O

Lemma 1 is essentially proved in Mizokami and Shimane’s papers
(see Lemma 2.6 in [12], or Lemma 12 in [13]). We give a short proof
here to make this paper self-contained.

Lemma 1 ([12]). Let X be a stratifiable space with an increasing
sequence {Fp}new of closed sets of X such that for any n € w and
x € F,, there is a sequence {y(x,i)}ic, in X\F, converging to x.
Then X is an Mi-space.

To show Lemma 1, we need the following two lemmas. Lemma 2
gives us a method to fatten a closed set to a regular closed set. For
each triple (B, F, H), fix some B’ constructed in Lemma 2, which
will be denoted by B = ®(B, F, H).

Lemma 2. Let F and H be closed sets of a stratifiable space X
with H C F. Assume that for each x € F\H, there exists a se-
quence {y(z,1) }icw in X\F converging to x. Then for each closure-
preserving closed family B of X\H, there is a closure-preserving
closed family B' = Jgep B (B) of X\H such that
(a) for each B" € B'(B), we have BNF = B'NF, and BNF C
cly intx B’;
(b) for any neighborhood U of BN F, there exists B' € B'(B)
with BNF C B' Cc U; and
(c) for any closure-preserving closed family C = | J{C(B): B €
B} of X with B C C for any C € C(B), we have that
{CuB :C e (C(B), B € B(B),B € B} is a closure-
preserving closed family of X.

Proof: Since {BN F : B € B} is a closure-preserving closed
family of X\ H and since F\H is an F,-set of X, there exists a
subset D = U;e,D; of F\H such that each D; is a discrete closed
set of X, D;ND; = () for i # j, and BNF = cly\g(BN D) for each
B € B ([7]). For each point x € D, take a sequence {y(x,7)}icw
in X\F converging to = satisfying the following: For each y(x,1),
there is an open subset U(x, i) of X\ F' containing y(z,4) such that

(2) FnelU(z,i) = 0;
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(3)  for each x € D, we have U(z,i) NU(x,j) = 0 for i # j;
(4) foreachn € w, {{z}U U clU(z,i):x € Dy}
1€Ww
is a discrete closed family in X; and
(5)  A{U(z,i):x € D, i € w} is locally finite in X\ F.

This can be done because, for example, every stratifiable space is
submetrizable. X has a metrizable subtopology 7 such that F is a
closed set, and each D; is a closed discrete set in (X, 7).

Let £(x,i) be a closure-preserving closed quasi-neighborhood
base of y(x,4) in X contained in U(x,i). Let {G,(-)} be a stratifi-
cation of X. For each B € B, let B'(B) be the set of all B’ which
can be expressed as
(6) B'=(BnF)U| J{E(z,i): 2 € BN D,i > s(z)},

where s : BN D = w is a function, F(z,i) € E(z,1)
and E(x,1) C Gj(B) for each ¢ > s(x) and the unique
J €w with x € Dj.

Now it is not difficult to check (a), (b), and (c). We only show
(c). Suppose that for each A € A, By € B, C)\ € C(B),), and
B\ € B'(B)). We show that | J,c, Cx U B} is closed in X. Suppose
that p € (Jyepa Cx U B). Since C is a closure-preserving closed
family of X and p ¢ (Jycp Cn, there is m € w such that p ¢
clx Gm(Uxep Cn). For each A, let By be expressed as in (6), i.e.,
B\ =(B\NnF)U U{E)\(a:,z) cx € B\ND, i> sy\(x)}, where s :
B)ND — w is a function, Ex(x,i) € E(x,i) and Ex(x,7) C G;(B)
for each ¢ > s(z) and the unique j € w with z € D;.

Then we have

Ex(x,i) C Gj(B)) € Gm(| ] By) € Gm(|] Cn)
AEA AEA

for any ¢ > s)(z) and j > m with € By N D;. Put
U=X\cdGn(| V).
AEA

Then {B) : A € A} NU is the intersection of U and the union
of a subfamily of the closure-preserving closed family | J{F(z,) U
{z} : E(z,i) € E(z,i),x € DyUDyU---UDy,_1, i €w}. Thus,
p ¢ cl(Uxea BY)- 0
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Lemma 3 takes care of the preservation of the closure-preserving
property at lower levels in the proof of Lemma 1.
Two subsets A and B of a space X are called separated if (cl A)N
B = AN(cl B) = (). Recall that a space X is monotonically normal
([8]) if and only if for each pair (A, B) of separated subsets of X,
one can assign an open set D(A, B) such that
(a) AC D(A,B) (hence, B C D(B,A));
(b) D(A,B)ND(B, A) = 0; and
(c) if (A, B’) is a pair of separated sets with A C A’ and
B D> B, then D(A,B) C D(A’,B").
The function D is called a monotone normality operator for X.

Lemma 3. Let X be a monotonically normal space with a mono-
tone normality operator D(H, K). Let F be a closed set of X and
B a closure-preserving closed family of X. Suppose that for each
B € B, we have B' with B' C D(B\F,F\B). Then {BUB': B €
B} is closure-preserving at any point of F'.

Proof: Suppose that z € F, C C B, and x ¢ U{BUB' : B €
C}. Since B is closure-preserving, UC is a closed set. Let U =
D(F\(UC), (UC)\F) \ (UC). Then U is a neighborhood of x missing
U{BUB': B € C}. Indeed, let B € C. Then B’ C D(B\F,F\B) C
D((UC)\F),F\(UC)). Hence, B'NU = 0. O

Now we are in a position to prove Lemma 1.

Proof of Lemma 1: Let {F),},e. be the sequence of closed sets
satisfying the assumption of Lemma 1. Put F_; = (). Let S be the
set of all finite increasing sequences in w.

For s = (ng,n1,...,np_1,ng) € S, the number k+ 1 is called the
length of s. The length of () is defined to be 0. The length of s is de-
noted by |s|. For s =0, let s™n = (n); and for s = (ng,nq,...,nk)
and n € w with n > ny, let s™n = (ng,ny,...,nE,n).

Let ,,c., Bn be a o-closure-preserving closed quasi-base for X.
By fattening |J, ., Bn, we construct a o-closure-preserving regular
closed quasi-base J,,¢,, Cn,

To do that, it suffices to show that for each closure-preserving
family B of closed sets of X, there is a closure-preserving family
C = C(B) of regular closed sets satisfying

(7) for each B € B and an open set U of X there is C' € C such
that BC C CU.
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Indeed, put C,, = C(By,). Then (U, {int C : C € Cy,} is the desired
o-closure-preserving base for X.

To complete the proof, let B be a closure-preserving closed family.
We construct C satisfying the conditions above.

For each s € S, we define a family B of sequences of subsets of
X of length |s| + 1 by induction on the length of s. Let By = B.
Suppose that B is defined. Let n € w. For s = ), let n € w be
arbitrary. For s = (ng,nq,...,ng) # 0, we assume that n > ny.

The definition of By~,, = Upecp, Bs~n(B) is as follows. We use
the operation ®(-,-,-) from Lemma 2.

(8) Suppose that s = (). Then for any B € B, define
{(B,B') : B' € ®(By|(X — Fy—1), Fp, Fu_1)(B\Fp,—1),
B' C Gn(B)and B' € (., D(B\Fyn, Frn\B)}.

(9) Suppose that s = (ng,ny,...,ng) # 0.
For any B = (B_1, By, ..., By) € Bs, let B*=J"__, B
For any —1 <i <k, let B|i = (B_1, By, ..., Bj).
We put ngy1 = n and define B,~,,(B) =
{<B7 B/> : B € (I)({Ck:\Fn—l}C’EBsa F, Fn—l)(Bk\Fn—1)7
B' € Gy (B-1)and B’ C D((B|i)*\Fn, Fin\(Bi)*)
for each —1 <i <k and m < njt1}.

Finally, define B,~,, = J{Bs~,(B) : B € Bs}. Then, by induc-
tion on the length of s € S, and by using Lemma 3, we can show
that for each s € S,

(10) Cs={B*:B € Bs} is a closure-preserving closed family

of X.
Indeed, suppose that s = (ng,...,n;) € S\{0}. Take s~ € S
with s = s7"n and assume that C,- = {B* : B € B,-} is a

closure-preserving closed family. Note that by (8) and (9), for each
B =(B_1,By,...,By) € Bs, we have

B, C D((Blk — 1)"\Fp, —1, Fn,—1\(B|k — 1)*).
Hence by Lemma 3, {B* : B € B} is a closure-preserving closed
family of X.

Let C = {U,cq(Bs)* : the family {B, : s € S} satisfies that
Bs € Bs and Bs; C By (i.e., B is an initial segment of a sequence
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By) for any s,s' € S with s C s'}. By Lemma 2, it is easy to check
(7) and that C C clint C for each C € C.

It remains to show that C is a closure-preserving closed fam-
ily. Assume that {C* : A € A} C C. For each A € A, let
CA = U,eg(B2)*, and let B = (B}, By, .. .,B‘AS|). We show that
Uyea C* is closed. To show this, let p € X\(Uyep C).

Note that B, € By = B for each A € A. Let E = J,c, B,
Since B is a closure-preserving closed family, E is a closed set. It
follows from p ¢ E that there is m € w such that

(11) p € Fp\clG(E,m).

Define S(m) = {s = (ng,...,ng) € S\{0} : np < m}. For each
s = (ng,...,nE) € S(m), let T'(s) be the set of all ¢t € S such that
t Cs,orsCtwitht=(ng,...,n),l >k, and ngy; > m.

Put T' = Useg(m) T'(s) and " = S\({0}UT) = {s = (no, ..., nx)
€ S\{0} : np > m}. Define V = X\ clG(E,m). Then by (8), (9)
and (11), we have (B})* NV =0 for any s € S’ U {0} and X € A.

For each s € S(m), define T(s) = {(B})* :t € T(s), A € A}.

To complete the proof of the closure-preserving property of C, it
suffices to show that

(12) pgdl) U 7).
seS(m)

Note that S(m) is a finite set. Hence, it suffices to show that for
each s € S(m), we have

13)  pedJT() = (BN 1€ T(s). A € A}).
Put H = J{(B2)* : A € A}. Then p ¢ H, and by (10), H is a
closed set. Define a neighborhood W of p by
W = D(F,\H,H\F,,) \ H.
Recall that C* = (J,cq(B)*. Let s = (no,...,nx), s C t, and
s # t. Then t can be written as t = (ng, ..., Nk, Ngt1,- .., 7)) with

ng+1 > m. Then for any A € A and for any j with £+ 1 < j <[,
by (9), we have

B} C D((B2)"\Fm, Fu\(BJ)*) C D(H\Fy, F)\H).

Hence, (B})* NW = 0. Thus, Jycp C* N W = 0, which completes
the proof of the closure-preserving property of C. O
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2. A 0-CLOSURE-PRESERVING QUASI-BASE FOR C}(P)

Construction 1. We construct a o-closure-preserving quasi-base
for Ci(P).

Let P be the set of nondecreasing functions of w*. Note that P
is homeomorphic to both w* and the set of irrational numbers with
the usual topology. For each z,y € P, x < y means that x(n) <
y(n) for any n € w. For each p € P, define K, = {x € P : « < p},
and let K = {K, : p € K}. For A C P, define m(A) = {a € A:
a’ =a for any o’ € A with o’ <a}. Let Q = {q € P : q is bounded,
i.e., there is n € w such that ¢(i) = q(i + 1) for any i > n}.

Lemma 4 ([2]). If U is a clopen set of P, then m(U) is a finite
set in Q. For any K € K and any clopen set U of P, if KNU # 0,
then K Nm(U) # 0.

For f € Ci(P) and n > 1, define V(f,n) = B(f,n, ). Let
W(f)=U{B(0,K,,3):pe P, |f(p)| > 2}. Note that since K,NQ
is dense in K, for any p € P, we have W(f) = J{B(0,K,, %) :q €

Q, |f(q)] > 3}.

Lemma 5. For any f € Cy(P), there ism > 1 such that V(f,n)N
W(f)=0.

Proof: If |f|_1[%, 00) = (), then W (f) = 0, and any n > 1 satisfies
the condition.

Assume that |f|_1[%,oo) # (). Let U be clopen with |f|_1[%,oo)
cUC |f|71(%,00). We show that

(14) B, m(U), ) W) =0,

which implies that V(f,n) N W(f) = () for any n > 2 satisfying
m(U) C n®.
To show (14), assume that p € P satisfies | f(p)| > 2. We show
that
1 B U ! !
Since |f]*1[%, 00) C U, we have p € U N K. Hence, there exists
g € m(U)N K,. Since ¢ € U C |f|71(3,00), we have f(q) > 1,
which implies (15). O

NB(0,K,,~) = 0.
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Define a closed set My of C(P) by My = {f € Cx(P) : |f(p)| <
for any p € P}.

For each f € Cy(P) — My, define n(f) = min{n > 1: V(f,n)N
W(f) =0}, and for each n > 1, define M,, = MyU{f € Cy(P)\ My :
n(f) < n}. Note that M, C M+, for each n € w, and Ci(P) =
UM, :n € wl.

Lemma 6. Fach M,, n € w, is a closed set of Cy(P).

|

Proof: Let n > 1. We show that M,, is closed in Cx(P). Suppose
that f € Cx(P)\M,,. Then V(f,n)NW (f) # (. Hence, there exists
q € @ such that |f(g)] > 2 and V(f,n) N B(0, Ky, ;) # 0. Take

1

(16) h e V(fvn)mB(OathZ)'
Take m € w, satisfying
(17) h € V(g,n) for any g € V(f,m),
(18) g €m”, and

1 3
1 — _ 2
(19) <) -

To get (17), define € = sup{|f(p) — h(p)| : p € n¥}. Then 0 < e <

L. Take m € w with m > n and < 2% — ¢. Then m satisfies

277.

(17).
To complete the proof, let V- =V (f,m)\My. Then V is a neigh-

borhood of f with V N M, = (). To show this, let ¢ € V. Since

g € V(f,m), by (18), we have |f(g) — g(q)| < . Hence by (19),
we have |g(q)| > |£(2)| — 1£(@) ~ 9(a)| > |£(@)] - o > 3. Further.
more, by (16) and (17), we have h € V(g,n) N B(0, Ky, ). Hence,
V(g,n)NW(g) # 0. Thus, g ¢ M, which completes the proof. [

om

For each n > 1, take a locally finite open refinement G, of the
open cover {V(f,n+1): f € Cx(P)} of Ci(P). For any n € w, let
Up = Gp|(X\My—1), where M_y = (). Then U = |, ¢, Un is a point
finite open cover of Cy(P), hence is interior-preserving. For each
f € X — My, take an element U(f) of U,y containing f. This can
be done because G, () is an open cover of Cy(P) and f ¢ M, ;.

For each K = K, € K, define

E0,K) =X\ J{U(f): f ¢ B(0,K,1)}.
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Then we have E(0,K) C B(0,K,1), and £ = {F(0,K) : K € K}
is a closure-preserving closed family.

Lemma 7. For each K € IC, 0 € int £(0, K),).

Proof: Let K = K),. It suffices to show B(0, K, %) C E(0,K)).
Suppose that f € Ci(P)\B(0, K,,1). We show that

(20) B(0, K, %) NU(f) = 0.

Note that f ¢ My because My C B(0, K, 1). Since f ¢ B(0, K, 1),
there exists p’ < p such that f(p') > 1 > %. Then
1
4
Note that U(f) C V(f,n(f)). Indeed, since U(f) € Up(s) and
U,y is a refinement of G, (5, there exists g € Ci(P) with U(f) C
V(g,n(f) +1). For any e € U(f), since e € V(g,n(f) + 1), we
have |e(x) — g(z)| < ﬁ for any = € (n(f) + 1)“. Note that
frh € U(f). Hence, | f(x) — h(x)| < 5577 for any 2 € n(f)*, which
implies U(f) C V(f,n(f)).
By the definition of n(f), we have V(f,n(f)) "W (f) = 0, which
implies that

(22) ) nwi(f) =0.

Thus, by (21) and (22), we get (20). O
Now for each n > 1, let H,, : Cy(P) — Ci(P) be the homeomor-

phism defined by H,(f) = 1f. Define &, = {H,(F(0,K)) : K €

K}. Then we have the follovging lemma.

(21) B(0, Ky 7) € B(0, Ky, 1) C W(F).

Lemma 8. £ = J,~, & is a o-closure preserving neighborhood
base of 0 consisting of closed sets.

Proof of Construction 1: Let D be a countable dense subset of
Ci(P). Let £ be as in Lemma 8. Then {E+ f: E€&,f € D} is
the desired o-closure-preserving quasi-base for C(P). Il

3. A MONOTONE NORMALITY OPERATOR FOR Cy(P)

Construction 2. We construct a monotone normality operator

for Cy.(P).
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Proof: Let {H,, : n € w} be a family of finite subsets of Cy(P)
such that (J,,c,, Hn is dense in Cy(P).

For example, let {P, : n € w} be a sequence of finite partitions
of P such that P,;1 < P, for each n € w, and J, ¢, Pn is a
base of P. Let {@, : n € w} be an increasing sequence of finite
subsets of rational numbers such that ¢ = UQ),. Define H,, by
H, = {f € Cix(P) : f has a constant value in @, on each A € P,}.
Then {H, : n € w} satisfies the condition stated above.

To get a monotone normality operator, it is sufficient to define
B(f,K,¢); for each f € Cy(P), K € K, and € > 0 satisfying:
if

(23) B(f,K,e)f N B(g,L,p)g # 0,
then
(24) f€B(g,L,pu) or g € B(f,K,e).

To define B(f, K,¢)y, take ny = n(f,K,e), my = m(f, K,e) €
w, and hy = h(f, K,€) € Hy,, such that

(25) my > nyg, and
1 5
(26) |f(p)—hf(p)|<2Tf<27f<sfor any p € K.

For each m,n < my, and h € Hy,, take a clopen set Ulhmn guch
that
27 h -1 4 Uf,h,m,n h —1 2
(@1) 1 —H o000 CIf = H 0 00).
Define

(28) K'=KuU U m(U ™) and

h€Hm,mnmy )
B(faKve)f = B(faK,’W)
Now assume (23). To show (24), we may assume, without loss of
generality, that

(29) my < my.

By (25) and (29), we have ny < my < mgy. Hence, the set
U = U9"smims appears in the construction of B(g, L, h)g.
Case 1. UNK = 0.
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By the definition of U in the construction of B(g, L, h),, we have
lg—hsl™ [; o0) N K = (). Hence, we have |g — hy| < i on K.
On the other hand, by the definition of h; in the constructlon of

B(f,K,e), we have |f — hy| < i on K. Thus, |f —g| < QTf <e
on K. Hence, g € B(f, K,¢).

Case 2. UNK # 0.
By (23) and (28), we have

BU K, sarg) N Blg,m(U), sg) # 0,

1

ST < 5,71 On m(U)NK(# 0). On the other

Hence, |f —g| <

hand, by the definition of U, we have U C |g — hf|™ 00).

2 (an
Hence, |g — hy| > Zny ol U. Hence,

1 3
‘f - hf‘ > ’g - h’f| ‘f g’ 2nf 2nf+1 = ons+1

1
on m(U)N K (#0), contradicting that |f — hy| < gny OB K. O

Remark 1. In the definition of U, we can replace “m, n < mjs” by
(Ln S m S mf-”
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