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ON THE CONTRACTIBILITY OF
CERTAIN HYPERSPACES

N. C. ESTY

Abstract. In this paper we will show the contractibility
of the hyperspace CL(M) of closed, nonempty subsets of a
Borel compact metric space (M, d) under the Vietoris topol-
ogy given the assumption that in M , the closure of an open
ball of a given radius is equal to the closed ball of that radius.

1. Introduction

For hyperspaces of noncompact metric spaces, limited study has
been given to those properties which are in some way related to
connectedness. When considering hyperspaces, the case of non-
compact base space is especially important to the study of time
scales. Time scales is a relatively new field which is attempting to
unify the areas of differential equations and difference equations,
resulting in a single cohesive set of methods for approaching both
continuous and discrete problems. The approach is interesting, be-
cause when considering a single dynamic equation, the solutions
one gets when treating it as a differential equation can be quite
similar to those produced by treating it as a difference equation –
but they can also be wildly different, for example, continuous in
the first case and chaotic in the second. The field, created and
heavily investigated by Stefan Hilger [6], [7], has generated a large
amount of interest. See the book by Martin Bohner and Allan
Peterson [2] for an excellent introduction to the calculus of time
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scales. Generally speaking, time scales considers a dynamic equa-
tion as separate from its domain and treats the domain as merely a
parameter, which can range from Z in the difference equation case
to R in the differential equation case. The domain itself, called a
time scale, may be any nonempty closed subset of R. When the
domain is Z, the derivative is the normal difference operator, and
when the domain is R it is the usual derivative. Another useful
case is when the domain is qR, which corresponds to the study of
q-difference equations. Of course, even more complicated domains
can be used, from disjoint intervals to Cantor sets, and many of
these have interesting applications.

After the time scale analogs to calculus have been developed, the
next naturally occurring questions have to do with convergence. If
one considers a given dynamic equation, over a sequence of time
scales which converges, and if over each time scale we have a solu-
tion, do the solutions converge? Some questions along these lines
are addressed in [11]. In order to ask this type of question, we
must agree on the topology on the space of time scales. This space
is exactly CL(R), and so we are led into the study of hyperspaces.

Historically, two of the most popular topologies on hyperspaces of
metric spaces are the Hausdorff topology and the Vietoris topology.
(See Ernest Michael’s paper on hyperspaces [13] for a discussion
of both topologies, as well as several others.) The two are equal
when the space is compact; however, if the space is noncompact,
the former results in a metrizable topology and the latter does
not. Due to this, the former may initially seem more appealing,
but for the purposes of time scales it is less useful. Consider the
sequence of subsets Tn = [−n, n]. Under the Hausdorff topology,
the sequence does not converge to R. However, we would like it to
in order that we might answer questions about dynamic equations
on R by considering only the solutions over compact sets. The
Vietoris topology gives this convergence. For this reason, we are
more interested in the Vietoris topology.

We would like to know what the hyperspace CL(R) looks like,
and more generally, the space CL(M), where M is any metric space.
Much is known about hyperspaces of compact metric spaces. (See
the recent book Hyperspaces [8] by Alejandro Illanes and Sam B.
Nadler, Jr. or [3], [12], and [15] for properties of hyperspaces of
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continua.) However, little study has been given to the problem of
characterizing the hyperspace of some basic, noncompact metriz-
able spaces (such as the real line) endowed with the Vietoris topol-
ogy. It was shown by Michael [13] that CL(R) is completely regu-
lar, separable, and first countable, and shown that CL(R) is not a
normal space by results of V. M. Ivanova [9], James Keesling [10],
and N. V. Veličhko [14]. In 2002, Camillo Costantini and WiesÃlaw
Kubís [4] showed that CL(R) is path connected but not locally
connected. In a recent paper [5], I showed that CL(R) is simply
connected. The proof involved an explicit construction of a homo-
topy. A similar idea is used in this paper to prove the more general
statement below.

Theorem 1.1. If (M, d) is a Borel compact metric space, and if in
M , the closure of any open ball of a given radius is the closed ball
of that radius, then CL(M) endowed with the Vietoris topology is
contractible.

Recall that Borel compact means that the space is complete and
regularly bounded, so that all closed balls in the space are sequen-
tially compact (equivalently, compact). It does not mean that M
itself is compact.

2. Notation

For ease of reference, here are some of the notations we will use
throughout the paper.

M : a Borel compact metric space with a metric d.
CL(M): the hyperspace of all closed, non-empty subsets of M .
X: a point in CL(M), namely, a closed non-empty subset of M .
B(x, r): an open ball centered at x with radius r,

i.e., {y ∈ M : d(y, x) < r}.
B(x, r): a closed ball centered at x with radius r,

i.e., {y ∈ M : d(y, x) ≤ r}.
U : an open set in M .
z: a fixed arbitrary point in M , chosen to play the part of the

origin.

3. The Vietoris topology

We will introduce some notation for the discussion of the topol-
ogy. For open U ⊂ M , define



294 N. C. ESTY

U− = {A ∈ CL(M) : A ∩ U 6= ∅}
U+ = {A ∈ CL(M) : A ⊂ U}.

The term “hit and miss topology” is occasionally used to describe
topologies like the Vietoris topology and the Fell topology, because
sets of CL(M) in U− “hit” the set U , and sets in U+ “miss” its com-
plement. For a more extensive discussion of hit and miss topologies,
see the paper by Gerald Beer and Robert K. Tamaki [1].

The Vietoris topology has as a subbase all sets of the form U−
and U+ as U ranges through open sets of M . It is also possible to
describe the basis elements of the topology; however, we prefer to
think of the Vietoris topology as the supremum of the upper and
lower Vietoris topologies, the first being generated by all sets of the
form U+ and the second being generated by all finite intersections
U−

1 ∩ · · · ∩ U−
n .

4. Contractibility of CL(M)

In the following, we will consider CL(M) endowed with the Vi-
etoris topology.

Theorem 4.1. If (M, d) is a Borel compact metric space, and
B(x, r) = B(x, r) for all x ∈ M , r > 0, then CL(M) is contractible.

The idea is as follows: using an arbitrarily chosen point, which
plays the role of the origin, and starting at time zero, we will expand
a large sphere, such that at time one it encompasses the entire
space. The purpose of this sphere is merely to associate to each
point of a subset X a time at which it is “inside the bubble.” Once
a point is inside the bubble, it becomes activated, and we begin
expanding it as the center of a closed solid sphere, enlarging at a
rate such that the closed sphere will include all of the space by time
one. In this way, at any given moment, the only points which have
started to expand are within the large bubble, a compact set, and
yet, at time one, all points of the space are included.

The condition on the closure of the open ball B(x, r) is needed to
make this function continuous. Indeed, if there are balls for which
this is not true, then the growth process of the spheres described
above may have moments in time where suddenly the sphere in-
cludes a point which was not being converged upon by the growing



ON THE CONTRACTIBILITY OF CERTAIN HYPERSPACES 295

sphere, creating a discontinuity. Borel compactness gives us se-
quential compactness inside these spheres.

Proof: Fix an arbitrary point z ∈ M to play the analog of the
origin. Let dx = d(x, z) for all x ∈ M .

We define a radius function r(t, d) to be

r(t, d) =

{
0 t ≤ d

1+d
t− d

1+d

1−t t > d
1+d .

We will use this function to determine the size of the closed
solid sphere around points of X at a given time. Note that before a
point of X becomes activated, r(t, d) is zero. We define the function
H : CL(M)× [0, 1] → CL(M) by H(X, 1) = M and for t ∈ [0, 1),

H(X, t) =
⋃

x∈X

B(x, r(t, dx)).

This function creates the process described above. We claim that
H is a contraction of the space CL(M) to the point M . It is clear
that H(X, 0) = X and H(X, 1) = M . It may be clear that H(X, t)
is, in fact, a member of CL(M) for all other times between 0 and 1,
but it is worthwhile to show, since the proof of continuity contains
similar techniques.

Let (X, t) ∈ CL(M) × (0, 1). We wish to show that H(X, t) is
a closed, non-empty subset of M . It is clearly non-empty because
it contains X, itself a non-empty subset. Let yn ∈ H(X, t) be a
sequence of points converging to a point y ∈ M . We have two
possibilities. First, it may be that a subsequence of the yn is in X.
In this case, because X is closed, y must also be in X, which is
contained in H(X, t). The other possibility can be reduced to the
case where all the yn ∈ H(X, t) \X, by removing the finite number
of yn ∈ X.

If yn ∈ H(X, t), but yn /∈ X, then to each yn, we can associate an
xn ∈ X such that yn ∈ B(xn, r(t, dxn)). Because yn 6= xn, it must
be that r(xn, dxn) > 0 and so xn must be one of the activated points,
i.e., xn ∈ X ∩ B(z, t

1−t). That set is sequentially compact because
it is the intersection of a closed set and a closed bounded sphere
inside our space M ; therefore, every sequence has a convergent
subsequence. By abuse of notation, we say xn → x. Since X is
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closed, x ∈ X. The corresponding subsequence yn still converges
to the point y.

We claim that y ∈ B(x, r(t, dx)). Because xn → x, we know
that dxn → dx, and continuity of the radius function means that
r(t, dxn) → r(t, dx). Let δ > 0. We can choose N large enough so
that d(x, xn) < δ/3, d(y, yn) < δ/3, and |r(t, dx)− r(t, dxn)| < δ/3
for n > N . Then

d(y, x) ≤ d(y, yn) + d(yn, xn) + d(xn, x)
< δ/3 + r(t, dxn) + δ/3
< r(t, dx) + δ.

Because this is true for all δ > 0, we have that d(y, x) ≤ r(t, dx)
and so y ∈ B(x, r(t, dx)) ⊂ H(X, t). This shows that H(X, t) is, in
fact, a closed subset of M .

Therefore, it remains to show that H is continuous with respect
to the Vietoris topology. It is enough to show continuity with re-
spect to the upper and lower Vietoris topologies.

We begin with the upper. Consider H(X0, t0). Let U+ be an
open set in the upper Vietoris topology containing H(X0, t0). If
t0 = 1, then U must be M and therefore, U+ will contain H(X, t)
for all (X, t) ∈ CL(M)× [0, 1]. So assume t0 6= 1. Suppose that H
is not continuous at (X0, t0). Then there exists some open set U+

containing H(X0, t0) such that for all neighborhoods of (X0, t0),
there is a point in the neighborhood which does not map into U+

under H.
Define Bk = B(X0, 1/k) = {x ∈ M : there is some x0 ∈ X0

s.t. d(x, x0) < 1/k}. These Bk are open, and so a nested sequence
of neighborhoods of X0 can be given by Vk = Bk ∩ U . Consider
neighborhoods of (X0, t0), Nk = V +

k × (t0−1/k, t0 +1/k), if t0 > 0,
and Nk = V +

k × [0, 1/k), if t0 = 0. Choose K large enough that
1/K < min{t0, 1 − t0}, if t0 > 0, and let K = 2, if t0 = 0. We
will use only k ≥ K. Since we assumed H is not continuous at
(X0, t0), for each k ≥ K, we get a point (Xk, tk) ∈ Nk such that
H(Xk, tk) 6⊂ U . Note that tk ∈ (t0 − 1/k, t0 + 1/k) ⊂ (0, 1) and
t0 ∈ (0, 1) for the k in question (indeed, tk cannot be 0, because
otherwise, H(Xk, tk) = Xk ⊂ Vk ⊂ U).

Take yk ∈ H(Xk, tk) with yk /∈ U . Since Xk ⊂ Bk ∩ U , yk /∈
Xk, and therefore, yk ∈ H(Xk, tk) \ Xk. This means that yk ∈
B(xk, r(tk, dxk

)) for some xk ∈ Xk with r(tk, dxk
) > 0. We now have
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two sequences of points, the yk and the associated xk. The following
shows that both sequences are completely contained in a closed ball
around z of radius 2R where R = (t0 +1/K)/(1− (t0 +1/K)). The
choice of K ensures that R > 0.

First, we show xk ∈ B(z, R). We know r(tk, dxk
) > 0, which

means tk > dxk
/(1 + dxk

). Therefore,

dxk
= d(xk, z) <

tk
1− tk

<
t0 + 1/k

1− (t0 + 1/k)
<

t0 + 1/K

1− (t0 + 1/K)
= R.

Next, we show that yk ∈ B(z, 2R). Because yk ∈ B(xk, r(tk, dxk
)),

we have

d(yk, xk) ≤ r(tk, dxk
) =

tk − dxk
1+dxk

1− tk
<

tk
1− tk

< R

and so d(yk, z) ≤ d(yk, xk) + d(xk, z) < 2R.
M is Borel compact, so the set B(z, 2R) which contains the xn

and yn is sequentially compact. In addition, we can associate to
each xk a point xk

0 ∈ X0 with d(xk, x
k
0) < 1/k. Compactness of

B(z,R + 1/K) gets a convergent subsequence of the xk
0; by abuse

of notation, we say xk
0 → x0. Because X0 is closed, x0 ∈ X0.

Because 1/k → 0, it is easy to see the corresponding subsequence
of the xk must also converge to x0. If we consider now the same
subsequence of the yk, we apply compactness one more time to
get another convergent subsequence. Further abuse of notation
(to avoid excessive indices) gives yk → y0. We claim that y0 ∈
B(x0, r(t0, dx0)). Since we know that each yk ∈ B(xk, r(tk, dxk

)),
this can be seen by observing that tk → t0, xk → x0, and the radius
function r is continuous. The details follow.

Pick an arbitrary ε > 0. It is possible to choose such a large L
that for all larger k, we have d(y0, yk) < ε/3, and d(xk, x0) < ε/3,
and (by continuity of r), |r(tk, dxk

)− r(t0, dx0)| < ε/3. Therefore,

d(y0, x0) ≤ d(y0, yk) + d(yk, xk) + d(xk, x0)
< ε/3 + r(tk, dxk

) + ε/3
< ε/3 + r(t0, dx0) + ε/3 + ε/3
= r(t0, dx0) + ε.

Because ε was arbitrary, we have that d(x0, y0) ≤ r(t0, dx0), or in
other words, y0 ∈ B(x0, r(t0, dx0)). But since x0 ∈ X0, that means
y0 ∈ H(X0, t0).
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So we know that y0 ∈ H(X0, t0) ⊂ U . Because U is open, there
exists some ε > 0 such that B(y0, ε) ⊂ U . By choosing large enough
k, yk ∈ B(y0, ε), and thus, yk ∈ U . This is a contradiction, so H
must be continuous with respect to the upper Vietoris topology.

Next, consider the lower Vietoris topology. First, we suppose
t0 = 1 and H(X0, t0) ∈ U−

1 ∩ · · · ∩ U−
n . Choose any x′ ∈ X0 and

let ε > 0. Let V = B(x′, ε) and then V − is a neighborhood of X0.
Now, for each Ui, pick some yi ∈ Ui and let ∆i = d(x′, yi). Since
n is finite, we can let ∆ =max{∆i}+ ε. This is chosen this way so
that if x ∈ B(x′, ε), then d(x, yi) ≤ d(x, x′) + d(x′, yi) < ∆, and so
B(x,∆)∩Ui 6= ∅. Now we need only choose δ > 0 sufficiently small
such that if t ∈ (1 − δ, 1), then r(t, dx) > ∆ for all x ∈ B(x′, ε).
Because the dx are bounded below by dx′ − ε and above by dx′ + ε,
and r is continuous, this can be done. We choose δ sufficiently
small that if t ∈ (1 − δ, 1), then r(t, dx′ + ε) > ∆. Since r is
nondecreasing in t, and for all x ∈ B(x′, ε), dx < dx′ + ε, we have
that r(t, dx) > r(t, dx′ + ε) > ∆. Then we have a neighborhood
V × (1− δ, 1] of (X0, t0) such that if (X, t) is in that neighborhood,
H(X, t) ∈ U−

1 . . . U−
n .

Suppose that t0 6= 1, and consider an open set in the lower
Vietoris topology containing H(X0, t0) of the form U−

1 ∩ · · · ∩ U−
n .

The Ui are all open sets in M . Then for every i, there exists some
xi ∈ X0 with B(xi, r(t0, dxi)) ∩ Ui 6= ∅. Furthermore, since each Ui

is open, and since B(xi, r(to, dxi)) = B(xi, r(t0, dxi)), we can choose
some yi ∈ B(xi, r(t0, dxi)) ∩ Ui (the open ball). For each i, let

ζi =
1
2
(r(t0, dxi)− d(xi, yi)).

By the continuity of r and dx, for every i, there exists some δi and
εi > 0 such that for all x ∈ B(xi, εi) and for all t with |t− t0| < δi,
it must be that |r(t, dx)− r(t0, dxi)| < ζi.

Let ηi = min{ζi, εi} and let Vi = B(xi, ηi). Let δ = min{δi}
and let N = (V −

1 ∩ · · · ∩ V −
n ) × ([0, 1) ∩ (t0 − δ, t0 + δ)). This will

be a neighborhood of (X0, t0) which maps into U−
1 ∩ · · · ∩ U−

n . To
show this, suppose (X, t) is an arbitrary point in N . For each i,
because X ∈ Vi, there is an x′i ∈ X with d(xi, x

′
i) < ηi ≤ εi. But εi

was chosen such that this means |r(t0, dxi) − r(t, dx′i)| < ζi, which
implies

r(t0, dxi)− ζi < r(t, dx′i).
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We also know that d(xi, x
′
i) < ηi ≤ ζi, and so

d(x′i, yi) ≤ d(x′i, xi) + d(xi, yi) < ζi + (r(t0, dxi)− 2ζi)

= r(t0, dxi)− ζi < r(t, dx′i).

This statement about distance means that yi is in the growing
ball around x′i, part of H(X, t). But yi is also in Ui, and so we have
H(X, t) ∩ Ui 6= ∅. This completes the proof. ¤
Acknowledgment. I would like to thank Dr. Marcy Barge for
many helpful discussions and the referee for suggesting helpful re-
visions, including an elegant fix for a previous error.
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