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COARSE EMBEDDABILITY INTO BANACH
SPACES

M.I. OSTROVSKII

Abstract. The main purposes of this paper are (1) To sur-
vey the area of coarse embeddability of metric spaces into
Banach spaces, and, in particular, coarse embeddability of
different Banach spaces into each other; (2) To present new re-
sults on the problems: (a) Whether coarse non-embeddability
into `2 implies presence of expander-like structures? (b) To
what extent `2 is the most difficult space to embed into?

1. Introduction

1.1. Basic definitions. Let A and B be metric spaces with met-
rics dA and dB, respectively.

Definition 1.1. A mapping f : A → B is called a coarse embedding
(or a uniform embedding) if there exist functions ρ1, ρ2 : [0,∞) →
[0,∞) such that
1. ∀x, y ∈ A ρ1(dA(x, y)) ≤ dB(f(x), f(y)) ≤ ρ2(dA(x, y)).
2. limr→∞ ρ1(r) = ∞.

Remark 1.2. We prefer to use the term coarse embedding because
in the Nonlinear Functional Analysis the term uniform embedding
is used for uniformly continuous injective maps whose inverses are
uniformly continuous on their domains of definition, see [6, p. 3].
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In some of the papers cited below the term uniform embedding is
used.

Definition 1.3. A mapping f : A → B is called Lipschitz if there
exists a constant 0 ≤ L < ∞ such that

(1.1) dB(f(x), f(y)) ≤ L · dA(x, y).

The infimum of all L > 0 for which the inequality in (1.1) is valid
is called the Lipschitz constant of f and is denoted by Lip(f). A
Lipschitz mapping is called a Lipschitz embedding if it is one-to-one,
and its inverse, defined as a mapping from the image of f into A,
is also a Lipschitz mapping.

Definition 1.4. A metric space A is said to have bounded geometry
if for each r > 0 there exist a positive integer M(r) such that each
ball B(x, r) = {y ∈ A : dA(x, y) ≤ r} of radius r contains at most
M(r) elements.

Definition 1.5. A metric space is called locally finite if all balls in
it have finitely many elements.

Our terminology and notation of Banach space theory follows [6]
and [27].

1.2. Some history and motivation. M. Gromov [20] suggested
to use coarse embeddings of Cayley graphs of infinite groups with
finitely many generators and finitely many relations (with their
graph-theoretical metric) into a Hilbert space or into a uniformly
convex Banach space as a tool for working on such well-known
conjectures as the Novikov conjecture and the Baum–Connes con-
jecture (discussion of these conjectures is beyond the scope of this
paper). G. Yu [58] and G. Kasparov and G. Yu [32] have shown that
this is indeed a very powerful tool. G. Yu [58] used the condition of
coarse embeddability of metric spaces with bounded geometry into
a Hilbert space; G. Kasparov and G. Yu [32] used the condition of
coarse embeddability of metric spaces with bounded geometry into
a uniformly convex Banach space. These results made the following
problem posed by M. Gromov in [20, Problem (4)] very important:

“Does every finitely generated or finitely presented group admit
a uniformly metrically proper Lipschitz embedding into a Hilbert
space? Even such an embedding into a reflexive uniformly convex
Banach space would be interesting. This seems hard.”
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Also, they attracted attention to the following generalized ver-
sion of the problem:

Whether each metric space with bounded geometry is coarsely
embeddable into a uniformly convex Banach space?

The result of G. Kasparov and G. Yu [32] also made it interest-
ing to compare classes of metric spaces embeddable into different
Banach spaces (with particular interest to spaces with bounded
geometry).

2. Obstructions to embeddability of spaces with
bounded geometry

M. Gromov [19, Remark (b), p. 218] wrote: “There is no known
geometric obstruction for uniform embeddings into infinite dimen-
sional Banach spaces.” Writing this M. Gromov was unaware of
P. Enflo’s work [16] in which it was shown that there is no uni-
formly continuous embedding with uniformly continuous inverse
of the Banach space c0 into a Hilbert space. A.N. Dranishnikov,
G. Gong, V. Lafforgue, and G. Yu [13, Section 6] adjusted the con-
struction of P. Enflo [16] in order to prove that there exist locally
finite metric spaces which are not coarsely embeddable into Hilbert
spaces. After [13] was written, M. Gromov (see [21, p. 158]) ob-
served that expanders provide examples of spaces with bounded
geometry which are not coarsely embeddable into a Hilbert space
and into `p for 1 ≤ p < ∞. Recall the definition (see [11] for an
accessible introduction to the theory of expanders).

Definition 2.1. For a finite graph G with vertex set V and a subset
F ⊂ V by ∂F we denote the set of edges connecting F and V \F .
The expanding constant (also known as Cheeger constant) of G is

h(G) = inf
{
|∂F |
|F | : F ⊂ V, 0 < |F | ≤ |V |/2

}
.

A sequence {Gn} of graphs is called a family of expanders if
all of Gn are finite, connected, k-regular for some k ∈ N (that is,
each vertex is adjacent to exactly k other vertices), their expanding
constants h(Gn) are bounded away from 0 (that is, there exists
ε > 0 such that h(Gn) ≥ ε for all n), and their orders (numbers of
vertices) tend to ∞ as n → ∞.
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We consider (vertex sets of) connected graphs as metric spaces,
with their standard graph-theoretic distance: the distance between
two vertices is the number of edges in the shortest path joining
them.

Let A be a metric space containing isometric copies of all graphs
from some family of expanders. The Gromov’s observation is: A
does not embed coarsely into `p for 1 ≤ p < ∞ (see [52, pp. 160–
161] for a detailed proof, it is worth mentioning that the result can
be proved using the argument which is well known in the theory of
Lipschitz embeddings of finite metric spaces, see [37, pp. 192–193]).

M. Gromov [21] suggested to use random groups in order to prove
that there exist Cayley graphs of finitely presented groups which
are not coarsely embeddable into a Hilbert space. Many details
on this approach were given in the paper M. Gromov [22] (some
details were explained in [18], [44], and [55]). However, to the best
of my knowledge, the work on clarification of all of the details of
the M. Gromov’s construction has not been completed (as of now).

The posed above problem about the existence of coarse
embeddings of spaces with bounded geometry into uniformly convex
Banach spaces was recently solved in the negative by V. Lafforgue
[34], his construction is also expander-based.

N. Ozawa [47, Theorem A.1] proved that a metric space A con-
taining isometric copies of all graphs from some family of expanders
does not embed coarsely into any Banach space X such that BX

(the unit ball of X) is uniformly homeomorphic to a subset of a
Hilbert space. See [6, Chapter 9, Section 2] for results on spaces X
such that BX is uniformly homeomorphic to B`2 .

It would be very interesting to find out whether each metric
space with bounded geometry which is not coarsely embeddable
into a Hilbert space contains a substructure similar to a family of
expanders. A version of this problem was posed in [23] using the
following terminology:

Definition 2.2. A metric space X weakly contains a family {Gn}∞n=1
of expanders with vertex sets {Vn}∞n=1 if there are maps fn : Vn → Y
satisfying
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(i) sup
n

Lip(fn) < ∞,

(ii) lim
n→∞

sup
v∈Vn

|f−1
n (v)|
|Vn|

= 0.

Problem 2.3. [23, p. 261] Let Γ be a finitely presented group whose
Cayley graph G with its natural metric is not coarsely embeddable
into `2. Does it follow that G weakly contains a family of
expanders?

The following theorem can help with search of an expander-like
structure in metric spaces with bounded geometry which are not
coarsely embeddable into a Hilbert space. In the theorem we con-
sider coarse embeddability into L1 = L1(0, 1). For technical reasons
it is more convenient to work with L1. As we shall see in section 4
coarse embeddability into L1 is equivalent to coarse embeddability
into a Hilbert space.

Theorem 2.4. Let M be a locally finite metric space which is not
coarsely embeddable into L1. Then there exists a constant D, de-
pending on M only, such that for each n ∈ N there exists a finite
set Bn ⊂ M × M and a probability measure µ on Bn such that

• dM (u, v) ≥ n for each (u, v) ∈ Bn.
• For each Lipschitz function f : M → L1 the inequality

(2.1)
∫

Bn

||f(u)− f(v)||L1dµ(u, v) ≤ DLip(f)

holds.

Lemma 2.5. Let M be metric space which is not coarsely embed-
dable in L1. There exists a constant C depending on M only such
that for each Lipschitz function f : M → L1 there exists a subset
Bf ⊂ M × M such that

sup
(x,y)∈Bf

dM(x, y) = ∞, but sup
(x,y)∈Bf

||f(x)− f(y)||L1 ≤ CLip(f).

Proof. Assume the contrary. Then, for each n ∈ N, the number
n3 cannot serve as C. This means, that for each n ∈ N there
exists a Lipschitz mapping fn : M → L1 such that for each subset
U ⊂ M × M with

sup
(x,y)∈U

dM (x, y) = ∞,
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we have
sup

(x,y)∈U
||fn(x) − fn(y)|| > n3Lip(fn).

We choose a point in M and denote it by O. Without loss of
generality we may assume that fn(O) = 0. Consider the mapping

f : M →

( ∞∑

n=1

⊕L1

)

1

⊂ L1

given by

f(x) =
∞∑

n=1

1
Kn2

· fn(x)
Lip(fn)

,

where K =
∑∞

n=1
1
n2 . It is clear that the series converges and

Lip(f) ≤ 1.

Let us show that f is a coarse embedding. We need an estimate
from below only (the estimate from above is satisfied because f is
Lipschitz).

Now we show that the assumption made at the beginning of the
proof implies that for each n ∈ N there is N ∈ N such that

dM(x, y) ≥ N ⇒ ||fn(x)− fn(y)|| > n3Lip(fn).

In fact, if for some n ∈ N there is no such N , we can find a se-
quence of pairs (xk, yk) ∈ M × M satisfying dM(xk, yk) ≥ k and
||fn(xk)−fn(yk)|| ≤ n3Lip(fn). Then the set U ={(xk, yk) : k∈N}
violates the assumption.

On the other hand,

||fn(x)− fn(y)|| > n3Lip(fn) ⇒ ||f(x)− f(y)|| >
n

K
Hence f : M → L1 is a coarse embedding and we get a contradic-
tion. �

Lemma 2.6. Let M be a locally finite metric space which is not
coarsely embeddable in L1. Let C be the constant whose existence
is proved in Lemma 2.5 and let ε be an arbitrary positive number.
For each n ∈ N we can find a finite subset Mn ⊂ M such that for
each Lipschitz mapping f : M → L1 there is a pair (uf,n, vf,n) ∈
Mn × Mn such that

• dM (uf,n, vf,n) ≥ n.
• ||f(uf,n) − f(vf,n)|| ≤ (C + ε)Lip(f).
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Proof. We choose a point in M and denote it by O. The ball in
M of radius R centered at O will be denoted by B(R). It is clear
that it suffices to prove the result for fixed n and for 1-Lipschitz
mappings satisfying f(O) = 0.

Assume the contrary. Since M is locally finite, this implies that
for each R ∈ N there is a 1-Lipschitz mapping fR : M → L1 such
that fR(O) = 0 and, for u, v ∈ B(R), the inequality dM(u, v) ≥ n
implies ||fR(u)− fR(v)||L1 > C + ε.

We refer to [9], [24], or [12, Chapter 8] for results on ultra-
products, our terminology and notation follows [12]. We form
an ultraproduct of the mappings {fR}∞R=1, that is, a mapping
f : M → (L1)U , given by f(m) = {fR(m)}∞R=1, where U is a
non-trivial ultrafilter on N and (L1)U is the corresponding ultra-
power. Each ultrapower of L1 is isometric to an L1 space on some
measure space (see [12, Theorem 8.7], [9], [24]), and its separable
subspaces are isometric to subspaces of L1(0, 1) (see [14, p. 168],
[27, pp. 14–15], and [53, pp. 399 & 416]). Therefore we can consider
f as a mapping into L1(0, 1). It is easy to verify that Lip(f) ≤ 1
and that f satisfies the condition

dM(u, v) ≥ n ⇒ ||f(u)− f(v)||L1 ≥ (C + ε).

We get a contradiction with the definition of C. �

Proof of Theorem 2.4. Let D be a number satisfying D > C, and
let B be a number satisfying C < B < D.

We fix n ∈ N. According to Lemma 2.6, there is a finite subset
Mn ⊂ M such that for each 1-Lipschitz function f on M there is a
pair (u, v) in Mn such that dM(u, v) ≥ n and ||f(u)− f(v)|| ≤ B.

Let αn be the cardinality of Mn, we choose a point in Mn and
denote it by O. Since both sides in (2.1) are shift-invariant and
positive-homogeneous, it suffices to prove the theorem in the case
when f : Mn → L1 is a 1-Lipschitz function satisfying f(O) = 0.

Each αn-element subset of L1 is isometric to a subset in
`
αn(αn−1)/2
1 (see [57], [3]). Therefore it suffices to prove the result

for 1-Lipschitz embeddings into `
αn(αn−1)/2
1 . Now we show that it

suffices to prove the existence of a probability measure µ on Bn

such that

(2.2)
∫

Bn

||f(u)− f(v)||dµ(u, v)≤ B
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for each f from a
(

D−B
2

)
-net in the set of all functions satisfying

the conditions mentioned above, endowed with the metric

τ(f, g) = max
m∈Mn

||f(m)− g(m)||.

In fact, assume that we have proved the existence of a probability
measure µ such that (2.2) holds for each function f from such a(

D−B
2

)
-net. Let g : Mn → `

αn(αn−1)/2
1 be a 1-Lipschitz function

satisfying g(O) = 0. Let f be an element of the net satisfying
τ(f, g) ≤

(
D−B

2

)
. Since µ is a probability measure, we have

∫

Bn

||g(u)− g(v)||dµ(u, v)

≤
∫

Bn

||f(u)− f(v)||dµ(u, v)+ 2
(

D − B

2

)

≤ B + (D − B) = D;

that is, we have proved the inequality (2.1) for the 1-Lipschitz func-
tion g.

By compactness there exists a finite net satisfying the condition.
Let N be such a net. We are going to use the minimax theorem,
see, e.g. [56, p. 344]. In particular, we use the notation similar to
the one used in [56].

Let A be the matrix whose columns are labelled by functions
from N , whose rows are labelled by pairs (u, v) of elements of Mn

satisfying dM(u, v) ≥ n, and whose entry on the intersection of the
column corresponding to f , and the row corresponding to (u, v) is
||f(u)− f(v)||.

Then, for each column vector x = {xf}f∈N with xf ≥ 0 and∑
f∈N xf = 1, the entries of the product Ax are the differences

||F (u) − F (v)||, where F : M →


∑

f∈N

⊕`
αn(αn−1)/2
1




1

is given

by F (m) =
∑

f∈N

xff(m). The function F can be considered as a

function into L1. It satisfies Lip(F ) ≤ 1. Hence there is a pair
(u, v) in Mn satisfying dM(u, v) ≥ n and ||F (u) − F (v)|| ≤ B.
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Therefore we have
max

x
min

µ
µAx ≤ B,

where the minimum is taken over all vectors µ = {µ(u, v)}, indexed
by u, v ∈ Mn, dM(u, v) ≥ n, and satisfying the conditions µ(u, v) ≥
0 and

∑
µ(u, v) = 1.

By the von Neumann minimax theorem [56, p. 344], we have

min
µ

max
x

µAx ≤ B,

which is exactly the inequality we need to prove because µ can be
regarded as a probability measure on the set of pairs from Mn with
distance ≥ n. �

3. Coarse embeddability into reflexive Banach spaces

The first result of this nature was obtained by N. Brown and
E. Guentner [8, Theorem 1]. They proved that for each metric
space A having bounded geometry there is a sequence {pn}, pn > 1,
limn→∞ pn = ∞ such that A embeds coarsely into the Banach space
(
∑∞

n=1 ⊕`pn)2, which is, obviously, reflexive.

This result was strengthened in [5], [31], and [45]. (Observe that
the space (

∑∞
n=1 ⊕`pn)2 has no cotype.)

Theorem 3.1. [45] Let X be a Banach space with no cotype and
let A be a locally finite metric space. Then A embeds coarsely into
X.

Theorem 3.2. [5] Let X be a Banach space with no cotype and
let A be a locally finite metric space. Then there exists a Lipschitz
embedding of A into X.

Remark 3.3. Interested readers can reconstruct the proof from [5]
by applying Proposition 6.1 (see below) to Z = c0 in combination
with the result of I. Aharoni mentioned in Section 4.1.

Definition 3.4. A metric space (X, d) is called stable if for any two
bounded sequences {xn} and {yn} in X and for any two non-trivial
ultrafilters U and V on N the condition

lim
n,U

lim
m,V

d(xn, ym) = lim
m,V

lim
n,U

d(xn, ym)

holds.
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Theorem 3.5. [31] Let A be a stable metric space. Then A embeds
coarsely into a reflexive Banach space.

Remark 3.6. It is easy to see that locally finite metric spaces are
stable.

N.J. Kalton [31] found examples of Banach spaces which are not
coarsely embeddable into reflexive Banach spaces, c0 is one of the
examples of such spaces. Apparently his result provides the first
example of a metric spaces which is not coarsely embeddable into
reflexive Banach spaces. (See [48, Introduction].)

4. Coarse classification of Banach spaces

As we already mentioned the result of G. Kasparov and G. Yu
[32] makes it very interesting to compare the conditions of coarse
embeddability into a Banach space X for different spaces X . Since
compositions of coarse embeddings are coarse embeddings, one can
approach this problem by studying coarse embeddability of Banach
space into each other. In this subsection we describe the existing
knowledge on this matter.

4.1. Essentially nonlinear coarse embeddings. There are
many examples of pairs (X, Y ) of Banach spaces such that X
is coarsely embeddable into Y , but the Banach-space-theoretical
structure of X is quite different from the Banach-space-theoretical
structure of each subspace of Y :

• A result which goes back to I.J. Schoenberg [54] (see [38,
p. 385] for a simple proof) states that L1 with the metric√

||x− y||1 is isometric to a subset of L2. Hence L1 and all
of its subspaces, in particular, Lp and `p (1 ≤ p ≤ 2) (see
[29] and [7]) embed coarsely into L2 = `2.

• This result was generalized by M. Mendel and A. Naor
[39, Remark 5.10]: For every 1 ≤ q < p the metric space
(Lq, ||x− y||q/p

Lq
) is isometric to a subspace of Lp.

• The well-known result of I. Aharoni [1] implies that each
separable Banach space is coarsely embeddable into c0 (al-
though its Banach space theoretical properties can be quite
different from those of any subspace of c0). A simpler proof
of this result was obtained in [2], see, also, [6, p. 176].
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• N.J. Kalton [30] proved that c0 embeds coarsely into a
Banach space with the Schur property.

• P. Nowak [42] proved that `2 is coarsely embeddable into `p

for all 1 ≤ p ≤ ∞.

4.2. Obstructions to coarse embeddability of Banach spaces.
The list of discovered obstructions to coarse embeddability also con-
stantly increases:

• Only minor adjustments of the argument of Y. Raynaud [51]
(see, also [6, pp. 212–215]) are needed to prove the following
results:
(1) Let A be a Banach space with a spreading basis which

is not an unconditional basis. Then A does not embed
coarsely into a stable metric space. (See [6, p. 429] for
the definition of a spreading basis and [33] for examples
of stable Banach spaces. Examples of stable Banach
spaces include Lp (1 ≤ p < ∞).)

(2) Let A be a nonreflexive Banach space with non-trivial
type. Then A does not embed coarsely into a sta-
ble metric space. (Examples of nonreflexive Banach
spaces with non-trivial type were constructed in [25],
[26], [49].)

• A.N. Dranishnikov, G. Gong, V. Lafforgue, and G. Yu [13]
adjusted the argument of P. Enflo [16] to prove that Banach
spaces with no cotype are not coarsely embeddable into `2.

• W. B. Johnson and L. Randrianarivony [28] proved that `p

(p > 2) is not coarsely embeddable into `2.
• M. Mendel and A. Naor [40] proved (for K-convex spaces)

that cotype of a Banach space is an obstruction to coarse
embeddability, in particular, `p is not coarsely embeddable
into `q when p > q ≥ 2.

• L. Randrianarivony [50] strengthened the result from [28]
to a characterization of quasi-Banach spaces which embed
coarsely into a Hilbert space, and proved: a separable
Banach space is coarsely embeddable into a Hilbert space
if and only if it is isomorphic to a subspace of L0(µ).

• N.J. Kalton [31] found some more obstructions to coarse
embeddability. In particular, N.J. Kalton discovered an in-
variant, which he named the Q-property, which is necessary
for coarse embeddability into reflexive Banach spaces.
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4.3. To what extent is `2 the most difficult space to embed
into? Because `2 is, in many respects, the ‘best’ space, and because
of Dvoretzky’s theorem (see [15] and [41]) it is natural to expect that
`2 is among the most difficult spaces to embed into. The strongest
possible result in this direction would be a positive solution to the
following problem.

Problem 4.1. Does `2 embed coarsely into an arbitrary infinite
dimensional Banach space?

This problem is still open, but the coarse embeddability of `2

is known for wide classes of Banach spaces. As was mentioned
above, P.W. Nowak [42] proved that `2 embeds coarsely into `p for
each 1 ≤ p ≤ ∞. In Section 5 we prove that `2 embeds coarsely
into a Banach space containing a subspace with an unconditional
basis which does not contain `n

∞ uniformly (Theorem 5.1). This
result is a generalization of P.W. Nowak’s result mentioned above
because the spaces `p (1 ≤ p < ∞) satisfy the condition of Theorem
5.1, but the spaces satisfying the condition of Theorem 5.1 do not
necessarily contain subspaces isomorphic to `p (see [17], and [36,
Section 2.e]).

In all existing applications of coarse embeddability results, the
most important is the case when we embed spaces with bounded
geometry into Banach spaces. In this connection the following
result from [46] is of interest.

Theorem 4.2 ([46]). Let A be a locally finite metric space which
embeds coarsely into a Hilbert space, and let X be an infinite
dimensional Banach space. Then there exists a coarse embedding
f : A → X.

In this paper we use an idea of F. Baudier and G. Lancien [5],
and prove this result in a stronger form, for Lipschitz embeddings
(see Section 6):

Theorem 4.3. Let M be a locally finite subset of a Hilbert space.
Then M is Lipschitz embeddable into an arbitrary infinite dimen-
sional Banach space.
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5. Coarse embeddings of `2

Theorem 5.1. Let X be a Banach space containing a subspace
with an unconditional basis which does not contain `n

∞ uniformly.
Then `2 embeds coarsely into X.

Proof. We use the criterion for coarse embeddability into a Hilbert
space due to M. Dadarlat and E. Guentner [10, Proposition 2.1]
(see [35] and [42] for related results). We state it as a lemma (by
S(X) we denote the unit sphere of a Banach space X).

Lemma 5.2 ([10]). A metric space A admits a coarse embedding
into `2 if and only if for every ε > 0 and every R > 0 there exists
a map ζ : A → S(`2) such that

(i) dA(x, y) ≤ R implies ||ζ(x)− ζ(y)|| ≤ ε.
(ii) limt→∞ inf{||ζ(x)− ζ(y)|| : x, y ∈ A, dA(x, y) ≥ t} =

√
2.

We assume without loss of generality that X has an uncondi-
tional basis {ei}i∈N. Let N = ∪∞

i=1Ni be a partition of N into
infinitely many infinite subsets. Let Xi = cl(span{ei}i∈Ni). By the
theorem of E. Odell and T. Schlumprecht [43] (see, also, [6, The-
orem 9.4]), for each i ∈ N there exists a uniform homeomorphism
ϕi : S(`2) → S(Xi). We apply Lemma 5.2 in the case when A = `2.
By the uniform continuity of ϕi and ϕ−1

i we get: for each i ∈ N
there exists δi > 0 and a map ζi : `2 → S(Xi) such that

(5.1) lim
t→∞

inf{||ζi(x)− ζi(y)||Xi : ||x− y||`2 ≥ t} ≥ δi.

(5.2) ||x− y||`2 ≤ i implies ||ζi(x)− ζi(y)||Xi ≤
δi

i2i
.

(We use the conclusion (ii) of Lemma 5.2 to get (5.1), and (i) to
get (5.2).)

Fix x0 ∈ `2. Let f : `2 → X be the map defined as the direct

sum of the maps
i

δi
(ζi(x) − ζi(x0)). We claim that it is a coarse

embedding (the fact that it is a well-defined map follows from (5.2)).

Let ||x−y|| = r, then for i ≥ r we get || i
δi

ζi(x)− i
δi

ζi(y)||Xi ≤ 1
2i .

Hence ||f(x)− f(y)|| ≤
∑dre−1

i=1
2i
δi

+
∑∞

i=dre
1
2i =: ρ2(r). We proved

an estimate from above.
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To prove an estimate from below, it is enough, for a given h ∈ R,
to find t ∈ R such that ||x − y||`2 ≥ t implies ||f(x)− f(y)||X ≥ h.
Observe that we can find i ∈ N and t ∈ R such that ||x − y||`2 ≥ t
implies || i

δi
ζi(x)− i

δi
ζi(y)||Xi ≥ h. In fact, choose an arbitrary i >

h. The conclusion follows from the condition (5.1). On the other
hand, each space with an unconditional basis has an equivalent
norm in which it is unconditionally monotone (see [27, p. 9]). The
unconditional monotonicity implies ||xi||Xi ≤ ||

∑∞
k=1 xk|| for xk ∈

Xk, k ∈ N. This gives the desired estimate from below:

||f(x)− f(y)|| ≥
∥∥∥∥

i

δi
ζi(x)− i

δi
ζi(y)

∥∥∥∥
Xi

≥ h. �

6. Lipschitz embeddings of locally finite metric spaces

The purpose of this section is to prove Theorem 4.3. We prove
the main step in our argument (Proposition 6.1) in a somewhat
more general context than is needed for Theorem 4.3, because it
can be applied in some other situations (see, in this connection, the
paper [4] containing two versions of Proposition 6.1). The coarse
version of this result was proved in [46], in the proof of the Lipschitz
version we use an idea from [5].

Proposition 6.1. Let A be a locally finite subset of a Banach space
Z. Then there exists a sequence of finite dimensional linear sub-
spaces Zi (i ∈ N) of Z such that A is Lipschitz embeddable into
each Banach space Y having a finite dimensional Schauder decom-
position {Yi}∞i=1 with Yi linearly isometric to Zi.

See [36, Section 1.g] for information on Schauder decompositions.
It is clear that we may restrict ourselves to the case when the
Schauder decomposition satisfies

(6.1) ||yi|| ≤

∥∥∥∥∥
∞∑

i=1

yi

∥∥∥∥∥ when yi ∈ Yi for each i ∈ N.

Proof. Let Zi be the linear subspace of Z spanned by
{a ∈ A : ||a||Z ≤ 2i} and let Si = {a ∈ A : 2i−1 ≤ ||a||Z ≤ 2i}.
Let Ti : Zi → Yi be some linear isometries and let Ei : Zi → Y
be compositions of these linear isometries with the natural em-
beddings Yi → Y . We define an embedding ϕ : A → Y by
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ϕ(a) =
2i − ||a||Z

2i−1
Ei(a) +

||a||Z − 2i−1

2i−1
Ei+1(a) for a ∈ Si.

One can check that there is no ambiguity for ||a||Z = 2i.

Remark 6.2. The mapping ϕ is a straightforward generalization of
the mapping constructed in [5].

It remains to verify that ϕ is a Lipschitz embedding. We consider
three cases.

(1) a, b are in the same Si;
(2) a, b are in consecutive sets Si, that is, b ∈ Si, a ∈ Si+1;
(3) a, b are in ‘distant’ sets Si, that is, b ∈ Si, a ∈ Sk , k ≥ i+2.

Everywhere in the proof we assume ||a|| ≥ ||b||.
Case (1). The inequality (6.1) implies that the number

||ϕ(a)− ϕ(b)||Y
is between the maximum and the sum of the numbers

(6.2)
∥∥∥∥
2i − ||a||Z

2i−1
Ei(a) − 2i − ||b||Z

2i−1
Ei(b)

∥∥∥∥ ,

(6.3)
∥∥∥∥
||a||Z − 2i−1

2i−1
Ei+1(a) − ||b||Z − 2i−1

2i−1
Ei+1(b)

∥∥∥∥ .

It is clear that the norm in (6.2) is between the numbers

2i − ||a||Z
2i−1

||Ei(a)− Ei(b)|| ∓
||a||Z − ||b||Z

2i−1
||Ei(b)||,

and the norm in (6.3) is between the numbers

||a||Z − 2i−1

2i−1
||Ei+1(a)− Ei+1(b)|| ∓

||a||Z − ||b||Z
2i−1

||Ei+1(b)||.

Therefore
1
2

(
||a − b||Z − ||a||Z − ||b||Z

2i−2
||b||Z

)
≤ ||ϕ(a)− ϕ(b)||Y

≤ ||a− b||Z +
||a||Z − ||b||Z

2i−2
||b||Z.

This inequality implies a suitable estimate from above for the
Lipschitz constant of ϕ, and an estimate for the Lipschitz con-
stant of its inverse in the case when ||a − b||Z is much larger than
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||a||Z − ||b||Z, for example, if ||a− b||Z ≥ 5(||a||Z − ||b||Z). To com-
plete the proof in the case (1) it suffices to estimate ||ϕ(a)−ϕ(b)||

from below in the case when ||a||Z −||b||Z ≥ ||a− b||Z
5

. In this case

we use the observation that for a, b ∈ Si satisfying ||a||Z ≥ ||b||Z
the sum of (6.2) and (6.3) can be estimated form below by

(
2i − ||a||Z

2i−1
||a||Z − 2i − ||b||Z

2i−1
||b||Z

)

+
(
||a||Z − 2i−1

2i−1
||a||Z − ||b||Z − 2i−1

2i−1
||b||Z

)

= ||a||Z − ||b||Z ≥ ||a− b||Z
5

.

This completes our proof in the case (1).

Case (2). The inequality (6.1) implies that the number

||ϕ(a)− ϕ(b)||Y
is between the maximum and the sum of the numbers

(6.4)
∥∥∥∥
2i − ||b||Z

2i−1
Ei(b)

∥∥∥∥ ,

(6.5)
∥∥∥∥
2i+1 − ||a||Z

2i
Ei+1(a) − ||b||Z − 2i−1

2i−1
Ei+1(b)

∥∥∥∥ ,

(6.6)
∥∥∥∥
||a||Z − 2i

2i
Ei+2(a)

∥∥∥∥ .

Both (6.4) and (6.6) are estimated from above by 2(||a||Z−||b||Z).
As for (6.5), we have

∥∥∥∥
2i+1 − ||a||Z

2i
Ei+1(a) − ||b||Z − 2i−1

2i−1
Ei+1(b)

∥∥∥∥

(6.7) =
∥∥∥∥
2i − (||a||Z − 2i)

2i
a +

(2i − ||b||Z) − 2i−1

2i−1
b

∥∥∥∥
Z

≤ ||a − b||Z + 2(||a||Z − 2i) + 2(2i − ||b||Z) ≤ 3||a− b||Z.

We turn to estimate from below. From (6.4) and (6.6) we get

||ϕ(a)− ϕ(b)|| ≥ max{(2i − ||b||Z), (||a||Z − 2i)}.
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Therefore it suffices to find an estimate in the case when

(6.8) max{(2i − ||b||Z), (||a||Z − 2i)} ≤ ||a − b||Z
5

.

Rewriting (6.5) in the same way as in (6.7), we get

||ϕ(a)− ϕ(b)||Y ≥
∥∥∥∥(a − b) +

2i − ||b||Z
2i−1

b− ||a||Z − 2i

2i
a

∥∥∥∥

In the case when (6.8) is satisfied, we can continue this chain of
inequalities with

≥ ||a− b||Z − 4
5
||a − b||Z =

1
5
||a − b||Z.

Case (3). In this case the number ||ϕ(a)− ϕ(b)||Y is between the
maximum and the sum of the four numbers:

2i − ||b||Z
2i−1

||b||Z,
||b||Z − 2i−1

2i−1
||b||Z,

2k − ||a||Z
2k−1

||a||Z,
||a||Z − 2k−1

2k−1
||a||Z.

Hence ||ϕ(a)− ϕ(b)||Y is between
||a||Z

2
(= the average of the last

two numbers) and ||a||Z + ||b||Z (=the sum of all four numbers).
On the other hand,

1
2
||a||Z ≤ ||a||Z − ||b||Z ≤ ||a− b||Z ≤ ||a||Z + ||b||Z ≤ 2||a||Z.

These inequalities immediately imply estimates for Lipschitz con-
stants. �

Proof of Theorem 4.3. Each finite dimensional subspace of `2 is iso-
metric to `k

2 for some k ∈ N. By Proposition 6.1 there exists a
sequence {ni}∞i=1 such that A embeds coarsely into each Banach
space Y having a Schauder decomposition {Yi} with Yi isometric
to `ni

2 . On the other hand, using Dvoretzky’s theorem ([15], see,
also, [41, Section 5.8]) and the standard techniques of constructing
basic sequences (see [36, p. 4]), it is easy to prove that for an ar-
bitrary sequence {ni}∞i=1 an arbitrary infinite dimensional Banach
space X contains a subspace isomorphic to a space having such
Schauder decomposition. �
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I would like to thank Tadeusz Figiel and William B. Johnson for
useful conversations related to the subject of this paper.

Added in proof. (August 2008) The following recent papers
are closely related to the subject of this paper: (1) G. Pisier, Com-
plex Interpolation between Hilbert, Banach and Operator spaces,
arXiv:0802.0476; (2) R. Tessera, Coarse embeddings into a Hilbert
space, Haagerup Property and Poincare inequalities, arXiv:0802.2541.
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