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GEOMETRIC CHARACTERISTICS AND COMMON
HYPERCYCLIC SUBSPACES

JUAN BÈS AND ÖZGUR MARTIN

Abstract. We consider geometric characteristics of count-
ably many hypercyclic operators on a Banach space and study
their effect on the existence of common hypercyclic subspaces.

1. Introduction

The Invariant Subset Problem asks whether every bounded oper-
ator on an infinite dimensional Banach space supports a non-trivial
closed invariant set, that is, a closed set that is neither {0} nor the
whole space and which is mapped into itself by the operator. Read
[40] showed that the answer is negative in general, providing a re-
markable counterexample on `1. The Invariant Subset Problem
remains open for the case in which the Banach space is a Hilbert
space.

The notions of hypercyclic operators and hypercyclic vectors
arise naturally in this study of invariant subsets. We say that a
bounded operator T on a Banach space X is hypercyclic provided
there is some x ∈ X (called a hypercyclic vector for T ) whose orbit

{x, Tx, T 2x, . . .}

is dense in X . In this way, T lacks non-trivial closed invariant
subsets if and only if every vector (but the origin) is hypercyclic.
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Many nice things are known about the set HC(T ) of hyper-
cyclic vectors of a hypercyclic operator T . Ansari [2] showed the
surprising fact that HC(T ) = HC(Tn) (n ∈ N), see also [18]. In-
deed, Ansari’s result may now be concluded from the remarkable
result by Bourdon and Feldman [16] that the orbit of a bounded
operator must be either (everywhere) dense or nowhere dense (see
also related results by Costakis [23], Peris [38], Costakis and Peris
[24], and Feldman [26]). More recently, León-Saavedra and Müller
showed that HC(T ) = HC(λT ) for each scalar λ of modulus one.

But our interest here is on the linear structure of the set HC(T ).
It is well known that every hypercyclic operator T supports a dense
hypercyclic manifold, that is, a dense subspace consisting entirely
(but the origin) of hypercyclic vectors for T . This was indepen-
dently proved by Bourdon [15] and Herrero [32], who stated it in
the complex Hilbert case setting (see also [8], [27], and [12]), and
later by Wengenroth [43] who showed that this fact holds for oper-
ators on any topological vector space.

In contrast, a hypercyclic operator T may fail to support a hyper-
cyclic subspace, that is, a closed and infinite dimensional subspace
contained in HC(T ) ∪ {0}. The first such example was found by
Montes-Rodŕıguez [36], in the unilateral weighted backward shift
T = Bλ on `2 given by

(1.1) (x0, x1, . . .)
Bλ7→ (λx1, λx2, . . .),

where |λ| > 1. (The fact that Bλ is hypercyclic is a classical result
of Rolewicz [41]). On the same paper, Montes provided a suffi-
cient condition for an operator to support a hypercyclic subspace,
used later with León-Saavedra [33] to show that every separable
infinite dimensional Banach space supports an operator with a hy-
percyclic subspace. Other closely related results and/or alternative
approaches, including extensions to non-normable Fréchet spaces,
are due to Chan [19], Chan and Taylor [21], Montes-Rodŕıguez and
Romero-Moreno [37], Bernal and Montes-Rodŕıguez [11], Bonet et
al [17], Mart́ınez-Giménez and Peris [35], Bernal [9], Petersson [39],
and Conejero and Bès [13].

A complete characterization of when HC(T ) ∪ {0} contains a
closed and infinite dimensional subspace was provided by González
et al [28] for the case when T is hereditarily hypercyclic (Defini-
tion 2.1):



GEOMETRIC CHARACTERISTICS AND UNIVERSAL SUBSPACES 199

Theorem 1.1. (González et al) A hereditarily hypercyclic operator
T on a Banach space X has a hypercyclic subspace if and only if its
essential spectrum intersects the closed unit disk, and if and only if
some sequence of its iterates {Tnk}k∈N converges pointwise to zero
on a closed, infinite dimensional subspace of X.

More recently, increasing attention has been drawn to the set
∩T∈FHC(T ) of common hypercyclic vectors of a given family F of
hypercyclic operators acting on the same Banach space X . For
example, Abakumov and Gordon [1] showed that the weighted
shifts Bλ on `2 defined in (1.1) satisfy that the set ∩|λ|>1HC(Bλ)
contains a dense subspace (but the origin). Other important ad-
vances on common hypercyclic subspaces for the case when F is
uncountable were obtained by Bayart ([4],[5]), Bayart and Math-
eron [6], Costakis and Sambarino [25], León and Müller [34], Chan
and Sanders [20], and Conejero et al [22]. When the family F is
uncountable, however, it may fail to have a common hypercyclic
vector, even if each T ∈ F supports a hypercyclic subspace [3].
In the countable case, Grivaux ([29]; see also [10]) showed that
∩T∈FHC(T ) always contains a dense subspace (but the origin),
and Aron et al [3] provided a sufficient condition under which the
countable family F supports a common hypercyclic subspace, see
Theorem 2.2.

The purpose of this note, which stems from the paper by Aron et
al [3], is to study the effect of certain geometric characteristics on
the existence of common hypercyclic subspaces. For an operator T
on a Banach space X , consider the geometric characteristics

(1.2)
G(T ) = inf{‖TJW ‖ : W ∈ I }
C(T ) = inf{‖TJW ‖ : W ∈ J },

where I and J denote the collections of closed infinite dimensional
subspaces and of closed, finite codimensional subspaces of X , re-
spectively, and where JW denotes the canonical inclusion of W into
X for each W ∈ I. We show that given a sequence {T`}`∈N of
hereditarily hypercyclic operators on a Banach space X , the con-
dition

lim inf
n→∞

C(Tn
` ) < ∞ (` ∈ N)
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is sufficient, but not necessary, for the T`’s to have a common hy-
percyclic subspace, while in turn for the latter to happen

lim inf
n→∞

G(Tn
` ) < ∞ (` ∈ N)

is a necessary condition, but not a sufficient one. We show that
these results hold in the more general setting of universality (Def-
inition 2.1). For more on the notions of hypercyclicity and uni-
versality, we refer to the article of Godefroy and Shapiro [27], the
surveys by Grosse-Erdmann [30], [31], and the forthcoming book
by Bayart and Matheron [7].

2. Geometric characteristics and common universal
subspaces

In what follows, B(X, Z) denotes the space of bounded operators
between the Banach spaces X and Z, and B(X) = B(X, X). Also,
N denotes the set of positive integers.

Definition 2.1. Given a sequence F = {Tj}j∈N in B(X, Z), we
say that x ∈ X is a universal vector for F provided {Tjx : j ∈N}
is dense in X; the set of such universal vectors is denoted HC(F).
(Hence when F = {T j}j∈N, the universal vectors for F are precisely
the hypercyclic vectors for T ). Also, any closed, infinite dimensional
subspace Y ⊂ {0} ∪ HC(F) is called a universal subspace for F .

The sequence F is said to be universal (respectively, densely uni-
versal) provided HC(F) is non-empty (respectively, dense in X).
F is called hereditarily universal (respectively, hereditarily densely
universal) provided {Tnk

}k∈N is universal (respectively, densely uni-
versal) for each increasing sequence (nk) of positive integers.

We use the following theorem, a minor modification of [3, Theo-
rem 3.1] which is stated with Z = X .

Theorem 2.2. (Aron et al) For ` ∈ N, let F` := {T`,j}j∈N be a
hereditarily densely universal sequence in B(X, Z). Suppose there
exists a closed, infinite dimensional subspace Y of X so that

(2.1) T`,jx →
j→∞

0 for each x ∈ Y and ` ∈ N.

Then the sequences F` (` ∈ N) have a common universal subspace.
That is, there exists a closed, infinite dimensional subspace X1 of
X so that {T`,jx}j∈N is dense in Z for each 0 6= x ∈ X1 and ` ∈ N.
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We observe the following sufficient condition in terms of geomet-
ric characteristics for the existence of common universal subspaces.

Theorem 2.3. For ` ∈ N, let F` := {T`,j}j∈N be a hereditarily
densely universal sequence in B(X, Z) so that

(2.2) sup{C(T`,j) : j ≥ 1} < ∞.

Then the sequences F` (` ∈ N) have a common universal subspace.

Proof. It suffices to show that condition (2.1) of Theorem 2.2 holds.
Without loss of generality, we may assume that there is a dense
subset X0 of X so that for each ` ∈ N,

T`,j →
j→∞

0

pointwise on X0. For each ` ∈ N, let c` > sup{C(T`,j) : j ≥ 1}
and pick closed subspaces W`,n of finite codimension in X so that
‖T`,jJW`,j

‖ < c` (j ∈ N). Hence the closed finite codimensional
subspaces Mr := ∩1≤`,q≤rW`,q satisfy M1 ⊃ M2 ⊃ . . . and

(2.3) ‖T`,jJMr‖ < c`

for every 1 ≤ l, j ≤ r and r ∈ N. The rest of the proof (which
we outline for completeness’ sake) continues as in [3, Theorem 4.1].
Let (en) be a normalized basic sequence so that en ∈ Mn (n ∈ N),
and let (e∗n) in X∗ be the corresponding sequence of coordinate
functionals. Also, let (εn) be a decreasing sequence of positive
scalars so that

∑
εn < 1

2K , where K is the basis constant of (en).
Next, get (zn) in X0 so that

(2.4) ‖zr − er‖ < min{ εr

1 + ‖T`,j‖
: `, j ≤ r}

for every r ∈ N. Notice that
∑

‖e∗r‖ ‖zr − er‖ < 1, so any sub-
sequence (znk

) of (zn) is equivalent to the corresponding basic se-
quence (enk

). It remains to find a subsequence (znk
) of (zn) and

increasing sequences (j`,n)n≥1 (` ∈ N) of positive integers so that

Tl,jl,n
→

n→∞
0

pointwise on Y := span{znk
: k ∈ N}. To do this, let n0 := 1,
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and j`,1 > 1 so that ‖T j`,1

` zn0‖ <
εn0
2 (` ∈ N), and let n1 :=

max{n0 + 1, j1,1}. Next, for ` ∈ N get j`,2 > max{n1, j`,1, 2} so
that

‖T j`,2

` zni‖ <
εni

22

for i = 0, 1, and let n2 := max ({n1 + 1} ∪ {j`,j : 1 ≤ `, j ≤ 2}).
Continuing this process inductively, we obtain sequences (nk) and
(j`,k) so that for each k ∈ N

(2.5)
j`,k > max{nk−1, j`,k−1, k}

‖T`,j`,k
zni‖ <

εni

2k
(0 ≤ i ≤ k − 1).

Now, let 0 6= z =
∑

αizni ∈ Y := span{znk
: k ∈ N}. Let R be

the basis constant for (znk
). So |αi| ≤ 2R‖z‖ for each i ∈ N. Given

` ∈ N fixed, for each k > ` we have

T`,j`,k
z =

k−1∑

i=1

αiT`,j`,k
zni+T`,j`,k

(
∞∑

i=k

αi(zni−eni ))+T`,j`,k
(
∞∑

i=k

αieni).

By (2.5),

‖
k−1∑

i=1

αiT`,j`,k
zni‖ ≤ 2R‖z‖

k−1∑

i=1

εni

2k
→

k→∞
0.

Also, since j`,k ≤ ni whenever i ≥ k, by (2.4) we have

‖T`,j`,k
(
∞∑

i=k

αi(zni − eni))‖ ≤ 2R‖z‖
∞∑

i=k

εni →
k→∞

0.

Finally, for k > ` we have
∑∞

i=k αieni ∈ Mnk
⊂ Mj`,k

, and by (2.3)

‖T`,j`,k
(
∞∑

i=k

αieni)‖ ≤ c` ‖
∞∑

i=k

αieni‖ →
k→∞

0.

So

T`,j`,k
z →

k→∞
0,

and the proof of Theorem 2.3 is now complete. �
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Corollary 2.4. For each ` ∈ N, let T` ∈ B(X) be hereditarily hy-
percyclic with respect to an increasing sequence of positive integers
(n`,q), and so that

(2.6) lim inf
q→∞

C(Tn`,q

` ) < ∞.

Then the T`’s have a common hypercyclic subspace.

Proof. For each ` ∈ N, there exists a subsequence (m`,q) of (n`,q)
so that (C(Tm`,q

` ))q is bounded. So Theorem 2.3 applies to the
hereditarily densely universal families {T`,j}j∈N := {Tm`,j

` }j∈N. �

A simple consequence of Corollary 2.4 is the following particular
case of [3, Theorem 4.1].

Example 2.5. Consider the operators on `2 of the form T` = λ`I +
K`, where λ` is a scalar of modulus one and where K` is a com-
pact unilateral backward shift with non-zero weights (` ∈ N). Then
T1, T2, . . . have a common hypercyclic subspace. To see this, no-
tice that each T` is hereditarily hypercyclic [33, Proposition 4.3].
Also, C(Tm

` ) = C(λm
` I) = 1 for each m, ` ∈ N since this geometric

characteristic is invariant under compact perturbations. Hence the
conclusion follows from Corollary 2.4.

Notice in Example 2.5 that G(Tm
` ) = 1 for each m, ` ∈ N as well,

since this geometric characteristic is also invariant under compact
perturbations. On the other hand, recall that for a hypercyclic
operator T its essential spectrum σe(T ) coincides with its essential
approximate point spectrum

σπe(T ) = {λ ∈ C : T − λI /∈ Φ+(X)}
(Φ+(X) denoting the class of operators on X with finite dimen-
sional kernel and closed range), see [33, Proposition 3.1]. Also,
Gohberg, Goldenstein, and Markus [44] showed that

(2.7) lim
n→∞

C(Tn)
1
n = ρe(T ),

while Zemánek [45, Theorem 8.1] showed that

(2.8) lim
n→∞

G(Tn)
1
n = be(T ),

where ρe(T )=max{|λ|:λ∈σe(T )}, and be(T )=min{|λ|:λ∈σπe(T )}
denote the essential spectral radius of T and the essential injectivity
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radius of T , respectively. Thus every operator T with a hypercyclic
subspace satisfies

1 ≥ be(T ) = lim
n→∞

G(Tn)
1
n ,

by Theorem 1.1. Hence it is natural to ask whether we may replace
the geometric characteristics C(Tn`,q

` ) by G(Tn`,q

` ) in Corollary 2.4.
We answer this with Theorem 2.6 and with Example 2.10.

Theorem 2.6. For ` ∈ N, let {T`,j}j∈N be a hereditarily densely
universal sequence in B(X, Z). Consider the following statements:

(1) For each ` ∈ N, lim infj→∞ C(T`,j) < ∞.
(2) There exists a closed, infinite dimensional subspace Y of X

and increasing sequences of positive integers (n`,q) so that

T`,n`,q
→

q→∞
0 pointwise on Y (` ∈ N).

(3) For each ` ∈ N, lim infj→∞ G(T`,j) < ∞.
Then we have the implications

(1) =⇒ (2) =⇒ (3).

Also, none of the reverse implications hold.

Proof. The implication (1) ⇒ (2) was proved in Theorem 2.3, while
(2) ⇒ (3) follows from the uniform boundedness principle. Exam-
ple 2.7 and Example 2.10 below show that (2) ; (1) and (3) ; (2),
respectively. �

In the examples below we use the fact [33, Proposition 4.1] that
the essential injectivity radius of a hypercyclic unilateral backward
shift Bw on `2 with weight sequence w = (w1, w2, w3, . . .) is given
by

be(Bw) = lim
n→∞

(infk∈N{wkwk+1 · · ·wk+n−1})
1
n .

Example 2.7. The implication (2) ⇒ (1) of Theorem 2.6 fails even
for a single operator T . Indeed, let T = Bw be the unilateral
backward shift on X = `2 of weight sequence

w = (2, 1, 2, 2, 1, 1, 2, 2, 2, 1, 1, 1 . . .).

Then be(T ) = 1 < 2 = ρe(T ), and T is hereditarily hypercyclic
([42, Theorem 2.8], and [14, Remark 3.2]), so σπe(T ) = σe(T ).
Thus σe(T ) intersects the closed unit disk, and by Theorem 1.1,



GEOMETRIC CHARACTERISTICS AND UNIVERSAL SUBSPACES 205

some sequence of iterates of T must converge pointwise to zero on
a closed, infinite dimensional subspace of X . That is, T satisfies
statement (2) of Theorem 2.6. However, limm→∞ C(Tm) = ∞,
since 1 < ρe(T ) = limm→∞ C(Tm)

1
m , by (2.7).

We use in Example 2.10 the following spectral condition for the
existence of common hypercyclic subspaces for finitely many direct
sums, which we find of independent interest. Here 4N denotes the
closed unit polydisk in CN .

Proposition 2.8. For (1 ≤ j ≤ r), let Xj be a Banach space and
let T`,j ∈ B(Xj) (1 ≤ ` ≤ N). Suppose each direct sum

T` = T`,1 ⊕ · · · ⊕ T`,r ∈ B(X1 × · · · × Xr) (1 ≤ ` ≤ N)

is hereditarily hypercyclic and has a hypercyclic subspace. If
T1, . . . , TN have a common hypercyclic subspace, then

(2.9) ∅ 6= 4N ∩ ∪r
j=1σe(T1,j) × · · · × σe(TN,j).

Proof. Let M ⊂ X1×· · ·×Xr be a common hypercyclic subspace for
T1, . . . , TN . Notice that if P1, . . . , Pr are the canonical projections,
since

I |M= P1 |M + · · ·+ Pr |M
is not strictly singular we have that Pi |M must be non-strictly
singular for some 1 ≤ i ≤ r, and thus that Pi(M) contains a closed
infinite dimensional subspace. But

Pi(M) \ {0} ⊂ ∩1≤`≤N HC(T`,i).

So each T`,i (1 ≤ ` ≤ N) is hereditarily hypercyclic, and has a
hypercyclic subspace. Thus, by Theorem 1.1, σe(T`,i) ∩ 4 6= ∅ for
each 1 ≤ ` ≤ N . �

Theorem 1.1 gives the case N = 1 of Proposition 2.8, and that
when N = r = 1 condition (2.9) is also sufficient. When N ≥ 2 (or
when N = 1 < r), however, the converse of Proposition 2.8 is never
true, as the following example shows.

Example 2.9. Let N ≥ 2, and let X1 = · · · = Xr = `2⊕`2. Consider
the operators T` = T`,1 ⊕ · · · ⊕ T`,r on ⊕r

j=1Xj (1 ≤ ` ≤ N), where

Ti,j :=

{
U if i + j is even
V if i + j is odd,
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where
U = U1 ⊕ U2 = 2B ⊕ (I + Bw),

V = V1 ⊕ V2 = (I + Bw) ⊕ 2B,

and where B and Bw are the unilateral backward shifts on `2 with
weighted sequences (1, 1, . . .) and w = (1, 1

2 , 1
3 , . . .), respectively.

Then the operators T1, . . . , TN satisfy (2.8), but have no common
hypercyclic subspace. To see this, notice that

σe(U1) = σe(V2) = {λ ∈ C : |λ| = 2 }
σe(U2) = σe(V1) = {1},

and thus Proposition 2.8 gives that U and V have no common
hypercyclic subspace. Also, since

σe(U) = σe(V ) = {1} ∪ {λ ∈ C : |λ| = 2 },
we have

(1, . . . , 1) ∈ σe(T1,j) × · · · × σe(TN,j)
for each j = 1, . . . , r. Thus, if M ⊂ X1 × · · · × Xr is a com-
mon hypercyclic subspace for T1, . . . , TN , arguing as in the proof of
Proposition 2.8 some projection Pi(M) must contain a closed and
infinite dimensional subspace, giving

Pi(M) \ {0} ⊂ HC(T1,i) ∩ HC(T2,i) = HC(U) ∩ HC(V ),

a contradiction. �
We are ready to complete the proof of Theorem 2.6 with the

following.

Example 2.10. Let B be the unweighted unilateral backward shift
on `2, and let Bw be the unilateral backward shift with weight
sequence

w = (2, 2−1, 2, 2, 2−1, 2−1, 2, 2, 2, 2−1, 2−1, 2−1, . . .).

Then T1 := 2B ⊕Bw , T2 := Bw ⊕ 2B on X1 = X2 = `2 ⊕ `2 satisfy
statement (3), but do not satisfy statement (2), of Theorem 2.6. To
see this, notice that 2B is hereditarily hypercyclic with respect to
(n), and that Bw is hereditarily hypercyclic with respect to some
(nq) ([42, Theorem 2.8], and [14, Remark 3.2]). So T1, T2 are hered-
itarily hypercyclic with respect to (nq). Also, G(Tm

` ) ≤ G(Bm
w ) for

each m ∈ N and by (2.8)

lim
m→∞

G(Bm
w )

1
m = be(Bw) =

1
2

< 1,
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so the operators T1, T2 satisfy statement (3) of Theorem 2.6:

sup{G(Tnq

` ) : q ∈ N} ≤ sup{G(Bnq
w ) : q ∈ N} < ∞ (` = 1, 2).

But notice that
T1 = T1,1 ⊕ T1,2 = 2B ⊕ Bw

T2 = T2,1 ⊕ T2,2 = Bw ⊕ 2B

satisfy

((σe(T1,1) × σe(T2,1))∪ (σe(T1,2) × σe(T2,2)))∩42 = ∅,

since σe(2B) = {λ ∈ C : |λ| = 2}. Thus T1 and T2 don’t have
a common hypercyclic subspace, by Proposition 2.8. Hence, by
Theorem 2.2, T1, T2 cannot satisfy statement (2) of Theorem 2.6.
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cyclic vectors, J. Funct. Anal. 148 (1997), 524–545.

[34] F. León-Saavedra and V. Müller, Rotations of hypercyclic and supercyclic
operators, Integral Equations Operator Theory 50 (2004), no. 3, 385–391.

[35] F. Martnez-Gimnez and A. Peris, Universality and chaos for tensor prod-
ucts of operators, J. Approx. Theory 124 (2003), no. 1, 7–24.
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[45] J. Zemánek, Geometric characteristics of semi-Fredholm operators and
their asymptotic behaviour, Studia Math. T. LXXX (1984), 219-234.

Department of Mathematics and Statistics, Bowling Green State
University, Bowling Green, OH 43403.

E-mail address: jbes@bgsu.edu
E-mail address: omartin@bgnet.bgsu.edu




