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A NOTE ON DITOPOLOGICAL TEXTURE SPACES

AYŞEGÜL ALTAY UĞUR AND MURAT DİKER

Abstract. In this study, we present the hereditary sepa-
ration properties of plain ditopological texture spaces for in-
duced subtextures. Brown and his team proved that the com-
plete biregularity is productive. Here, using the concept of
induced subtexture, we show that the converse of this result
is true for plain texture spaces, namely if a product of plain
ditopological texture spaces is completely biregular, then all
factor spaces are also completely biregular.

1. Introduction

From the motivational point of view, textures were first consid-
ered only as a point–base setting for fuzzy sets [see e.g. 9], but in
recent papers [5,12] it is observed that they are in fact C–spaces
[17], and equivalently T0 core spaces [16] or T0 topological spaces
with injective hulls [4] as objects of the category dfTex where the
morphisms are difunctions. Further, the highly economic structures
of textures can be used in obtaining well–known constructions as
Wallman or Alexandroff compactifications and this may play an
important role to determine the structures of principal examples
in main stream topology [2,15]. On the other hand, in a textural
discussion, the symmetry property of uniform spaces corresponds
to a kind of complementation of direlations [19]. The basic separa-
tion properties of ditopological textures are studied extensively in
[11] and it is proved that the complete biregularity is productive.

2000 Mathematics Subject Classification. Primary 54E55.
Key words and phrases. Texturing, texture space, ditopology, plain texture,

induced subtexture, complete biregularity.
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In this study, we present the hereditary separation properties of di-
topological texture spaces and using induced subtexture, we show
that if a product of plain ditopological texture spaces is completely
biregular, then all factor spaces are also completely biregular in
the category of dfPDitop. Now let us recall some basic concepts
on textures from [9] and [10]. A texturing on a set S is a point
separating, complete, completely distributive lattice S of subsets
of S with respect to inclusion which contains S, ∅ and, for which
arbitrary meet coincides with intersection and finite joins coincide
with union. Then (S,S) is called a texture space. The sets

Ps =
⋂

{A | s ∈ A ∈ S} and Qs =
∨

{Pt | s /∈ Pt}

are known as p–sets and q–sets and they are important tools for
textures as we will see in the sequel. If for all s ∈ S, we have Ps 6⊆
Qs, then (S,S) is called a plain texture space. This is equivalent
to say that (S,S) is closed under arbitrary unions. Now let (S,S),
(T, T ) be texture spaces. Consider the product texture P(S)⊗T of
the texture spaces (S,P(S)) and (T, T ) and denote the p-sets and
the q sets by P (s,t) and Q(s,t) respectively where s ∈ S and t ∈ T

[See for products 9]. Here it is easy to see that P (s,t) = {s} × Pt
and Q(s,t) = (S \ {s} × T ) ∪ (S × Qt). Now r ∈ P(S)⊗ T is called
a relation from (S,S) to (T, T ) if it satisfies

(i) r 6⊆ Q(s,t), Ps′ 6⊆ Qs =⇒ r 6⊆ Q(s′,t), and

(ii) r 6⊆ Q(s,t) =⇒ ∃s′ ∈ S such that Ps 6⊆ Qs′ and r 6⊆ Q(s′,t).

Dually, R ∈ P(S)⊗T is called a corelation from (S,S) to (T, T ) if
the following conditions hold:

(1) P (s,t) 6⊆ R, Ps 6⊆ Qs′ =⇒ P (s′,t) 6⊆ R

(2) P (s,t) 6⊆ R =⇒ ∃s′ ∈ S such that Ps′ 6⊆ Qs and P (s′,t) 6⊆ R.

A pair (r, R), where r is a relation and R a corelation from (S,S)
to (T, T ) is called a direlation from (S,S) to (T, T ).
Let (f, F ) be a direlation from (S,S) to (T, T ). Then (f, F ) is
called a difunction from (S,S) to (T, T ) if

(1) for s, s′ ∈ S, Ps 6⊆ Qs′ =⇒ ∃ t ∈ T with f 6⊆ Q(s,t) and
P (s′ ,t) 6⊆ F .

(2) for t, t′ ∈ T and s ∈ S, f 6⊆ Q(s,t) and P (s,t′) 6⊆ F =⇒ Pt′ 6⊆ Qt.
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Further, a difunction (f, F ) is

(i) surjective if for t, t′ ∈ T, Pt 6⊆ Qt′ =⇒ ∃s ∈ S with f 6⊆ Q(s,t′)

and P (s,t) 6⊆ F .

(ii) injective if for s, s′ ∈ S and t ∈ T, f 6⊆ Q(s,t) and P (s′,t) 6⊆
F =⇒ Ps 6⊆ Qs′ .

For a convenient topological structure on textures, we consider that
the open sets and closed sets are independent of each other. A
ditopology on a texture space (S,S) is a pair (τ, κ) of subsets of S,
where the family of open sets τ satisfies

(1) S, ∅ ∈ τ ,
(2) G1, G2 ∈ τ =⇒ G1 ∩G2 ∈ τ and
(3) Gi ∈ τ , i ∈ I =⇒

∨
iGi ∈ τ ,

and the family of closed sets κ satisfies
(1) S, ∅ ∈ κ,
(2) K1, K2 ∈ κ =⇒ K1 ∪K2 ∈ κ and
(3) Ki ∈ κ, i ∈ I =⇒

⋂
Ki ∈ κ.

In this respect, the closure and interior of a set A ∈ S in a ditopo-
logical texture space (S,S, τ, κ), is given by the equalites

[A] =
⋂

{K ∈ κ | A ⊆ K} and ]A[=
∨

{G ∈ τ | G ⊆ A}

respectively.
Recall that ditopological texture spaces and bicontinuous difunc-
tions form a category which is denoted by dfDitop. For some
results on ditopologies, we refer [3,14,15 and 20].

For the concepts on textures which are not explained here, see [4–9].
This paper forms part of the first authors Ph.D. Thesis, written

under the supervision of M. Diker.

2. Induced Subtextures

Substructures of textures are extensively discussed in [8] and [12].
One of the well known substructures of textures can be defined
on elements of textures, that is if (S,S) is a texture space and
A ∈ S, then the family SA = {A ∩ B | B ∈ S} is a texture on A.
In this case, the pair (A,SA) is called the principal subtexture of
(S,S). Since the principal subtexture is a natural counterpart in
the theory of texture spaces, then most of the hereditary properties
of textures can be obtained in a natural way. For instance, the
complete biregularity can be given in terms of restricted difunctions
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which is given in [2]. Here, we don’t follow this line, and for any
subset of S we discuss the substructures of plain texture spaces
since we will use it in products in the last chapter.

Definition 2.1. Let (S,S) be a texture space and A ⊆ S. If the
family SA = {A ∩ B | B ∈ S} is a texturing on A, then SA is
called an induced structure on A, and (A,SA) is called an induced
subtexture of (S,S). If we define τA = {G ∩ A | G ∈ τ} and κA =
{K ∩A | K ∈ κ}, then (τA, κA) is called the induced ditopology on
A, and (A,SA, τA, κA) is called an induced ditopological subtexture
space of (S,S, τ, κ).

Theorem 2.2. Let (S,S) be a plain texture space and A ⊆ S.
Then the pair (A,SA) is an induced subtexture space of (S,S) where
SA = {U ∩ A | U ∈ S} is a texturing on S.

Proof. Since (S,S) is plain, by [1, Theorem 2.1.4] arbitrary joins
coincide with unions and so trivially, the family SA is a completely
distributive lattice with respect to set inclusion. The other condi-
tions are straightforward. �

Example 2.3. Consider the real ditopological texture space
(R,R, τ, κ) where

R = {(−∞, a) | a ∈ R} ∪ {(−∞, a] | a ∈ R} ∪ {R, ∅}
and τ = {(−∞, a) | a ∈ R} ∪ {R, ∅}, {(−∞, a] | a ∈ R} ∪ {R, ∅}.
Since (R,R, τ, κ) is plain, then clearly, the pair (N,N ) is an induced
subtexture of (R,R) where N = {0, 1, 2, ...} ⊆ R and

N = {N ∩A | A ∈ R} = {{0, 1, 2, ..., a} | a ∈ N} ∪ {N, ∅}.
If we consider the induced ditopology (τN, κN) on (N,N ), then we
may write

τN = κN = N .

Since (N,N , τN, κN) is a discrete codiscrete ditopological texture
space, then it satisfies all separation axioms which will be men-
tioned in this paper.

Now let us denote the p-sets and the q-sets of an induced substruc-
ture (A,SA) by PAs and QAs respectively for some s ∈ A.

Lemma 2.4. Let (S,S) be a plain texture space and (A,SA) be an
induced subtexture space of (S,S). If s ∈ A, then PAs ⊆ Ps ∩A and
Qs ∩ A ⊆ QAs .
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Proof. Since (A,A) is an induced subtexture space, then for all s ∈
S we may write Ps ∩A ∈ SA and so if s ∈ A, then clearly, we have
PAs ⊆ Ps ∩A. For the second inclusion, let s ∈ A and t ∈ S. Then
we have A ∩ Pt ∈ SA and therefore, A ∩ Pt =

⋃
{PAr | r ∈ A ∩ Pt}.

If s 6∈ A∩ Pt, then by the first inclusion we may write that s 6∈ PAr
where r ∈ A∩Pt. This implies that PAr ⊆ QAs , that is A∩Pt ⊆ QAs .
On the other hand, Qs ∩A ∈ SA and then

Qs ∩A =
⋃

{Pt | s 6∈ Pt} ∩A =
⋃

{A ∩ Pt | s 6∈ Pt}

=
⋃

{A ∩ Pt | s 6∈ A ∩ Pt} ⊆ QAs .

�

Example 2.5. [8] Consider the texture space (S,S) where

S = (0, 1] and S = {(0, r] | r ∈ [0, 1]}.

We know that (S,S) is not plain. Now let A = {1
2 , 1} and consider

the induced texture SA = {A, ∅, {1/2}} on A. Clearly, Q1 = (0, 1]
and QA1 = {1

2}. However, Q1 ∩A = A 6⊆ {1
2} = QA1 and hence, we

cannot remove the condition of “to be plain” of (S,S) in Lemma
1.4.

3. Point separation properties

Now let us recall the following concepts.

Definition 3.1. [11] A ditopological texture space (S,S, τ, κ) is
called

(a) T0 if for s, t ∈ S, Qs 6⊆ Qt =⇒ (∃H ∈ τ∪κ)(Ps 6⊆ H 6⊆ Qt).
(b) T1 if for s, t ∈ S, Qs 6⊆ Qt =⇒ (∃K ∈ κ)(Ps 6⊆ K 6⊆ Qt).
(c) co–T1 if for s, t ∈ S, Qs 6⊆ Qt =⇒ (∃G ∈ τ)(Ps 6⊆ G 6⊆ Qt).
(d) bi–T1 if it is T1 and co–T1.
(e) T2 if T0 and R1

(f) co–T2 if T0 and co–R1

(g) bi–T2 if it is T2 and co–T2.

However much the point separation properties is given in terms of
the p-sets and the q-sets, there are some characterizations of them
which are independent from p-sets and q-sets [11] and here we prefer
to use these characterizations to obtain the following results.
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Theorem 3.2. Let (S,S, τ, κ) be a ditopological plain texture space
and (A,SA, τA, κA) be a ditopological induced subtexture space. If
(S,S, τ, κ) is bi–Ti for i = 0, 1, 2, then (A,SA, τA, κA) is also bi–Ti
for i = 0, 1, 2.

Proof. Let B ∈ SA. Then we have B = A ∩ C for some C ∈ S.
Then by [11, Theorem 4.7.(3)], we may write

C =
∨

j∈J

⋂

i∈Ij

Cji

where Cji ∈ τ ∪ κ. Since (S,S) is plain, then

B = A ∩ C = A ∩ (
⋃

j∈J

⋂

i∈Ij

Cji ) = (
⋃

j∈J

⋂

i∈Ij

(A ∩ Cji )

where Dj
i = A∩Cji ∈ τA ∪κA and hence, (A,SA, τA, κA) is also T0.

If (S,S, τ, κ) is T1 and B ∈ SA, then by [11, Theorem 4.11 (1) (i)],

C =
∨

i∈I
∈ Fi

where Fi ∈ κ, C ∈ S and B = A ∩ C. Therefore,

B = A ∩ (
∨

i∈I
Fi) = A ∩ (

⋃

i∈I
Fi) =

⋃

i∈I
(A ∩ Fi).

If (S,S, τ, κ) is co–T1, using a similar argument and [11, Theorem
4.11 (2) (i)], it can be shown that (A,SA) is also co–T1.
Let (S,S, τ, κ) be bi–T2 and B ∈ SA. Then we may writeB = A∩E
for some E ∈ S. Since (S,S, τ, κ) is bi–T2, then by [11, Theorem
4.17 (3)], there exists Hj

i ∈ τ, K
j
i ∈ κ, i ∈ I, j ∈ Ji with Hj

i ⊆ Kj
i

for all i, j and
E =

∨

i∈I

⋂

j∈Ji

Hj
i =

∨

i∈I

⋂

j∈Ji

Kj
i

and so

A ∩ E = A ∩ (
∨

i∈I

⋂

j∈Ji

Hj
i ) = A ∩ (

∨

i∈I

⋂

j∈Ji

Kj
i )

and since (S,S, τ, κA) is plain, then

A ∩E = (
⋃

i∈I

⋂

j∈Ji

(A ∩Hj
i ) = (

⋃

i∈I

⋂

j∈Ji

(A ∩Kj
i ).
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Now if we observe that A∩Hj
i ∈ τA and A∩Kj

i ∈ κA, then we find
that (A,SA, τA, κA) is also bi–T2. �

Observing the above definitions, we may say that T0 regular space
is T3, and T0 co–regular space is co–T3 and so T3 and co–T3 space
is bi–T3. Further, a T1 normal space is T4 and co–T1 normal space
is co–T4.

4. Complete regularity and normality

Definition 4.1. [11] A ditopological texture spaces (S,S, τ, κ) is
(a) completely regular if given G ∈ τ, G 6⊆ Qs, there exists a

bicontinuous difunction (f, F ) : (S,S, τ, κ) → (I, I, τI, κI)
satisfying Ps ⊆ f←P0 and F←Q1 ⊆ G.

(b) completely co–regular if given K ∈ κ, Ps 6⊆ K, there exists
a bicontinuous difunction (f, F ) : (S,S, τ, κ) → (I, I, τI, κI)
satisfying K ⊆ f←P0 and F←Q1 ⊆ Qs.

(c) completely biregular if it is completely regular and com-
pletely co–regular.

(d) T3 1
2

if it is T0 and completely biregular.
(e) normal if given G ∈ τ, K ∈ κ with K ⊆ G, there exist

H ∈ τ and M ∈ κ with K ⊆ H ⊆M ⊆ G.

Now for general textures let us recall the following result.

Lemma 4.2. [10] Let (S,S), (T, T ) be textures and ψ : S → T be
point function satisfying the following conditions:

(a) s, s′ ∈ S, Ps 6⊆ Qs′ =⇒ Pψ(s) 6⊆ Qψ(s′).
(b) Pψ(s) 6⊆ B,B ∈ T =⇒ ∃s′ ∈ S with Ps 6⊆ Qs′ for which

Pψ(s′) 6⊆ B.
(c) For A ∈ T and s ∈ S[ we have A 6⊆ Qψ(s) =⇒ A 6⊆ Qψ(u)

for some Pu 6⊆ Qs.
Then the difunction (fψ, Fψ) corresponding to ψ satisfies the equal-
ities

fψ =
∨

{P (s,ψ(s)) | s ∈ S} and Gψ =
⋂

{Q(s,ψ(s)) | s ∈ S[}.

Further, f←ψ A = F←ψ A = ψ−1(A) for all A ∈ T .

As it is known that ditopological texture spaces and bicontinuous
point functions satisfying the conditions (a) and (b) in Lemma 4.2
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form a category which is denoted by fDitop. Recall that if we get
the objects as plain, then we obtain a category which is denoted
by fPDitop whose morphisms are point functions satisfying the
condition (a), and in this case note that the conditions (b)-(c) are
automatically satisfied [10].
Now we need the following lemma.

Lemma 4.3. Let (S,S), (T, T ) be texture spaces and ψ : S → T
be a point function satisfying the conditions (a)-(c) in Lemma 4.2.
If (A,SA) is a plain induced subtexture space of (S,S), then the
restriction function ψ|A : A → T also satisfies the conditions (a)-
(c).

Proof. Let s, s′ ∈ A, PAs 6⊆ QAs′ . Then by Lemma 1.4, we have Ps∩
A 6⊆ Qs′ ∩A and so we find Ps 6⊆ Qs′ . Since the function ψ satisfies
the condition (a), then we may write Pψ(s) 6⊆ Qψ(s′). Further, s, s′ ∈
A gives that Pψ|A (s) 6⊆ Qψ|A(s′). Therefore, restriction function
ψ|A : A → T satisfies the condition (a). Since A is plain, then the
conditions (b) and (c) are automatically satisfied for ψ|A. �

The complete biregularity can be characterized in terms of point
functions in the category of fPDitop.

Theorem 4.4. Let (S,S, τ, κ) ∈ ObfPDitop. Then we have the
following.
(i) (S,S, τ, κ) is completely regular if and only if given G ∈ τ, G 6⊆
Qs, there exists a morphism ψ : S → I in fPDitop satisfying
ψ(Ps) = {0} and ψ(S \G) = {1}.
(ii) (S,S, τ, κ) is completely co–regular if and only if given K ∈
κ, Ps 6⊆ K, there exists a morphism ψ : S → I in fPDitop satisfying
ψ(S \Qs) = {1} and ψ(K) = {0}.

Proof. (i) (⇐=:) Let G ∈ τ, G 6⊆ Qs. Then for a morphism ψ : S →
I in fPDitop we have ψ(Ps) = {0} and ψ(S \G) = {1}. Therefore,
by Lemma 5.1, there exists a difunction (fψ , Fψ) corresponding to
ψ satisfies the equalities

fψ =
∨

{P (s,ψ(s)) | s ∈ S} and Gψ =
⋂

{Q(s,ψ(s)) | s ∈ S}.

Since ψ is bicontinuous and f←ψ A = F←ψ A = ψ−1(A) for all A ∈
T , then (fψ , Fψ) is also bicontinuous. Suppose that Ps 6⊆ f←ψ P0.
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Choose a point s′ ∈ S where Ps 6⊆ Qs′ and Ps′ 6⊆ f←ψ P0. Then there
exists t ∈ I such that fψ 6⊆ Q(s′,t) and Pt 6⊆ P0. By definition of
fψ , we have Pψ(s′) 6⊆ Qt. Since Pt 6⊆ P0, then Pψ(s′) 6⊆ P0, namely
ψ(s′) 6∈ P0 and so ψ(s′) 6= 0. However, ψ(Ps) = 0 and Ps 6⊆ Qs′
implies that ψ(s′) = 0 and this is a contradiction.
(=⇒:) Now suppose that F←ψ Q1 6⊆ G. Take a point s′ ∈ S where
F←ψ Q1 6⊆ Qs′ and Ps′ 6⊆ G. Then there exists a point t ∈ I such
that P (s′,t) 6⊆ Fψ and Q1 6⊆ Qt. By definition of Fψ, we have
P (s′ ,t) 6⊆ Q(r,ψ(r)) for some r ∈ S. Therefore, Pt 6⊆ Qψ(s′) and so
Q1 6⊆ Qt gives that Q1 6⊆ Qψ(s′), that is ψ(s′) < 1. On the other
hand, s′ ∈ S \G and so ψ(s′) = 1 is an immediate contradiction.
(ii) (⇐=:) Now let Ps 6⊆ K ∈ κ. Suppose that K 6⊆ f←ψ P0. Take
a point s′ ∈ S where K 6⊆ Qs′ and Ps′ 6⊆ f←ψ P0. Then there is a
point t ∈ I such that fψ 6⊆ Q(s′ ,t) and Pt 6⊆ P0. It is easy to check
that Pψ(s′) 6⊆ Qt and so Pψ(s′) 6⊆ P0, that is ψ(s′) 6= 0. However,
s′ ∈ K and hence, ψ(s′) = 0 is a contradiction.
(=⇒:) Suppose that F←ψ Q1 6⊆ Qs. Take a point s′ ∈ S where
F←ψ Q1 6⊆ Qs′ and Ps′ 6⊆ Qs. Then there exists t ∈ I such that
P (s′ ,t) 6⊆ Fψ and Q1 6⊆ Qt. Now we have Pt 6⊆ Qψ(s′) and hence,
Qψ(s′) ⊆ Qt. Since Q1 6⊆ Qψ(s′), then ψ(s′) < 1. Since Ps′ 6⊆ Qs,
then s′ ∈ S \Qs and so ψ(s′) = 1 is a contradiction. �

Theorem 4.5. Let (S,S, τ, κ) be a ditopological plain texture space
and (A,SA, τA, κA) be a plain induced ditopological subtexture space.

(i) If (S,S, τ, κ) is completely regular, then (A,SA, τA, κA) is
also completely regular.

(ii) If (S,S, τ, κ) is completely co–regular, then (A,SA, τA, κA)
is also completely co–regular.

Proof. (i) Let (S,S, τ, κ) be completely regular and let G 6⊆ QAs
where G ∈ τA. Since G = A ∩ H for some H ∈ τ , then H 6⊆ Qs.
Further, since S is completely regular, then by Theorem 4.4, there
exists a morphism ψ : S → I in fPDitop satisfying ψ(Ps) =
{0} and ψ(S \ H) = {1}. Then clearly, ψ|A(PAs ) = {0} and
ψ|A(A \ G) = {1}. By Lemma 4.3, ψ|A : A → I is also a mor-
phism in fPDitop satisfying the conditions (a)-(c). Therefore, by
Theorem 4.4, (A,SA, τA, κA) is completely regular.
(ii) The proof is dual to (i) �
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Corollary 4.6. Let (S,S, τ, κ) be a bi–T1 normal ditopological plain
texture space and A ∈ S. Then the plain ditopological induced
subtexture space (A,SA, τA, κA) is completely biregular.

Proof. By Corollary 5.24 in [11], (S,S, τ, κ) is completely biregu-
lar and so by Theorem 4.5, (A,SA, τA, κA) is also completely bi-
regular. �

5. Product Texture Spaces

Now for i ∈ I , let (Si,Si, τi, κi) be a ditopological texture space.
Consider the product ditopological texture space (S,S, τ, κ) where
S =

∏
i∈I Si. Take a point s = (si)i∈I ∈ S. Let D(s, j) =∏

i∈I D(s, j)i where

D(s, j)i =
{

Sj if i = j

{si} otherwise

and let Dj be the product texture on D(s, j).

Theorem 5.1. (D(s, j),Dj) is an induced subtexture space of the
product space (S,S) where S =

∏
i∈I Si.

Proof. Immediate. �

Theorem 5.2. [13] (i) The function ϕ : Sj −→ D(s, j) defined by
ϕ(a) = (ai)i∈I, a ∈ Sj where

ai =
{
a if i = j

si otherwise

satisfies the conditions (a)-(c) in Lemma 4.2. Further, the restric-
tion πj |D(s,j) : D(s, j) −→ Sj is inverse of ϕ.
(ii) The mapping ϕ is a textural homeomorphism in fDitop.

Proof. (i) For (a) let sj , s′j ∈ Sj and Psj 6⊆ Qs′j . By [9, Proposition
1.3], Pϕ(sj) =

∏
i∈I Psi where Pi = {si} for i 6= j and Qϕ(s′j)

=⋃
i∈I E(i, Qs′i). Since we have Qs′i = ∅ for i 6= j, we may write

Qϕ(s′j)
= E(j, Qs′j) and so clearly, Pϕ(sj) 6⊆ Qϕ(s′j)

. Now let Pϕ(sj) 6⊆
B,B ∈ Dj . Choose a point r = (ri)i∈I ∈ D(s, j) where Pϕ(sj) 6⊆ Qr
and Pr 6⊆ B. Then, Psj 6⊆ Qrj and Pϕ(rj) 6⊆ B and this verifies
(b). For (c) let B ∈ Dj , sj ∈ S[j and B 6⊆ Qψ(sj). Since B ∈ Dj ,
then B =

∏
i∈I Bi where Bi = {si} for i 6= j. Therefore, Bj 6⊆ Qsj
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and so for some u ∈ Sj , we have Bj 6⊆ Quj and Puj 6⊆ Qsj and
so B 6⊆ Qϕ(uj). Clearly, ϕ is the inverse of it and the proof of (i)
is complete. (ii) Clearly, ϕ is bijective and it is bicontinuous [14,
Lemma 2.10]. Further, since the inverse πj |D(s,j) is also a projection
function, it satisfies the conditions (a)-(c) in Lemma 4.2 and it is
bicontinuous [10, Lemma 3.9]. �

Theorem 5.3. For the function πj |D(s,j)
: D(s, j) −→ Sj, the equal-

ities

fψ =
∨

{P (s,ψ(s)) | s ∈ Sj} and Fψ =
⋂

{Q(s,ψ(s)) | s ∈ Sj}

define a dihomeomorphism (fψ, Fψ) from D(s, j) to Sj where ψ =
πj |D(s,j)

.

Proof. Since the function ψ is bijective, it is easy to see that corre-
sponding difunction (fψ, Fψ) is also bijective. Further, πj |D(s,j) is
a textural homeomorphism in fDitop, and so in view of Theorem
2.8 in [2], (fψ, Fψ) is a dihomeomorphism in dfDitop. �

Theorem 5.4. Let {(Si,Si, τi, κi) : i ∈ I} be a family of non-empty
ditopological plain texture spaces. If the product ditopological tex-
ture space (S,S, τ, κ) is completely biregular, then the ditopological
induced subtexture space (D(s, j),Dj, τD(s,j), κD(s,j)) is also com-
pletely biregular.

Proof. Since (D(s, j),Dj, τD(s,j), κD(s,j)) is plain, the proof is im-
mediate by Theorem 4.5. �

Theorem 5.5. For i ∈ I let (Si,Si, τi, κi) be non-empty ditopo-
logical plain texture spaces and (S,S, τ, κ) be their product. Then
(S,S, τ, κ) is completely biregular if and only if (Si,Si, τi, κi) is com-
pletely biregular for all i ∈ I.

Proof. By the preceeding theorem, the induced ditopological sub-
texture space (D(s, j),Dj, τD(s,j), κD(s,j)) is also completely biregu-
lar and since dihomemomorphims preserves the complete biregular-
ity [11, Proposition 5. 27], in view of Theorem 5.8, Si is completely
biregular for all i ∈ I . The proof of the second part of the theorem
is proved for general textures [11, Theorem 5.16]. �

Acknowledgement: The authors thank the referee for the valu-
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