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COREFLECTIVE SUBCONSTRUCTS OF THE
CONSTRUCTS OF AFFINE SETS

VEERLE CLAES

Abstract. For a topological construct, we give necessary
and sufficient conditions to be isomorphic to a coreflective
subconstruct of a category of affine sets. This means that the
objects can be described isomorphically as sets structured by
a collection of functions. We also characterize the hereditary
coreflective subconstructs of the categories of affine sets and
the subcategories constructed from an algebra stucture. We
prove that these two types of subconstructs do not coincide.
As an application of these results we find a relation between
the affine sets over [0,∞] and the metrically generated cate-
gories. Finally, we will give some examples of (T,V)-categories
which can be embedded in the category of affine sets over V.

1. Introduction

Recently, categories of affine sets, metrically generated topolog-
ical categories, and categories of (T, V)-algebras have been intro-
duced as unifications of the different isomorphic descriptions of
topological spaces.

The first unification that will be considered in this paper origi-
nated from ideas of Diers [20, 21, 22, 23]. Diers aimed at obtaining
a classification of concrete geometrical categories. The objects of
these categories are sets equipped with a geometrical structure.
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This type of topological category became known as categories
KSet consisting of affine sets over K, the precise definition of which
is explained in section 2. Strongly related to Diers’ point of view are
the categories that became known as K-Chu spaces [3, 7], as used in
theoretical computer science [34]. The precise relation to categories
of affine sets is dealt with in [30]. In several papers [26, 28, 27], Giuli
has convincingly shown that the setting of affine sets benefits from
the existence of the Zariski closure operator, which allows for nice
topological results on separation, completeness and compactness.
Another issue in the work of Giuli concerns the characterization of
hereditary coreflective subcategories of KSet, leaving the following
questions as open problems:

(1) Can every hereditary coreflective subcategory of KSet be
obtained by putting a suitable algebraic theory on K?

(2) For each regular cardinal α the category Tight(α), consist-
ing of all topological spaces for which every point in the
closure of a subset is also in the closure of a smaller subset
of cardinality less than α, is a hereditary coreflective sub-
category of Top [29, 1]. Are all these subcategories Tight(α)
of Top obtained by using a suitable algebraic theory?

The second unification we will encounter is the setting of metri-
cally generated categories. The focus here is on categories in which
“metrizable objects” generate the whole construct, as will be ex-
plained in section 3. Metrically generated theories were introduced
in [19] and have proven to be a very suitable setting too for devel-
oping separation, completeness and compactness results [9, 17, 25].
We will be dealing mostly with the so called local theories intro-
duced in [38].

There is a third and entirely new and important approach to
categorical topology, which we should mention here, that started
in [15] and [16]. It is based on earlier papers of Barr [2] and
Lawvere [32]. Barr described topological spaces as relational
Eilenberg-Moore Algebras with respect to the ultrafilter monad
on Set. Lawvere presented generalized metric spaces (using the
identity monad) as V-categories, where V is the halfline R̄+. By
replacing the Boolean two element lattice used by Barr and the
lattice R̄+ used by Lawvere, by some arbitrary quantale V, and by
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replacing the ultrafilter monad and the identity monad by some
arbitrary Set-monad, the authors of [15] and [16], form the category
(T, V)-Cat of (T, V)-algebras in a natural way. More details are to
be found in section 4. Meanwhile this type of topological categories
has been shown to be extremely suitable for the intrinsic approach
of topology since the natural classes of open or of proper maps
available in (T, V)-Cat fulfill all the properties needed for such an
approach [35].

The main issue of our paper is to contribute to the compari-
son of the various types of topological categories mentioned above.
This comparison is successful for those categories having an initially
dense object. As a first theorem we prove that topological cate-
gories with an initially dense object are exactly those embeddable
as a coreflective subcategory of some KSet. Our second theorem
states that in order to be embeddable as a hereditary coreflective
subcategory of some KSet, the topological category has to posses an
initially dense injective object. Moreover, we are able to completely
characterize those subcategories of KSet that can be described via
a suitable algebraic theory on K. Using these characterizing the-
orems we solve both open questions cited above. Question (1) is
solved in the negative by producing a counterexample, question (2)
is answered affirmatively.

As corollaries of our main theorems, we conclude that all local
metrically generated theories are indeed embeddable as coreflective
subcategories of [0,∞]Set. Others, like Unif do not have an initially
dense object, and are therefore not coreflectively embeddable.

Our main theorems also imply that among categories of type
(T, V)-Cat, those for which there is an initially dense object with
underlying set V are embeddable as coreflective subcategories of
VSet. To the knowledge of the author the question which cate-
gories (T, V)-Cat have an initially dense object is not settled yet.
Some results in this direction showing that V can be endowed with
a (T, V)-categorical structure can be found in [12]. We will mention
some monads for which V endowed with this structure is indeed an
initially dense object.

Acknowledgement: I thank Eva Colebunders and the referees for
their valuable comments.
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2. Coreflective subconstructs of KSet

Recall that, for a set K, an affine set over K is a pair (X,A)
with X a set and A a subset of the power set KX . An affine map
from (X,A) to (Y,B) is a function f : X → Y such that β ◦ f ∈ A
for all β ∈ B. The construct, with objects the affine sets over K
and morphisms the affine maps, will be denoted by KSet.

For every set K, the construct KSet is a topological construct
[20]. If X is a set, (Xi,Ai)i∈I a family of affine sets over K, then
A = {αi ◦ fi | i ∈ I, αi ∈ Ai} is the unique initial structure on X
with respect to the source (fi : X → Xi)i∈I .

Compactness and completeness for categories of affine sets are
studied in [26, 28, 27, 10]. A lot of the theorems about compact-
ness and completeness are inherited by the hereditary coreflective
subconstructs of KSet.

In this section, we will characterize the coreflective and heredi-
tary coreflective subconstructs of the construct KSet for a set K.
Initially dense objects will play an important role in the character-
ization of these constructs. Recall that an object Y of the category
X is initially dense in X if for every X-object X , there exists an
initial source (fi : X → Y )i∈I with codomain Y .

It is clear that the affine set K = (K, {idK}) over K is an initially
dense object of KSet. Since initial sources are preserved by a core-
flector, it immediately follows that in a coreflective subconstruct X
of KSet with coreflector c : KSet → X, c(K) is initially dense.

On the other hand, let X be a topological construct with an
initially dense object (K,UK). With every X-object (X,U), we can
associate the affine set over K: (X, Hom((X,U), (K,UK))).

Proposition 2.1. If X is a topological construct with initially dense
object (K,UK) and (X,U), (X,V) are X-objects such that
Hom((X,U), (K,UK)) = Hom((X,V), (K,UK)), then U = V.

Proof. Since (K,UK) is initially dense in X, there exists an initial
source (αi : (X,U) → (K,UK))i∈I. Since Hom((X,U), (K,UK)) =
Hom((X,V), (K,UK)), this implies that αi◦idX : (X,V) → (K,UK)
is a X-morphism for each i ∈ I . By initiality of the source

(αi : (X,U) → (K,UK))i∈I ,

it follows that idX : (X,V) → (X,U) is a X-morphism.
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In a similar way, one can prove that idX : (X,U) → (X,V) is a
X-morphism. We can conclude that the X-strucures U and V on X
coincide. �

Proposition 2.2. Let X be a topological construct with initially
dense object (K,UK). If (X,U), (Y,V) are X-objects and f : X → Y
is a function, then the following are equivalent:

(1) f : (X,U) → (Y,V) is a X-morphism.
(2) f : (X, Hom((X,U), (K,UK))) → (Y, Hom((X,V), (K,UK)))

is an affine map.

Proof. Let

f : (X, Hom((X,U), (K,UK))) → (Y, Hom((Y,V), (K,UK)))

be an affine map. Since (K,UK) is initially dense in X, there exists
an initial source (αi : (Y,V) → (K,UK))i∈I. Since f is an affine map
and αi ∈ Hom((Y,V), (K,UK)), we have that αi◦f is a X-morphism
for every i ∈ I . By initiality of the source

(αi : (Y,V) → (K,UK))i∈I ,

it follows that f : (X,U) → (Y,V) is a X-morphism.
The other implication immediately follows from the fact that the

composition of X-morphisms is a X-morphism. �

For a topological construct with initially dense object (K,UK),
let KSetX be the full subconstruct of KSet consisting of all affine
sets (X,A) over K such that there exists an X-object (X,U) with
A = Hom((X,U), (K,UK)). The following proposition immediately
follows from the previous two propositions.

Proposition 2.3. If X is a topological construct with initially dense
object (K,UK), then X is isomorphic to KSetX. �

Proposition 2.4. For a topological construct X with initially dense
object (K,UK), KSetX is a concretely coreflective subconstruct of
KSet.

Proof. For an affine set (X,A), let U be the initial X-structure on
X for the source (α : X → (K,UK))α∈A. It is clear that

idX : (X, Hom((X,U), (K,UK))) → (X,A)

is an affine map.
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Now suppose that f : (X ′, Hom((X ′,U ′), (K,UK)) → (X,A) is an
affine map with (X ′,U ′) an X-object. Then, for all α ∈ A, we have
that all compositions α ◦ f : (X ′,U ′) → (K,UK) are X-morphisms.
Since (α : (X,U) → (K,UK))α∈A is an initial source, it follows that
f : (X ′,U ′) → (X,U) is a X-morphism. By 2.2 it now follows that
f : (X ′, Hom((X ′,U ′), (K,UK))) → (X, Hom((X,U), (K,UK))) is an
affine map. We can conclude that (X, Hom((X,U), (K,UK))) is the
coreflection of (X,A). �

Theorem 2.5. A topological construct X is isomorphic to a con-
cretely coreflective subconstruct of KSet if and only if X has an
initially dense object with underlying set K. �

Let M be a class of morphisms in a category X. Recall that an
object X is called M -injective provided that for every morphism
m : Y → Z in M and every morphism f : Y → X , there exists
a morphism g : Z → X with f = g ◦ m. If M is the class of all
embeddings, the M -injective objects are called injective objects.
If M consists of all initial morphisms, the M -injective objects are
called initially injective objects.

A subcategory Y of X is said to be closed under initial morphisms
in X provided that whenever m : X → Y is an initial morphism and
Y belongs to Y, then X belongs to Y. If this property only holds
for the initial monomorphisms (embeddings), then the subcategory
Y is called a hereditary subcategory of X.

Theorem 2.6. A topological construct X is isomorphic to a here-
ditary concretely coreflective subconstruct of KSet if and only if X
has an initially dense injective object with underlying set K.

Proof. We first prove that for a hereditary coreflective subconstruct
X of KSet, the coreflection c(K) of the affine set K = (K, {idK})
is an injective object. Let (X,A) be an X-object, let (A,A|A =
{α|A|α ∈ A}) be a subspace of (X,A) and let f : (A,A|A) → c(K)
be an affine map. This implies that idK ◦ f ∈ A|A and hence there
exists α ∈ A such that α|A = f . Since α : (X,A) → K is an affine
map and (X,A) is an X-object, we have that α : (X,A) → c(K) is
also an affine map. It now follows that c(K) is an initially dense
injective object of X.
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If X is a topological construct with initially dense injective object
(K,UK), we know that X is isomorphic to the coreflective subcon-
struct KSetX of KSet. Let (X,U) be an X-object and (A,U|A) a
subspace of (X,U). Since (K,UK) is an injective object, every mor-
phism α : (A,U|A) → (K,UK) can be extended to a X-morphism
ᾱ : (X,U) → (K,UK). Hence,

Hom((X,U), (K,UK))|A = Hom((A,U|A), (K,UK))

and we can conclude that KSetX is a hereditary subconstruct of
KSet. �

We will now recall a general method to construct hereditary core-
flective subcategories of KSet [20, 21, 28].
In order to define a subconstruct of KSet, we put an algebra struc-
ture on K. Recall that an algebra structure on the set K is a class
of operations

Ω = {ωi : Kni → K | i ∈ I}
of arbitrary arities. Hence the ni are arbitrary cardinal numbers,
and there is no condition on the size of the indexing system I . For
every set X , by point-wise extension, the powerset KX carries an
algebra structure. We denote by KSet(Ω) the subconstruct of KSet
consisting of those affine sets (X,A) for which A is an Ω-subalgebra
of the function algebra KX . The objects in KSet(Ω) are called affine
sets over the algebra (K, Ω).

In [22], Y. Diers proved the following theorem.

Theorem 2.7. A topological construct X is isomorphic to KSet(Ω)
for some algebraic theory (K, Ω) if and only if X has an initially
dense object with underlying set K which is initially injective.

Using this theorem, we can prove the following characterization
of the categories of the form KSet(Ω).

Proposition 2.8. X is isomorphic to KSet(Ω) iff X is a concretely
coreflective subconstruct of KSet which is closed under initial mor-
phisms in KSet.

Proof. We first prove that KSet(Ω) is closed under initial mor-
phisms. Let (Y,B) ∈ KSet(Ω) and f : (X,A) → (Y,B) be an
initial affine map. For ωT : KT → K ∈ Ω and (βt)t∈T ∈ BT ,
we have ωT ((βt ◦ f)t∈T ) = ωT ((βt)t∈T ) ◦ f . This implies that
A = {β ◦ f | β ∈ B} is a Ω-subalgebra of KX .
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For a concretely coreflective subconstruct X of KSet, which is
closed under initial morphisms in KSet, we already proved that
c(K) is an initially dense injective object. We now prove that c(K)
is also an initially injective object. Let m : (X,A) → (Y,B) be an
initial X-morphism and let f : (X,A) → c(K) be an affine map.
This implies that idK ◦ f ∈ A and hence there exists β ∈ B such
that β ◦m = f . Since β : (Y,B) → K is an affine map and (Y,B) is
an X-object, we have that β : (Y,B) → c(K) is also an affine map.
It now follows from the previous theorem that there exists an alge-
braic theory Ω on K such that X is isomorphic to KSet(Ω). �

This answers Giuli’s first question in [26], where he asks whether
every hereditary coreflective subcategory of KSet is of the form
KSet(Ω). It seems that for a coreflective subconstruct of KSet being
closed under embeddings is not sufficient to be of the form KSet(Ω).
The categories of the form KSet(Ω) satisfy the stronger condition
of being closed under initial morphisms. We now give an example
of a hereditary coreflective subconstruct of 3Set which is not of the
form 3Set(Ω).

Recall that a pretopological space is a structured set (X,V) where
the structure V is a function assigning a neighbourhood filter V(x)
to each point x ∈ X and V(x) satisfies the condition V(x) ⊆ ẋ.
A function f : (X,V) → (Y,W) between pretopological spaces is
continuous if W(f(x)) ⊆ f(V(x)) for each x ∈ X . The category of
pretopological spaces and continuous maps is denoted by PrTop.

In [11], neigbourhoodfilters are replaced by neighbourhoodstacks
in order to obtain the extensional hull of the category Cl of closure
spaces. A preclosure space is a structured set (X,V), where the
structure V is a function assigning to each point x ∈ X a neigh-
bourhood stack V(x) ⊂ P (X) such that:

(1) X ∈ V(x)
(2) ∀V ∈ V(x) : x ∈ V
(3) ∀V ∈ V(x) : V ⊂ W ⇒ W ∈ V(x)

The construct with objects the preclosure spaces and morphisms
the continuous maps is denoted by PrCls.

The pretopological space 3 with underlying set {0, 1, 2} and neigh-
bourhoodfilters

V(0) = V(2) = {0, 1, 2} andV(1) = {{1, 2}, {0, 1, 2}}
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is an initially dense object of the category PrTop of pretopological
spaces [5]. This pretopological space is also an initially dense object
of the category PrCls of preclosure spaces [11]. Hence, 2.5 implies
that both categories are coreflective subconstructs of the category
3Set of affine sets over {0, 1, 2}.

Proposition 2.9. PrTop and PrCls are hereditary subconstructs of
3Set.

Proof. Let (X,V) be a pretopological space and A a subset of X .
We will prove that Hom((X,V),3)|A consisting of the restrictions
to A of the continuous functions from (X,V) to 3 coincide with
Hom((A,V|A), 3). If α : (X,V) → 3 is a continuous function, then
it is clear that the restriction α|A : (A,V|A) → 3 is also continuous.
On the other hand, let α : (A,V|A) → 3 be a continuous function.
Consider the function ᾱ : X → {0, 1, 2}, defined by ᾱ(x) = α(x) for
x ∈ A and ᾱ(x) = 2 for x /∈ A. It is clear that ᾱ : (X,V) → 3 is a
continuous extension of α. �

Remark that PrTop and PrCls are not closed under initial mor-
phisms in 3Set, because the pretopological space 3 is not an initially
injective object of 3Set. Let I2 be the indiscrete pretopological space
with underlying set {0, 1} and let I1 be the indiscrete pretopologi-
cal space with underlying set {0}. Let f : I2 → 3 be the continuous
function defined by f(0) = 0 and f(1) = 2. The constant function
c0 : I2 → I1 is an initial morphism in PrTop, but there is no contin-
uous function g : I1 → 3 such that g ◦ c0 = f . Hence, PrTop and
PrCls are hereditary coreflective subconstructs of 3Set which can
not be constructed from an algebra structure on {0, 1, 2}.

We now look at the second open problem stated by Giuli in [26].
The notion of tightness was introduced by Arhangel’skii in [1]. Let
α be a regular cardinal. A topological space (X, τ) is α-tight if it
satisfies the following condition:

if x ∈ clτB, then x ∈ clτA for some A ⊂ B, |A| < α.

The category Tight(α) consisting of the α-tight topological spaces
and continuous maps is a concretely coreflective subconstruct of
Top. The coreflection was explicitly described by Arhangel’skii [1].
Further details of this coreflection can also be found in [6]. In
[29], Giuli and Husek proved that Tight(α) is also a hereditary sub-
construct of Top. Since Top is a hereditary concretely coreflective
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subconstruct of the category SSet of affine sets over S = {0, 1}, it
immediately follows that Tight(α) is also a hereditary concretely
coreflective subconstruct of SSet.

Proposition 2.10. Tight(α) is closed under initial morphisms in
SSet.

Proof. Top is isomorphic to SSet(Ω) with Ω the algebraic structure
on S containing the constant operations, the operations ωi(at) =
max
t∈ni

at for arbitrary cardinals ni and ω′
i(at) = min

t∈ni

at for every finite

cardinal ni. From 2.8, it follows that Top is closed under initial
morphisms in SSet. Hence, it is sufficient to prove that Tight(α) is
closed under initial morphisms in Top. Let f : (X, τX) → (Y, τY )
be an initial morphism in Top, with (Y, τY ) a Tight(α)-object. For
B ⊆ X and x ∈ clB, we have f(x) ∈ cl(f(B)). Since (Y, τY ) is a
Tight(α)-object, there exists a subset C of f(B) with cardinality
less than α such that f(x) ∈ cl(C). For every c ∈ C, choose
xc ∈ f−1({c}) and let A = {xc|c ∈ C}. A is a set with cardinality
less than α such that f(A) = C. Since f is an initial morphism in
Top, we have clA = f−1(cl(f(A))) = f−1(cl(C)). This implies that
x ∈ cl(A). We can conclude that (X, τX) is a Tight(α)-object. �

It now follows from 2.8 that all categories Tight(α) are of the
form SSet(Ω) for some algebraic theory Ω on S. This answers the
second question of Giuli in [26].

3. Metrically generated categories

Another general type of topological categories are the metrically
generated categories, which were introduced by R. Lowen and E.
Colebunders in [19]. In this section, we will use the results of the
previous section in order to compare the categories of affine sets
with the metrically generated theories. First, we gather all the
preliminary material from [19] that is needed to introduce the met-
rically generated constructs.

A function d : X ×X → [0,∞] is called a quasi-pre-metric if it is
zero on the diagonal. We will drop “pre” if d satisfies the triangle
inequality and we will drop “quasi” if d is symmetric. For a quasi-
pre-metric d, we will denote by d−1 the quasi-pre-metric defined by
d−1(x, y) = d(y, x) for all x, y ∈ X . We will consider the pointwise
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order on the set of quasi-pre-metrics on X (i.e. d 6 e ⇔ ∀x, y ∈
X : d(x, y) 6 e(x, y)). Denote by Met the construct of quasi-pre-
metrics and contractions (a map f : (X, d) → (X ′, d′) is a contrac-
tion if d′ ◦ f × f ≤ d) and by Met(X) the fiber of Met-structures
on X . Met is a topological construct and the indiscrete objects are
precisely those for which every pair of points has distance 0.

A base category C is a full and isomorphism-closed concrete sub-
construct of Met which is closed for initial morphisms and con-
tains all Met-indiscrete spaces. In this paper we will consider the
base category C∆ consisting of all quasi-metric spaces, C∆s the con-
struct of metric spaces, C∆sθ the construct of totally bounded met-
ric spaces and C∆θ the construct of totally bounded quasi-metric
spaces (a quasi-metric d on X is totally bounded if d ∨ d−1 is a
totally bounded metric on X).

Given a base category C, a topological construct X is called C-
metrically generated if there exists a concrete functor K : C → X
such that K preserves initial morphisms and K(C) is initially dense
in X.

We now recall that there exists a model category for all C-
metrically generated constructs. For any collection B of quasi-pre-
metrics on X , we put B↓:= {e ∈ Met(X) | ∃d ∈ B : e ≤ d}. We say
that B is a basis for D if D = B↓.

MC(X) is the construct with objects, pairs (X,D) where X is
a set and D is a collection of quasi-pre-metrics on X with basis
consisting of C-metrics.
D is called a C-meter and (X,D) a C-metered space. If (X,D) and
(X ′,D′) are C-metered spaces and f : (X,D) → (X ′,D′), then we
say that f is a contraction if d′ ◦ f × f ∈ D for all d′ ∈ D′.

ξ is called an expander on MC if for any set X , ξ provides us with
a function

ξ : MC(X) → MC(X) : D → ξ(D)

such that the following properties are fulfilled:

E1. D ⊆ ξ(D)
E2. D ⊆ D′ ⇒ ξ(D) ⊆ ξ(D′)
E3. ξ(ξ(D)) = ξ(D)
E4. f : Y → X and D ∈ MC(X) ⇒ ξ(D)◦f ×f ⊆ ξ(D◦f ×f ↓)
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Given an expander ξ on MC, MC
ξ is the full coreflective subcon-

struct of MC with objects, those C-metered spaces (X,D) for which
ξ(D) = D.

The main result of [19] states that a topological construct is C-
metrically generated if and only if X is concretely isomorphic to MC

ξ

for some expander ξ on MC.
For any meter D, we put [D]C = {d ∈ D | d C-meter}. For any

expander ξ on MMet, there is an adapted version on MC defined by
ξC(D) = [ξ(D)]C ↓. Throughout this paper we will consider local
expanders. An expander ξ on MC is called local if locC 6 ξ where
loc is the following expander on MMet.

loc(D) = {e | ∀x ∈ X, ∃d ∈ D : e(x, y) 6 d(x, y)}.

Local expanders are studied in detail in [38]. In this paper, we will
consider the following examples of local expanders on MMet. For a
meter D on a set X :

• ξT (D) = {e | ∀ε > 0, ∀x ∈ X, ∃d1, .., dn ∈ D, ∃δ > 0 :
supn

i=1 di(x, y) < δ ⇒ e(x, y) < ε}
• ξA(D) = {e | ∀ε > 0, ∀x ∈ X, ∀ω < ∞∃d1, .., dn ∈ D :

e(x, y)∧ ω 6 supn
i=1 di(x, y) + ε}

• η(D) = {e | ∀x ∈ X, ∀ω < ∞ , ∃d ∈ D : e(x, y)∧ω 6 d(x, y)}
For the expander ξT , the construct MC

ξCT
is isomorphic to Top in case

C equals C∆ or C∆θ, to the construct Creg of completely regular
spaces in case C equals C∆s or C∆sθ . For the expander ξA, the
construct MC

ξCA
is isomorphic to Ap in case C equals C∆ or C∆θ , to

the construct Uap of uniform approach spaces in case C equals C∆s

or C∆sθ .
In [8], initially dense objects are determined for the local met-

rically generated categories. There, we proved that for C any of
the base categories C∆, C∆s, C∆θ, C∆sθ and ξ a local expander on
MC, MC

ξ has an initially dense object with underlying set [0,∞].
Combining this with the results of the previous section, we have
the following relation between local metrically generated categories
and categories of affine sets.

Proposition 3.1. For C any of the base categories C∆, C∆s, C∆θ, C∆sθ

and ξ a local expander on MC, MC
ξ is isomorphic to a coreflective

subconstruct of [0,∞]Set.
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We now describe the coreflective subconstruct of [0,∞]Set, which
is isomorphic to MC∆

loc . All the local metrically generated constructs
with C ⊂ C∆ can be embedded in the following subconstruct of the
construct of affine sets.

Proposition 3.2. MC∆

loc is isomorphic to the full subconstruct of
[0,∞]Set consisting of the affine sets (X,A) over [0,∞] satisfying
the following four conditions:

(1) ca ∈ A for all a ∈ [0,∞]
(2) a ∈ [0,∞], α ∈ A ⇒ Aa(α) = α + ca ∈ A
(3) a ∈ [0,∞], α ∈ A ⇒ Sa(α) = (α − ca) ∨ 0 ∈ A
(4) A is closed under infima of the collections (αi)i∈I ∈ A such

that ∀x ∈ X, there exists j ∈ I : inf
i∈I

αi(x) = αj(x).

Proof. In [8], it was proved that ([0,∞], locC
∆
(d−1

P ↓)), with

dP : [0,∞]× [0,∞] → [0,∞] : (x, y) → (x − y)∨ 0

is initially dense in MC∆

loc . It then follows from 2.3 that MC∆

loc is
isomorphic to [0,∞]Set

MC∆
loc

and the isomorphism on the objects is

given by F (X,D) = (X,AD = {α : X → [0,∞] |d−1
α ∈ D}) with

d−1
α (x, y) = (α(y) − α(x)) ∨ 0. So, we only have to prove that

[0,∞]Set
MC∆

loc

consists of the affine sets over [0,∞] satisfying the

four conditions above. We first prove that the affine sets (X,AD)
satisfy the four conditions:

(1) d−1
ca

(x, y) = (a − a)∨ 0 = 0 ∈ D
(2) d−1

Aa(α)(x, y) = ((α(y) + a) − (α(x) + a)) ∨ 0
= (α(y)− α(x))∨ 0 = d−1

α (x, y)

(3)
d−1

Sa(α)(x, y) = (((α(y)− a) ∨ 0) − ((α(x)− a) ∨ 0))∨ 0
6 α(y) − α(x) ∨ 0 = d−1

α (x, y)
(4) Let (αi)i∈I ∈ AD and for all x ∈ X , there exists j ∈ I such

that inf
i∈I

αi(x) = αj(x).

d−1
inf αi

(x, y) = (inf
i∈I

αi(y)− inf
i∈I

αi(x))∨ 0

= (inf
i∈I

αi(y) − αj(x))∨ 0

6 (αj(y) − αj(x)) ∨ 0 = d−1
αj

(x, y).

This implies that d−1
inf αi

∈ locC
∆
(D) = D.
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On the other hand, let (X,A) be an affine set such that A satisfies
the four conditions. Let D = locC

∆{d−1
α |α ∈ A}. By definition

of D and AD follows immediately that (X,D) is a MC∆

loc -object and
A ⊆ AD .

If α ∈ AD, then d−1
α ∈ D. Hence, for all x ∈ X , there exists

βx ∈ A such that d−1
α (x, y) 6 d−1

βx
(x, y). This means that

(α(y)− α(x)) ∨ 0 6 (βx(y)− βx(x))∨ 0.

Which implies α(y) 6 ((βx(y)−βx(x))∨0)+α(x). Since A satisfies
condition 2 and 3, we have that the functions αx : X → [0,∞]
defined by

αx(y) = ((βx(y)− βx(x))∨ 0) + α(x)

belong to A for all x ∈ X . For all x ∈ X , we have that α 6 αx and
α(x) = αx(x). This implies that α = inf

x∈X
αx and inf

x∈X
αx(y) = αy(y)

for all y ∈ X . By condition 4, we can conclude that α ∈ A. �

In [8], it was proved that if an expander ξ on MC∆
satisfies the

slightly stronger condition η 6 ξ, then ([0,∞], ξ(dP ↓)) is also an
initially dense object of MC∆

ξ . Hence, for these expanders, MC∆

ξ is
isomorphic to a second subconstruct of [0,∞]Set. We now describe
the largest coreflective subconstruct of [0,∞]Set obtained this way.

Proposition 3.3. MC∆

η is isomorphic to the full subconstruct of
[0,∞]Set consisting of the affine sets (X,A) over [0,∞] satisfying
the following five conditions:

(1) ca ∈ A for all a ∈ [0,∞]
(2) a ∈ [0,∞], α ∈ A ⇒ Aa(α) = α + ca ∈ A
(3) a ∈ [0,∞], α ∈ A ⇒ Sa(α) = (α − ca) ∨ 0 ∈ A
(4) a ∈ [0,∞], α ∈ A ⇒ α ∧ ca ∈ A
(5) A is closed under suprema of the collections (αi)i∈I that

satisfy the following condition: ∀x ∈ X :
If sup

i∈I
αi(x) 6= ∞, then there exists j ∈ I : sup

i∈I
αi(x) = αj(x)

If sup
i∈I

αi(x) = ∞, then ∀ω < ∞, ∃j ∈ I such that :

ω 6 (αj(x)− αj(y))∧ 0 for all y with sup
i∈I

αi(y) 6= ∞.
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Proof. Since ([0,∞], ηC∆
(dP ↓)) is initially dense in MC∆

η , it follows
from 2.3 that MC∆

η is isomorphic to [0,∞]Set
MC∆

η
and the isomor-

phism on the objects is given by

F (X,D) = (X,AD = {α : X → [0,∞] |dα ∈ D})
with dα(x, y) = (α(x) − α(y)) ∨ 0. Analogously to the previous
proof, one can prove that [0,∞]Set

MC∆
η

consists of the affine sets

over [0,∞] satisfying the conditions above. �

If we apply the isomorphism to the category MC∆

ξT
, we get the

following isomorphic description for the construct Top of topological
spaces and continuous maps.

Proposition 3.4. Top is isomorphic to the category of affine sets
(X,A) over [0,∞] satisfying the following conditions:

(1) ca ∈ A for all a ∈ [0,∞]
(2) a ∈ [0,∞], α ∈ A ⇒ Aa(α) = α + ca ∈ A
(3) a ∈ [0,∞], α ∈ A ⇒ Sa(α) = (α − ca) ∨ 0 ∈ A
(4) α, β ∈ A ⇒ α ∧ β ∈ A
(5) (αi)i∈I ∈ A ⇒ sup

i∈I
αi ∈ A

(6) α ∈ A ⇒ µ∞ ◦ α ∈ A, with µ∞ : [0,∞] → [0,∞], µ∞(0) = 0
and µ∞(x) = ∞ for x 6= 0.

Remark that this description was also obtained in [18]. If we
apply the isomorphism to the category MC∆

ξA
, we get the description

of approach spaces using regular function frames.

4. (T, V)-categories

In this section, we explain how the theorems of section 2 can
contribute to a comparison of the categories of affine sets and (T, V)-
categories or lax algebras. Throughout this section V will denote a
(commutative and unital) quantale. Hence, V is a complete lattice
which carries a commutative and associative operation ⊗ with a
neutral element k, such that

u ⊗
∨

i∈I

vi =
∨

i∈I

(u ⊗ vi)

for all u, vi ∈ V . Since V is a complete lattice, the preservation of
suprema by u ⊗ − : V → V is equivalent to the existence of a right
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adjoint hom(u,−) : V → V to u ⊗ −. Therefore, we have a map
hom: V × V → V such that for all u, v, w ∈ V,

u ⊗ v 6 w ⇔ v 6 hom(u, w)

For example, the two-element chain 2 = {⊥,>} with ⊗ = ∧ and
k = > is a quantale. The category V-Mat of V-matrices [4, 16]
has sets as objects, and a morphism r : X 9 Y in V-Mat is a
map r : X × Y → V. Composition of V-matrices r : X 9 Y and
s : Y 9 Z is defined as matrix multiplication:

s · r(x, z) =
∨

y∈Y

r(x, y)⊗ s(y, z)

For example, 2-Mat is isomorphic to the category Rel with sets as
objects and relations as morphisms. The identity 1X : X 9 X in
V-Mat is the V-matrix which sends all diagonal elements (x, x) to k
and all other elements to the bottom element ⊥ of V. Each Set-map
f : X → Y can be interpreted as the V-matrix f : X 9 Y given by

f(x, y) =
{

k if f(x) = y
⊥ otherwise

To keep notations simple, we will write f : X → Y instead of
f : X 9 Y to designate a V-matrix induced by a map. The com-
plete order on V induces a complete order on V-Mat(X, Y ) = VX×Y :
for V-matrices r, r′ : X 9 Y we define

r 6 r′ :⇔ ∀x ∈ X, ∀y ∈ Y : r(x, y) 6 r′(x, y)

The transpose r◦ : Y 9 X of a V-matrix r : X 9 Y is defined by
r◦(y, x) = r(x, y).

Recall that a monad T = (T, e, m) on Set consists of a functor
T : Set → Set together with natural transformations e : Id → T and
m : TT → T such that

m · Te = 1T = m · eT and m · Tm = m · mT

A lax extension of a monad T = (T, e, m) on Set is a map

T̄ : V-Mat → V-Mat
(r : X 9 Y ) 7→ (T̄r : TX 9 TY )

satisfying for all r : X 9 Y, s : Y 9 Z and f : X → Y the condi-
tions:

(1) s 6 r ⇒ T̄ s 6 T̄r
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(2) T̄ s · T̄ r 6 T̄ (s · r)
(3) Tf 6 T̄ f and (Tf)◦ 6 T̄ f◦

(4) eY · r 6 T̄ r · eX

(5) mY · T̄ T̄ r 6 T̄r · mX

In [2] Barr shows how to extend a monad T = (T, e, m) on Set to
2-Mat = Rel. For each relation r : X 9 Y , we let Gr denote its
graph Gr ⊂ X × Y . With p : Gr → X and q : Gr → Y being the
respective projection maps, we have r = q ·p◦. The Barr extension
TB of T to Rel is defined by TBX = TX and TBr = Tq · TBp◦,
where TBp◦ = (Tp)◦. If the functor T satisfies the Beck-Chevalley
Condition, then the Barr extension is a lax extension.

In [14], Clementino and Hofmann describe the construction of a
lax V-Mat-extension out of a Rel-extension. For a V-matrix r : X 9
Y and v ∈ V, they first define relations rv : X 9 Y

rv(x, y) = > ⇔ v 6 r(x, y)

Given a lax extension T̄ : Rel → Rel of a Set-monad T = (T, e, m)
and a constructively completely distributive lattice V with k = >
or T∅ = ∅, a lax extension TV : V-Mat → V-Mat is defined by

TVr(r, n) =
∨

{v ∈ V | T̄rv(r, n) = >},

for any V-matrix r : X 9 Y and r ∈ TX, n ∈ TY . This extension
was called the strata extension in [36]. We refer to [14, 35] for
further details.

For a Set-monad T = (T, e, m) equipped with a lax extension T̄ of
T , the category (T, V)-Cat of (T, V)-categories, or lax algebras, has
as objects pairs (X, a) with X a set and its structure a : TX 9 X
is a reflexive and transitive V-matrix:

1X 6 a · eX and a · T̄a 6 a · mX

Morphisms f : (X, a) → (Y, b) are Set-maps f : X → Y satisfying
f · a 6 b · Tf , and composing as in Set. (T, V)-Cat is a topological
construct [13] and the intial structures are formed as follows. Given
(fi : X → (Yi, bi))i∈I , then the initial structure a : TX 9 X is given
by a =

∧
i∈I

f◦
i · bi · Tfi.

In order to apply the theorems of section 2 to (T, V)-Cat, the
category (T, V)-Cat needs an initially dense object. The question
which categories (T, V)-Cat have an initially dense object is still
open. A candidate for an initially dense object can be found in [12].
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In that paper, Clementino and Hofmann consider the structure
homξ = hom · ξ : TV 9 V with ξ : TV → Y defined by ξ(r) =∨
{v ∈ V | r ∈ T ({u ∈ V | v 6 u})}. For a lax extension constructed

as described above (the strata extension applied to the Barr exten-
sion), they prove that (V, homξ) is a (T, V)-category.

The following theorem is an immediate consequence of theorem
2.5.

Theorem 4.1. If (V, homξ) is an initially dense object of (T, V)-Cat,
then (T, V)-Cat is isomorphic to a coreflective subconstruct of VSet.

This theorem can be applied to the following two examples of
monads.

Examples.

1. Identity monad I. The identity monad I is the triple (Id, 1, 1)
and the strata extension of the identity functor Id : Set → Set is
given by the identity Id : V-Mat → V-Mat. The category (I, V)-Cat
is the category V-Cat of V-enriched categories and V-functors.
V-enriched categories (or simply V-categories) were introduced and
studied in [24, 31] in the more general context of symmetric
monoidal-closed categories. For a nice presentation of this theory,
we refer to [32]. A V-category is a set X together with a V-matrix
a : X × X → V satisfying

k 6 a(x, x) (R) and a(x, y)⊗ a(y, z) 6 a(x, z) (T )

for all x, y, z ∈ X . Given V-categories (X, a) and (Y, b), a V-functor
f : (X, a) → (Y, b) is a map f : X → Y such that, for each x, x′ ∈
X, a(x, x′) 6 b(f(x), f(x′)).

Proposition 4.2. (V, hom) is an initially dense object of V-Cat.

Proof. For every V-category (X, a : X×X → V ), we will prove that
the source

(a(x,−) : (X, a) → (V, hom))x∈X,

where a(x,−)(y) = a(x, y) for all y ∈ X , is initial in V-Cat. Since
the V-matrix a satisfies condition (T), it follows that

a(y, z) 6 hom(a(x, y), a(x, z))

for all x, y, z ∈ X . Since a also satisfies condition (R), we have

hom(a(y, y), a(y, z) > hom(k, a(y, z)) = a(y, z)
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for all y, z ∈ X . We can conclude that

a(y, z) =
∧

x∈X

hom(a(x, y), a(x, z))

for all y, z ∈ X . �

Combining this with theorem 2.5, we can conclude:

Corollary 4.3. V-Cat is isomorphic to a coreflective subconstruct
of VSet.

2. Powerset monad P = (P, e, m). The powerset functor P sends a
set X to the set PX of subsets of X and sends a map f : X → Y to
Pf : PX → PY defined by Pf(A) = {f(x) | x ∈ A} where A ⊆ X .
For x ∈ X and A ∈ PPX , the maps eX and mX are given by

eX(x) = {x} and mX(A) = ∪A.

We consider the extension of the powerset functor defined by

PVr(A, B) =
∧

y∈B

∨

x∈A

r(x, y),

where A ∈ PX and B ∈ PY . Seal [37] proved that the category
(P, V)-Cat is isomorphic to the category V-Cls of V-closure spaces
and continuous maps.

Definition 4.4. A V-closure space is a pair (X, c), where X is a
set and c : PX × X → V satisfies:

(C1) ∀x ∈ X, ∀A ⊆ X : a ∈ A ⇒ c(A, a) ≥ k;
(C2) ∀x ∈ X, ∀A ⊆ B ⊆ X : c(A, x) ≤ c(B, x);
(C3) ∀x ∈ X, ∀A, B ⊆ X :

∧
y∈B c(A, y)⊗ c(B, x) ≤ c(A, x).

A map f : (X, c) → (X ′, c′) is continuous if

∀A ⊆ X, ∀x ∈ X : c(A, x) ≤ c′(f(A), f(x)).

The 2-closure spaces are exactly the closure spaces. In case
V = ([0,∞]op, +, 0), V-Cls coincides with the non-additive approach
spaces. On V, we consider the V-closure space (V, cV ) where

cV : PV × V → V : (A, x) 7→ hom(
∧

A, x)

In an analogous way to the proof for approach spaces in [33], we
can prove the following theorem.

Theorem 4.5. (V, cV ) is an initially dense object of V-Cls.

Corollary 4.6. V-Cls is isomorphic to a coreflective subconstruct
of VSet.
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