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METRIZABILITY AND DIMENSION

I. TSERETELI AND L. ZAMBAKHIDZE

Abstract. It is proved that under some natural restrictions
any topologically closed subclass of the class of all
Tychonoff spaces, where the three classical dimension func-
tions coincide, is a subclass of the class of all metrizable
spaces with a countable base providing a complete solution
for a problem of A.V.Arhangel’skíı, next to a partial solution
of L.A.Tumarkin’s problem.

1. Notation

The term space is to be understood as a topological space.
All spaces under consideration are at least Tychonoff. Below

we consider several classes of spaces. All of them are assumed
topologically closed, i.e., any considered class of spaces is closed
under homeomorphisms.

The class of all separable and metrizable spaces is denoted by
TSM and the class of all finite-dimensional separable metrizable
spaces - by TfSM .

N
′
is denoted as the set {−1, 0, 1, 2, . . .}

⋃
{∞} together with the

natural order relation and addition operation.
A N

′
-valued function d, defined on a class T of spaces, is said to

be topologically invariant if for any X ∈ T and any Y ∈ T , with X
homeomorphic to Y , we have: d(X) = d(Y ).
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344 I. TSERETELI AND L. ZAMBAKHIDZE

For any natural number n, In signifies the standard n-dimensional
closed cube [0; 1]n. Besides, I0 denotes the one-point set {0} and
I−1 is the empty set.

N stands for the set of all natural numbers.
For any space X and any A ⊂ X , the boundary of A in X is

denoted by FrXA (or, simply, by FrA).
For any space X and any A ⊂ X , [A]X (or simply, [A]) denotes

the closure of A in X .
dim, ind and Ind denote, respectively, the covering, the small

inductive and the large inductive dimension functions. This work
follows definitions given e.g. in [6], [13] 1.

It is noteworthy, that in the class of all Tychonoff spaces there are
alternative definitions for covering and large inductive dimension
functions, denoted below by dim? and Ind?, respectively. dim? and
Ind? are defined as follows: for any Tychonoff space X dim?X =
dimβX 2 and Ind?X = IndβX , where βX is the Čech-Stone com-
pactification of X . For any normal space X we have dim?X =
dimX and Ind?X = IndX . However, in the class of all Tychonoff
spaces the function dim? (respectively, Ind?), in general, differs
from the function dim (respectively, Ind). It must be underscored,
also, that for any Tychonoff space X , dim?X = 0 iff Ind?X = 0
(see [6]).

Some of the results given below were announced (without proofs)
in [19].

1Definition of ind [6]. For any space X, indX = −1 iff X = ∅. indX ≤ n
(n ≥ 0) iff for any point x ∈ X and any neighborhood V of x there is an open
subset U of X with x ∈ U ⊂ V and indFrXU ≤ n − 1.

Definition of Ind [6]. For any space X, IndX = −1 iff X = ∅. IndX ≤ n
(n ≥ 0) iff for any closed subset A ⊂ X and for any neighborhood V of A there
is an open subset U of X with A ⊂ U ⊂ V and IndFrXU ≤ n − 1.

Definition of dim [6]. For any space X and any integer n ≥ −1, dimX ≤ n
iff any finite open cover of the space X can be refined by an open cover (of X)
of order ≤ n (order of a family F of subsets of a set X is the largest integer n
such that F contains n + 1 sets with non-empty intersection; if no such integer
exists, then the order of F is equal to ∞).

2The following (internal) characterization of dim? is well-known (see e.g.
[4]): for any Tychonoff space X and any integer n ≥ −1, dim?X ≤ n iff any
finite functionally open cover of X can be refined by a finite functionally open
cover of order ≤ n.
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The main results of the article were presented at the 22nd Sum-
mer Conference on “Topology and its Applications” (Universidad
Jaume I de Castellon, Spain, 24-27 July 2007).

2. Introduction

For any X ∈ TSM , denote:
∼
d (X) = dimX . It is well-known

(see e.g. [4], [9]), that the class TSM and the function
∼
d have the

following properties:

P1. For any X ∈ TSM ,
∼
d (X) = dimX = indX = IndX .

P2. For any X ∈ TSM and any A ⊂ X we have: A ∈ TSM .
P3. For any X ∈ TSM and any A ⊂ X we have:

∼
d (A) ≤

∼
d (X).

P4. For any n = −1, 0, 1, 2, . . . we have:
∼
d (In) = n.

P5. If X ∈ TSM and X =
∞⋃
i=1

Xi, where each Xi is a closed subset

of X , then
∼
d (X) = sup{

∼
d (Xi) : 1 ≤ i < ∞}.

P6. If X ∈ TSM and X = A
⋃

B, then
∼
d (X) ≤

∼
d (A)+

∼
d (B)+1.

P7. If X ∈ TSM and 0 ≤
∼
d (X) = n < ∞, there exist X1, . . . , Xn+1

⊂ X such, that X =
n+1⋃
i=1

Xi and
∼
d (Xi) ≤ 0 for each i = 1, . . . , n+1.

P8. For any X ∈ TSM there is a compactification bX of X such
that bX ∈ TSM and

∼
d (bX) =

∼
d (X).

P9. If X1 ∈ TSM and X2 ∈ TSM , then X1 × X2 ∈ TSM .
P10. If X1 ∈ TSM , X2 ∈ TSM and X1

⋃
X2 6= ∅, then

∼
d

(X1 × X2) ≤
∼
d (X1)+

∼
d (X2).

P11. For any X ∈ TSM and any A ⊂ X , there is a Gδ-subset H

of X with A ⊂ H and
∼
d (H) =

∼
d (A).

The following questions are raised naturally.

1. Is
∼
d the only topologically invariant N

′
-valued function on

the class TSM , having the properties P2, . . . , P11 simultaneously?
2. Do there exist topologically invariant N

′
-valued functions,

defined on the classes of spaces wider than the class TSM (con-
taining all standard cubes [0, 1]n, n = −1, 0, 1, . . .) and having the



346 I. TSERETELI AND L. ZAMBAKHIDZE

properties P2, . . . , P11 simultaneously? 3

3. Let T be a (topologically closed) class of spaces, in which
the functions dim, ind and Ind coincide and the common value
of these functions has the properties P2, . . . , P11 simultaneously. Is
then T a subclass of TSM class? (Exact formulation follows below).

Questions 1 and 2 were studied in the previous papers. Namely,
in [16] together with some other results the positive answer to the
question 1 is given.

As regards the question 2, it is particularly proved (see [17]) that
in the Tychonoff spaces class there exists no topologically invariant
N

′
-valued function, having the properties P2, . . . , P11 simultane-

ously. In other words, according to the terminology adopted [17] in
the class mentioned, the system {P2, . . . , P11} is non-realizable.

On the other hand, the present paper studies question 3 (see
Question QA below), posed by A.Arhangel’skíı on the 47th Con-
ference at Latvia State University in 1988. The study at hand
shows that an answer to the given question is positive. Moreover,
it is proved, that even when class T and a N

′
-valued function d

have but properties P1, P2, P8, P9 - T is a subclass of the class TSM

(Theorem 1).
In this connection, one would interestingly try to single out the

combinations of the properties P1, . . .P11 (i.e., all nonempty subsets
of the set {P1, . . .P11}), ensuring the inclusion T ⊂ TSM (clearly
meaning, that the quantity of all combinations of the properties
P1, . . .P11 is equal to 211 − 1 = 2047). As it turned out (Theo-
rem 1), there are exactly 128 combinations, providing the inclusion
T ⊂ TSM . These are exactly the combinations simultaneously con-
taining the properties P1, P2, P8, P9 .

It is also proved that if given T and N
′
-valued function d, de-

fined on T , having the properties P2, P8, P9 together with d(X) =
dimX = indX = IndX < ∞ for any X ∈ T , then T is a subclass
of the class TfSM . More than that, if T contains the usual unit
closed interval [0,1], then T coincides with TfSM (Theorem 2).

3A N
′
-valued function d, defined on such class T of spaces, has the property

Pi, i = 2, . . . 11, means that T and d satisfy the condition, formulation of which

is obtained from the formulation of Pi by replacing of
∼
d and TSM with d and

T , respectively.
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When referring to the next question it is known ([6]), that the
function

∼
d has the following property:

P12. If X1, X2 ∈ TSM , X1 ⊂ X2 and x ∈ X2 \ X1, then
∼
d

(X1
⋃
{x}) =

∼
d (X1).

L.A.Tumarkin [18] sets up a goal to characterize class T and N
′
-

valued function d defined on T , having simultaneously properties
P1, P2, P3, P9, P10 and P12 .

A partial solution of this problem (Question QT ) is provided
below. Namely, we show that if class T and function d together
with the properties P1, P2, P3, P9, P10, P12 also have the property
P8, T is a subclass of the class TSM (Theorem 3).

3. Question Formulations

Consider a pair (T, d), where T is a class of spaces and d is a
topologically invariant N

′
-valued function, defined on the class T .

Denote the collection of all such pairs by T , i.e. T = {(T, d)| T

is a class of spaces and d is a topologically invariant N
′
-valued

function}. Clearly, (T1, d1) = (T2, d2) iff T1 = T2 and d1 = d2. We
introduce the following order relation on T : for any (T1, d1) ∈ T
and (T2, d2) ∈ T , let (T1, d1) ≤ (T2, d2) if and only if T1 ⊂ T2 and d1

is the restriction of d2 over T1, i.e., for any X ∈ T1 we have X ∈ T2

and d1(X) = d2(X). In the case when (T1, d1) ≤ (T2, d2), we say
that the pair (T1, d1) is a subpair of the pair (T2, d2). Clearly, if
(T1, d1) ≤ (T2, d2) and (T2, d2) ≤ (T1, d1), then (T1, d1) = (T2, d2).

Consider the following eleven subcollections of the collection T :
P1 = {(T, d) ∈ T | for all X ∈ T , indX = IndX = dimX =

d(X)}.
P2 = {(T, d) ∈ T | if X ∈ T and A ⊂ X , then A ∈ T}.
P3 = {(T, d) ∈ T | if X, A ∈ T and A ⊂ X , then d(A) ≤ d(X)}.
P4 = {(T, d) ∈ T | if In ∈ T , where n ∈ {−1, 0, 1, 2, . . .}, In ∈ T ,

then d(In) = n}.

P5 = {(T, d) ∈ T | if X =
∞⋃
i=1

Xi, where X as well as each Xi

belong to T and each Xi is a closed subset of X , then d(X) =
sup{d(Xi) | i ∈ N}}.

P6 = {(T, d) ∈ T | if X, A, B ∈ T and X = A ∪ B, then d(X) ≤
d(A) + d(B) + 1}.
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P7 = {(T, d) ∈ T | if X ∈ T and 0 ≤ d(X) = n < ∞, then there

exist X1 ∈ T, . . ., Xn+1 ∈ T with X =
n+1⋃
i=1

Xi and d(Xi) ≤ 0 for

any i ∈ {1, . . . , n + 1}}.
P8 = {(T, d) ∈ T | if X ∈ T , then there exists a compactification

bX of X with bX ∈ T and d(bX) = d(X)}.
P9 = {(T, d) ∈ T | if X1 ∈ T and X2 ∈ T , then X1 × X2 ∈ T}.
P10 = {(T, d) ∈ T | if X1 ∈ T , X2 ∈ T , X1 × X2 ∈ T and

X1
⋃

X2 6= ∅, then d(X1 × X2) ≤ d(X1) + d(X2)}.
P11 = {(T, d)∈ T | if A ∈ T , X ∈ T and A ⊂ X , then there exists

a Gδ-subset H of X such that H ∈ T , A ⊂ H and d(H) = d(A)}.
For all k1, . . . , km ∈ N, where 1 ≤ k1 < · · · < km ≤ 11, denote

[k1, . . . , km] =
m⋂

i=1
Pki , i.e., a pair (T, d) ∈T belongs to [k1, . . . , km]

if and only if it belongs to Pki for all i = 1, . . . , m.
Consider the set:
A= {[k1, . . . , km] | k1, . . . , km ∈ N; 1 ≤ k1 < · · · < km ≤ 11}.
We say that element [k1, . . . , kp] ∈A contains element [l1, . . . , lq] ∈

A (or [l1, . . . , lq] is contained in [k1, . . . , kp]) and write [k1, . . . , kp] ⊇
[l1, . . . , lq] (or [l1, . . . , lq] ⊆ [k1, . . . , kp]) if {l1, . . . , lq} is a subset of
{k1, . . . , kp}.

As was mentioned above, the three classical dimension functions
ind, Ind and dim coincide in the class TSM , i.e. for any X ∈ TSM ,
we have: indX = IndX = dimX . Denote the following function
defined on TSM and taking values in N

′
by

∼
d: for any X ∈ TSM ,

∼
d (X) = indX = IndX = dimX (see Introduction). Furthermore,
let

∼
df be the restriction of

∼
d over TfSM .

We call (TSM ,
∼
d) and (TfSM ,

∼
df ) the standard pair and the finite

standard pair respectively.
An element [k1, . . . , km] ∈A is called a TSM -element of A if any

pair (T, d) ∈ [k1, . . . , km] is a subpair of the standard pair (TSM ,
∼
d).

The work at hand studies two questions, QA and QT .

Question QA (A. Arhangel’skíı (see Introduction)). As it was

already noted above, the intersection
11⋂
i=1

P i appears non-empty:
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the standard pair (TSM ,
∼
d) belongs to

11⋂
i=1

P i. It is of interest whether

for every (T, d) ∈
11⋂

i=1
P i there is (T, d) ≤ (TSM ,

∼
d). The terminology

provided can also formulate the question otherwise: is [1, 2, 3, 4, 5, 6,
7, 8, 9, 10, 11] ∈A the TSM -element of A? The solution of the ques-
tion is provided in the next section (Theorem 1).

Besides, we establish conditions which provide the coincidence of
a pair (T, d) ∈T with the finite standard pair (TfSM ,

∼
df ) (Theorem

2).
To formulate the second question QT , we need the following

subcollection P12 of the collection T :
P12 = {(T, d) ∈ T | if X1, X2 ∈ T , X1 ⊂ X2, x ∈ X2 \ X1 and

X1 ∪ {x} ∈ T , d(X1 ∪ {x}) = d(X1)}.

Question QT (L.Tumarkin [18]). Let (T, d) ∈P1
⋂
P2

⋂
P3

⋂
P9

⋂

P10
⋂
P12. Characterize the class T . Partial solution of the problem

is to follow (Theorem 3).

4. Results

The results concerning Question QA are given in the first part
of this section.

Lemma 1. Let T be a (topologically closed) class of (Tychonoff)
spaces, having the following properties simultaneously:

p1) If X ∈ T and Y ⊂ X, then Y ∈ T .
p2) For any X ∈ T , there exists a compactification bX of X,

such that bX ∈ T .
p3) For any X ∈ T , such that indX = 0, there exists a compact-

ification bX of X, with bX ∈ T and ind(bX) = indX.
p4) If X1 ∈ T and X2 ∈ T , then X1 × X2 ∈ T .
Then the conditions 1) - 5) below are equivalent:
1) For all X ∈ T , dimX ≤ 0 iff IndX ≤ 0 iff indX ≤ 0.
2) For all X ∈ T , dimX ≤ 0 iff indX ≤ 0.
3) For all X ∈ T , IndX ≤ 0 iff indX ≤ 0.
4) If X ∈ T , where X is a locally σ-compact space (i.e., any

point of X has a neighborhood the closure of which is σ-compact),
IndX ≤ 0 iff indX ≤ 0.

5) T ⊂ TSM .
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Proof. 1) =⇒ 2) is obvious.
2) =⇒ 3). It is common knowledge that even in the class of T1

spaces, dimX=0 ⇐⇒ IndX=0 (see [6], Appendix), which implies
indX=0 =⇒ IndX=0 and it is evident that IndX=0 =⇒ indX=0.

3) =⇒ 4) is obvious.
4) =⇒ 5). Let X ∈ T and suppose first that indX ≤ 0. By

condition p3, there exists a compactification bX of X with bX ∈ T
and ind(bX) = indX .

Consider the space Z = bX × bX × bX . Note, that by p4, Z ∈ T
and clearly, indZ ≤ 0. Now it is meant to show that the space Z is
hereditarily normal. To this end, it is sufficient to prove that any
open subspace G of Z is normal (see e.g. [3, 2.1.7]).

Indeed, let G be any open subspace of Z. Since Z is compact,
G is locally compact and therefore G is clearly locally σ-compact.
But indZ ≤ 0. Consequently, by monotonicity of ind, indG ≤ 0.
According to the condition of the lemma, we have: IndG ≤ 0.
Hence, G is normal (see [6]). Thus Z is hereditarily normal.

Based on Katetov’s theorem, claiming that a compact space K
is metrizable if and only if the product K × K × K is hereditarily
normal (see e.g. [7]), the above mentioned implies that the compact
space bX is metrizable. Hence, bX has a countable base. Conse-
quently, X being topologically embeddable in bX , X ∈ TSM .

Suppose now that X were an arbitrary space belonging to T . It
has to be shown that X ∈ TSM . Assume on the contrary, that
X /∈ TSM . Then any compactification of the space X is non-
metrizable. In particular, the compactification bX of the space
X , which appears in p2, must be non-metrizable as well. Then,
by Shnejder’s theorem (which states that a compact space K is
metrizable if and only if the diagonal ∆K = {(x, x)|x ∈ K} is the
Gδ-subset of the product K × K (see e.g. [3, 4.2.B])), one can in-
fer that the diagonal ∆bX = {(x, x)|x ∈ bX} is not a Gδ-subset
of the product bX × bX . As one can clearly see, the complement
A = (bX × bX) \ ∆bX is not Lindelöf. Otherwise, as A is an open
subset of the compact space bX×bX and therefore locally compact,
A must be a Fσ-subset of bX×bX . This is impossible given the fact
that its complement ∆bX is not a Gδ-subset of bX × bX . But as
bX ∈ T , bX × bX ∈ T by p4, and since A ⊂ bX × bX , A ∈ T
by p1. Proceeding from the fact that space A is not Lindelöf,
a theorem by W. Pfeffer [14] admits the existence of a locally
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countable 4 non-Lindelöf subspace Y of the space A with |Y | = ω1

(where |Y | denotes cardinality of Y ). At the same time Y is locally
σ-compact.

With A ∈ T , Y ∈ T by p1 and since the space Y is locally
countable and regular, it is not difficult to show that locindY = 0 5.
As it was noted by C. Dowker [2], indY = locindY . Thus, indY =
0. But being already shown above, the latter implies that Y ∈ TSM .
In other words, Y particularly has a countable base and therefore
is a Lindelöf space, entailing a contradiction. Consequently, X ∈
TSM .

5) =⇒ 1) is obvious. �

Theorem 1 (see Question QA). Element [k1, . . . , kp] ∈ A is a TSM -
element of A if and only if [k1, . . . , kp] ⊇ [1, 2, 8, 9]. (In particular,
it follows that [1, 2, . . . , 11] is the TSM -element of A) 6.

Proof. (Sufficiency). Let [k1, ..., kp] ∈A and [k1, ..., kp] ⊇ [1, 2, 8, 9].
It has to be shown that [k1, ..., kp] is a TSM -element of A.

For that purpose, take any (T, d) ∈ [k1, ..., kp] and show that

(T, d) ≤ (TSM ,
∼
d). Since (T, d) ∈P1, it suffices to prove, that T ⊂

TSM .

(T, d) ∈ [k1, ..., kp] =
m⋂

i=1
Pki ⊂P1

⋂
P2

⋂
P8

⋂
P9. Thus, in partic-

ular, (T, d) ∈P2, (T, d) ∈P8 and (T, d) ∈P9. This implies that class
T has the properties p1, p2, p3 and p4 from Lemma 1. At the same
time, with (T, d) ∈P1, the condition 1) from Lemma 1 is fulfilled.
Hence, by Lemma 1, T ⊂ TSM .

(Necessity). Let [k1, ..., kp] ∈A be TSM -element of A. It is de-
signed to show that [k1, ..., kp] ⊇ [1, 2, 8, 9]. Clearly, suffice it to
prove that when [k1, ..., kp] ∈A and [k1, ..., kp] 6⊇ [1, 2, 8, 9], [k1, ..., kp]
is not TSM -element of A.

For that purpose, a pair (Ti, di)∈T will be constructed for any i=
1, 2, 8, 9 in such a way that (Ti, di) ∈Pj for every j∈{1, ..., 11}\{i}
and Ti 6⊂ TSM .

4A space is said to be locally countable if any point has an open countable
neighborhood.

5Recall (see [2]) that locindX ≤ n (n ≥ −1) means that any point x ∈ X
has an open neighborhood Ox with ind[Ox] ≤ n .

6Here we not only answer (positive) the Question QA but point out all TSM -
elements of A.
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Construction of (T1, d1). Let T1 = {X | X is a Tychonoff space
and indX ≤ 0}. Let d1 be also the following function (defined on
T1): for any X ∈ T1, d1(X) = indX . Then for every i = 2, . . . , 11
the pair (T1, d1) belongs to P i but, obviously, T1 6⊂ TSM (note, that
(T1, d1) 6∈P1).

In fact, it is obvious that for any i ∈ {2 . . .11}\{8}, (T1, d1) ∈P i.
It is only to be verified that (T1, d1) ∈P8.

Let indX = 0 and suppose CO(X) were the system of all clopen
subsets of X . Obviously, for any U1, U2 ∈CO(X), there is: U1

⋃
U2

∈ CO(X) and for every U ∈CO(X), there is: [X \ U ] = X \ U .
Therefore, CO(X) is a π-base in the sense of E.Skljarenko [15]
(or, equivalently, CO(X) is algebraically closed in sense of
A.Arhangel’skíı and V.Ponomorev [1]). Let bX be the π-compact-
ification of X associated with that π-base (see [15]). It is known
that the system {ObX < U >}U∈CO (where {ObX < U >} is the
maximal open subset of bX with {ObX < U >}

⋂
X = U) forms

an open base of bX [15]. Since the compactification bX is perfect
with respect to any U ∈ CO(X) 7, {ObX < U >}U∈CO constitutes
bX base, consisting of clopen subsets of bX . Hence, indbX = 0 and
therefore bX ∈ T1.

Construction of (T2, d2). Let T2 be the following class of spaces:
T2 = {X |X is a compact space and indX ≤ 0}. Clearly, for every
X ∈ T2 there is dimX = IndX = indX . Let d2 be the function
on T2 defined as follows: for any X ∈ T2, d2(X) = indX . Then
it is evident that (T2, d2) 6∈P2 and for any i ∈ {1, . . . , 11} \ {2},
(T2, d2) ∈P i. Note, also, that T2 6⊂ TSM .

Construction of (T8, d8). Provided T8 = {X |X is a Tychonoff
space with cardinality not greater than ℵ0} and d8 is the function,
defined on T8: for any X ∈ T8, d8(X) = dimX , pair (T8, d8) belongs
to P i for any i ∈ {1, . . . , 11} \ {8}, but, evidently, T8 6⊂ TSM .

Construction of (T9, d9). Let C be a discrete uncountable space
and suppose αC = C ∪ {a} were the Alexsandroff one-point com-
pactification of the space C with {a} being the one-point remainder.
Let T9 be the following class of spaces: T9 = {X |X is a space topo-
logically embeddable in αC}. Also, let d9 be the following function,

7A compactification cX of a space X is said to be perfect with respect to an
open subset V of X if the equality [FrXV ]cX = FrcX(OcX < V >) takes place
(see [15]).
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defined on T9: for any X ∈ T9, d9(X) = indX . It is scheduled to
show that for any i ∈ {1, . . . , 11} \ {9}, pair (T9, d9) belongs to P i,
but T9 6⊂ TSM .

It will be only verified that (T9, d9) ∈P1 and (T9, d9) ∈P8 (it
is obvious that (T9, d9) ∈P i for any i ∈ {1, . . . , 11} \ {1, 8} and
T9 6⊂ TSM).

For that purpose, note that the following easily verifiable state-
ment holds:

(?) Let X be any T1 space and suppose X0 ⊂ X were a subspace
of X , which is discrete in the induced topology. Assume also, that
X \ X0 = X

′
were a closed subset of X ; then: (a) for any point

x ∈ X0 the one point set {x} is an open subset of X ; (b) for any
subset Y ⊂ X , the set Y

⋃
X

′
is closed in X .

From (?) it follows that when A ⊂ C and B = A
⋃
{a}, B is a

closed subset of αC. Hence any such B is compact.
Undoubtably, for any subset Y ⊂ αC either Y ⊂ C or Y =

A
⋃
{a}, where A ⊂ C. So, any subspace of αC is either discrete

or compact. It is not difficult to show that for any subset Y ⊂ αC
there is: d8(X) = dimX = IndX = indX , i.e, (T9, d9) ∈P1.

Finally, show that (T9, d9) ∈P8. Take any Y ⊂ αC and consider
the closure [Y ]αC of Y in αC. Then [Y ]αC is a compactification of
Y , with d9([Y ]αC) = d9(Y ), pointing out that (T9, d9) ∈P8.

Thus, the construction of pairs (T1, d1), (T2, d2), (T8, d8) and
(T9, d9) has been fulfilled.

Suppose now that [k1, ..., kp] ∈A and [k1, ..., kp] 6⊇ [1, 2, 8, 9]; then
there exists i ∈ {1, 2, 8, 9} with i 6∈ {k1, ..., kp}. Clearly, (Ti, di) ∈
[k1, ..., kp] and as Ti 6⊂ TSM , (Ti, di) is not a subpair of the standard

pair (TSM ,
∼
d); to put it otherwise, [k1, ..., kp] is not a TSM -element

of A. �

Remark 1. Particularly, Theorem 1 encompasses the following:
suppose we are given a subclass T of the class of all Tychonoff
spaces and a N

′
-valued topologically invariant function d defined

on T , such that the pair (T, d) satisfies simultaneously the following
conditions:

P1. For any X ∈ T , d(X) = dimX = IndX = indX .
P2. If X ∈ T and A ⊂ X , A ∈ T .
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P8. If X ∈ T , there exists a compactification bX of X with
bX ∈ T and d(bX) = d(X).

P9. If X1 ∈ T and X2 ∈ T , X1 × X2 ∈ T .
Then T is a subclass of the class TSM of all separable and metriz-

able spaces.

As it was noted above (see Notation), there are two different
definitions for covering and large inductive dimension functions in
the class of all Tychonoff spaces. These are the functions dim and
Ind (accepted in the present work) and dim? and Ind? (see §1).

The following question is aroused naturally.

Question. Suppose we are given a subclass T of the class of all
Tychonoff spaces and a N

′
-valued topologically invariant function

d on T , such that pair (T, d) satisfies the conditions P2, P8, P9 (see
Remark 1) and also, the following condition:

P ?
1 . If X ∈ T , d(X) = dim?X = Ind?X = indX .

Is T then a subclass of the class TSM?

Now it is targeted to show, that in ZFC + ¬CH the answer to
this question is negative.

Namely, the following proposition holds.

Proposition (ZFC + ¬CH). There exists such a class of spaces
T

′
and a topologically invariant N

′
-valued function d

′
on T

′
where

T
′
is not a subclass of TSM but pair (T

′
, d

′
) simultaneously having

properties (i), (ii), (iii), (iv) listed below:
(i) If X ∈ T

′
, d

′
(X) = dim?X = Ind?X = indX.

(ii) If X ∈ T
′
and A ⊂ X, A ∈ T

′
.

(iii) If X ∈ T
′
, there exists a compactification bX of X with

bX ∈ T
′
and d

′
(bX) = d

′
(X).

(iv) If X1 ∈ T
′
and X2 ∈ T

′
, X1 × X2 ∈ T

′
.

Proof. Let D be such a discrete space where ℵ0 < |D| < c (c being
the cardinality of continuum) and αD be the Alexandroff one-point
compactification of D.

Let T
′
be the following class of topological spaces:

T
′
= {X | there exists a natural number n such that X is topo-

logically embeddable in (αD)n}.
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Now it must be proved that for any X ∈ T
′
, dim?X = Ind?X =

indX .
Indeed, let n ∈ N and X be any subspace of (αD)n.
If X = ∅, then clearly, dim?X = Ind?X = indX = −1.
Suppose X 6= ∅. We will demonstrate that dim?X = Ind?X =

indX = 0.
That indX = 0 is easily seen.
To show that dim?X = 0, it suffices to prove that any function-

ally closed subset of X can be represented as a countable inter-
section of clopen subsets of X [10]. Take any functionally closed
subset X0 of X . Let f : X → [0, 1] be a continuous function with
X0 = f−1(0). As |D| < c, clearly, |X | < c and consequently,
|f(X)| < c. By [8, 26, V, Theorem 1, p. 296], dim?(f(X)) = 0.
Furthermore, by [8, 26, I, Corollary 1b, p. 286], the one point
set {0} ⊂ f(X) is a countable intersection of clopen subsets of
f(X), i.e., there are clopen subsets V1, . . .Vk, . . . of f(X), with

{0} =
∞⋂

k=1

Vk. Obviously, for any k ∈ N, f−1(Vk) is a clopen subset

of X and X0 = f−1(0) = f−1(
∞⋂

k=1

Vk) =
∞⋂

k=1

f−1(Vk).

Consequently, dim?X = 0. However dim?X = 0 if and only if
Ind?X = 0 (see Notation). So, Ind?X = 0 as well.

Thus (for every X ∈ T
′
), there is: dim?X = Ind?X = indX .

Denote (for any X ∈ T
′
): d

′
(X) = dim?X = Ind?X = indX .

It is obvious that pair (T
′
, d

′
) satisfies simultaneously the condi-

tions (i), (ii), (iii) and (iv) and (as αD is non-metrizable), T
′
is not

a subclass of TSM . �

To formulate the next theorem, we have to introduce two sub-
collections - Pf

1 and P13 of the collection T .
Pf

1 = {(T, d) ∈ T | for any X ∈ T, indX = IndX = dimX =
d(X) < ∞}.

P13 = {(T, d) ∈ T | [0, 1] ∈ T}.
Clearly, Pf

1⊂P1.

Theorem 2. (TfSM ,
∼
df ) is the only element of Pf

1

⋂
P2

⋂
P8

⋂
P9

⋂

P13, i.e. P
⋂f

1P2
⋂
P8

⋂
P9

⋂
P13={(TfSM ,

∼
df)}.
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Proof. Clearly, Pf
1

⋂
P2

⋂
P8

⋂
P9 ⊂ P1

⋂
P2

⋂
P8

⋂
P9. Hence,

for any (T, d) ∈ Pf
1

⋂
P2

⋂
P8

⋂
P9 it shall be: (T, d) ∈ P1

⋂
P2

⋂
P8

⋂

P9. Furthermore, by Theorem 1, (T, d) ≤ (TSM ,
∼
d), i.e., T ⊂ TSM

and d is the restriction of
∼
d over T . But (T, d) ∈Pf

1 . So, for
any X ∈ T ⊂ TSM there is: dimX = indX = IndX = d(X) <

∞. Thus, X ∈ TfSM and clearly, d(X) =
∼
d (X). Consequently,

(T, d) ≤ (TfSM ,
∼
df ).

Now we show that (TfSM ,
∼
df ) ≤ (T, d). Indeed, take any X ∈

TfSM . By Nöbeling-Pontrjagin theorem (see e.g. [6]), there exists
n ∈N such that X is embeddable in [0, 1]2n+1. But as (T, d) ∈P13,
[0, 1] ∈ T . Furthermore, since (T, d) ∈P9, [0, 1]2n+1 ∈ T ; besides
as (T, d) ∈P2, X ∈ T . So, the inclusion TfSM ⊂ T is shown.

Apparently
∼
df is the restriction of d over TfSM .

Thus, (T, d) ≤ (TfSM ,
∼
df ) and (TfSM ,

∼
df ) ≤ (T, d). Hence,

(T, d)=(TfSM ,
∼
df ), i.e. Pf

1

⋂
P2

⋂
P8

⋂
P9

⋂
P13={(TfSM ,

∼
df )}.

�

Remark 2. There exists (T, d) ∈Pf
1

⋂
P2

⋂
P8

⋂
P9, such that (T, d)

6= (TfSM ,
∼
df ) (i.e., T ⊂ TfSM and T 6= TfSM).

Proof. Let T be the class of all singletons. Then for any X ∈ T
there is dimX = indX = IndX . For any X ∈ T let d(X) = dimX .
Then, clearly, T ⊂ TfSM and T 6= TfSM , i.e., (T, d) 6= (TfSM ,

∼
df ).

On the other hand, it is obvious that the pair (T, d) belongs to
Pf

1

⋂
P2

⋂
P8

⋂
P9. �

Below the study refers to the consideration of Question QT
(s. Introduction). Firstly it is shown that whenever a pair (T, d)
belongs simultaneously to P1, P2 and P9, (T, d) belongs to P3, P10

and P12 as well. Namely, there takes place the following assertion.

Assertion. P1
⋂

P2
⋂

P9 = P1
⋂

P2
⋂
P3

⋂
P9

⋂
P10

⋂
P12.

Proof. It is of no doubt that P1
⋂
P2

⋂
P3

⋂
P9

⋂
P10

⋂
P12 ⊂ P1

⋂

P2
⋂
P9. Show that P1

⋂
P2

⋂
P9 ⊂ P1

⋂
P2

⋂
P3

⋂
P9

⋂
P10

⋂
P12,

i.e., if (T, d) ∈P1
⋂
P2

⋂
P9 - (T, d) ∈P3, (T, d) ∈P10 and (T, d) ∈P12.

Really, let (T, d) ∈P1
⋂
P2

⋂
P9.
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1) (T, d) ∈P3. Take any X ∈ T and any A ⊂ X . Since
(T, d) ∈P2, we clearly, have: A ∈ T . Furthermore, since A ∈ T ,
X ∈ T and (T, d) ∈P1, then d(A) = indA and d(X) = indX . But
indA ≤ indX . Hence, d(A) ≤ d(X), i.e., (T, d) ∈P3.

2) (T, d) ∈P10. Let X1 ∈ T and X2 ∈ T . Since (T, d) ∈P9,
X1 × X2 ∈ T .

As it was shown by P.Ostrand [11], for the dimension function
dim the finite sum theorem (see [12]) holds in any space (without
any restrictions on separation axioms). In particular, the function
dim satisfies the finite sum theorem in X1 and X2.

Since (T, d) ∈P1 and (T, d) ∈P2, then for any A ⊂ X1 and any
B ⊂ X2 there is: dimA = indA and dimB = indB. Hence for
the function ind the finite sum theorem holds both in X1 and X2.
But then, as it was established by B.Pasynkov [12, Theorem 2],
there takes place inequality ind(X1 × X2) ≤ ind(X1) + ind(X2).
As X1 ∈ T , X2 ∈ T , X1 × X2 ∈ T and (T, d) ∈P1, d(X1 × X2) =
ind(X1×X2)≤ ind(X1)+ind(X2)= d(X1)+d(X2). So, (T, d) ∈P10.

3) (T, d) ∈P12. Let X1 ∈ T , X2 ∈ T , X1 ⊂ X2 and x ∈ X2 \X1.
Since (T, d) ∈P2, X2 ∈ T and X1

⋃
{x} ⊂ X2, there is: X1

⋃
{x} ∈

T .
As (T, d) ∈P1, d(X1

⋃
{x}) = dim(X1

⋃
{x}) = ind(X1

⋃
{x}) =

Ind(X1
⋃
{x}) and d(X1) = dim(X1) = ind (X1) = Ind(X1).

But ind(X1
⋃
{x}) ≥ ind(X1). Consequently d(X1

⋃
{x}) =

ind(X1
⋃
{x}) ≥ ind(X1) = d(X1).

Furthermore, E.Skljarenko showed in [15], that if B is a regu-
lar space and A ⊂ B, then for any point z ∈ B \ A, the inequality
Ind(A

⋃
{x}) ≤ IndA holds. Thus, d(X1

⋃
{x}) = Ind(X1

⋃
{x}) ≤

IndX1 = d(X1). The latter with inequality d(X1
⋃
{x}) ≥ d(X1)

(s. above), provides equality d(X1
⋃
{x}) = d(X1), i.e., (T, d) ∈P12.

�

The following theorem provides a partial answer for the Question
QT by imposing one additional restriction.

Theorem 3 (A partial answer to the Question QT ). Let (T, d) ∈
P1

⋂
P2

⋂
P3

⋂
P9

⋂
P10

⋂
P12 and suppose, in addition, (T, d) ∈

P8, i.e., (T, d) ∈ P1
⋂

P2
⋂
P3

⋂
P8

⋂
P9

⋂
P10

⋂
P12 . In this case

(T, d) ⊂ (TSM ,
∼
d). In particular, T is a subclass of the class TSM .
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Proof. As P1
⋂
P2

⋂
P3

⋂
P8

⋂
P9

⋂
P10

⋂
P12 ⊃P1

⋂
P2

⋂
P8

⋂
P9, the

correctness of the statement follows directly from Theorem 1. �

5. Open questions

Definition. We say that a topological space X is hereditarily strong-
ly zero-dimensional if for any subspace A ⊂ X equality dimβA = 0
holds, where βA denotes Čech-Stone compactification of A (mean-
ing that, for any A ⊂ X we have: dim?A = 0 (see §1)).

The following question is posed naturally (s. proposition above).

Question 1. Does there exist a non-metrizable compact space X
without any set theoretic assumptions, any finite power of which
(i.e., Xn = X × · · · × X︸ ︷︷ ︸

n

, where n = 1, 2, . . .) is hereditarily strongly

zero-dimensional? It is of essence to prove in particular whether
any finite power of αC (where C is an uncountable discrete space
and αC denotes the Alexandroff one-point compactification of C)
is hereditarily strongly zero-dimensional without any set-theoretic
assumptions.

It is shown in [5] that any finite power of the “Arrow”
(Sorgenfrey Line) is hereditarily strongly zero-dimensional, even
though is not a compact space.

Question 2.It is of interest whether any finite power of Alexandroff’s
“Double Arrow” (s. e.g. [1],[3]) is hereditarily strongly zero-dimen-
sional.
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