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BOOLEAN ALGEBRAS AND
LOW SEPARATION AXIOMS

M. L. COLASANTE, C. UZCÁTEGUI, AND J. VIELMA

Abstract. Let B(τ) be the smallest complete Boolean al-
gebra containing the topology τ. We present results of the
following type: τ satisfies certain separation axioms if and
only if B(τ) is equal to (naturally defined) subcollections of
B(τ). Examples of such collections are the kerneled sets, the
λ-closed sets, and the τ -locally closed sets (where τ is the
smallest Alexandroff topology containing τ).

1. Introduction

Let τ be a topology over a set X and let τ∗ be the τ -closed
sets. By B(τ) we denote the smallest complete Boolean algebra
containing τ . In this paper we show that several low separation
axioms (i.e., at most T2) are characterized by properties of B(τ).
In order to state our results we need to introduce some natural
subclasses of B(τ).

A topology is said to be an Alexandroff topology if it is closed
under arbitrary intersections. Juris Steprāns and Stephen Watson
[13] attributed this notion to both Alexandroff and Tucker, and
thus called them AT topologies. We will use their notation here.
This class of topologies plays an important role in the study of low
separation axioms. Notice that only the Alexandroff T1 topology
is the discrete topology.
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We denote by τ the smallest Alexandroff topology containing τ .
Let CO(τ) be the collection of τ -clopen subsets of X. By λ∗τ we
denote the collection of sets of the form K ∩C where K ∈ τ and C
is τ -closed (i.e., the collection of λ-closed sets [1]), and by CX(τ)
the collection of τ -locally closed sets (i.e., sets of the form K ∩ S
where K ∈ τ and S ∈ τ∗).

Let τ(x) be the collection of open sets containing x ∈ X. The
θ-closure of a subset A of X is defined in [2] as clθ(A) = {x ∈ X :
cl(V ) ∩ A 6= ∅ for all V ∈ τ(x)}, where cl(V ) is the τ -closure
operator on X. Observe that clθ(A) is the intersection of the closure
of all open sets containing A; hence, it is a closed set containing
Ker(A). In particular, for any x, y ∈ X, x ∈ clθ(y) iff y ∈ clθ(x) iff
V ∩ W 6= ∅ ∀V ∈ τ(x) and ∀W ∈ τ(y). A set A is said to be θ-
closed if clθ(A) = A, equivalently if for all x 6∈ A, there are disjoint
open sets V and W such that x ∈ V and A ⊆ W . The set clθ(A)
is not in general θ-closed. Complements of θ-closed sets are called
θ-open. Thus, A is θ-open iff for each x ∈ A there is V ∈ τ(x) such
that cl(V ) ⊆ A. The family of all θ-open sets forms a topology
τθ on X which is clearly weaker than τ. Denoting by clτθ

(A) the
closure of A in the τθ topology, it is straightforward to prove that
cl(A) ⊆ clθ(A) ⊆ clτθ

(A), for any A ⊆ X. Since any θ-open set can
be written as a union of τ -closed sets, then τθ ⊆ CO(τ). Moreover,
τ and τθ have the same clopen sets. The following inclusion holds
for any topology τ.

CO(τ) ⊆ τθ ⊆ B(τθ) ⊆ CO(τ)

CO(τ) ⊆ τ ⊆ λ∗τ ⊆ CX(τ) ⊆ B(τ).

Let A(τ) denote any of these subclasses of B(τ). Several low
separation axioms are characterized by the fact that A(τ) = P(X)
(the power set of X). For instance, τ is T1/2 iff every set is λ-
closed [1], and τ is T1/4 iff every set is τ -locally closed [4]. In
this paper we put these facts in a general framework. Instead of
requiring that A(τ) = P(X), we ask only that A(τ) is the complete
Boolean algebra B(τ) and show that this requirement corresponds
to a separation axiom. We use axioms Si such that τ is Ti iff it is
Si and T0, for i = 1/4, 1/2, 1, or 2. An example of our results is
that τ is S1/4 iff CX(τ) = B(τ).
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The original motivation for this paper was [10], where results
of this type were shown for countable spaces (in this case B(τ) is
the σ-algebra of Borel sets). Independently, Boolean algebras were
used in [4] to analyze some separation axioms.

2. Terminology and preliminaries

If A is a collection of subsets of X, we will denote by A∗ the
collection {X \ A : A ∈ A}. The kernel of a set A ⊆ X, denoted
by ker(A), is the intersection of all open sets containing A. It is
easy to check that A ⊆ ker(A) and that ker(ker(A)) = ker(A) for
any A ⊆ X. Moreover, if A ⊆ B then ker(A) ⊆ ker(B). For any
x ∈ X, we denote ker({x}) = ker(x). It is obvious that x ∈ cl(y)
iff y ∈ ker(x). A set A is said to be τ -kerneled (or just kerneled)
if A = ker(A). Equivalently, A is kerneled iff A =

⋃
x∈A ker(x).

Kerneled sets are also called Λ-sets [11]. The family of all kerneled
subsets of X is closed under arbitrary unions and intersections, so it
is an AT topology. Moreover, it coincides with τ . In fact, since every
open set is kerneled and τ is the smallest AT topology containing
τ, then every member of τ is kerneled. On the other hand, since τ
is closed under arbitrary intersections and it contains τ, then every
kerneled set belongs to τ .

A set A ⊆ X is said to be τ -saturated (or just saturated) if it
contains the closure of all its points. It is clear that every closed
set is saturated, and the concepts of saturated and closed coincide
on finite sets. Notice that a set is saturated iff its complement is
kerneled. Thus, the family τ∗ of the τ -closed sets is precisely the
family of the saturated sets.

If A is the intersection of a kerneled set and a saturated set,
then A is said to be λ-closed [1]. Equivalently, A is λ-closed iff
A = ker(A) ∩ cl(A). The set ker(A) ∩ cl(A) is denoted in [1] by
clλ(A). Thus, A is λ-closed iff clλ(A) = A. The operator clλ is
monotone and idempotent. The complement of a λ-closed set is
called λ-open. The collection of all λ-open sets is denoted by λτ

and it is clear that a set is λ-open iff it is the union of an open
set and a saturated set. The family λ∗τ is closed under arbitrary
unions, but it is not in general closed under finite intersection (see,
for example, Example 4.3).
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Each topology τ is associated with the following binary relation.
x ¹τ y ⇐⇒ x ∈ cl(y)

The relation ¹τ is transitive and reflexive (but in general, it is
not antisymmetric) and is called the specialization preorder of τ .
An AT topology τ is uniquely determined by its associated preorder
¹τ in the sense that a set V is τ -open iff V contains all y such that
x ¹τ y for all x ∈ V (for a general presentation of AT topologies
see [8]). Since clτ (x) = clτ (x) for any x ∈ X, then ¹τ=¹ρ iff τ = ρ
for any pair of topologies τ and ρ on X.

A set A ⊆ X is said to be τ -convex (or just convex) if the
following holds: For all x, y, z ∈ X, if x, z ∈ A and x ¹τ y ¹τ z,
then y ∈ A, that is to say, A is convex with respect to the preorder
¹τ of τ . The collection of convex sets coincides with CX(τ). In
fact, let K ∈ τ and S ∈ τ∗, and let x, z ∈ K ∩ S. If x ¹τ y ¹τ z,
then y ∈ ker(x) ⊆ K and y ∈ cl(z) ⊆ S. Thus, y ∈ K ∩ S, which
shows that K ∩ S is convex. On the other hand, let A be a convex
set. Take K =

⋃
x∈A ker(x) and S =

⋃
x∈A cl(x). It is clear that

A ⊆ K ∩ S. If y ∈ K ∩ S, then y ∈ ker(x) ∩ cl(z) for some x, z ∈ A
and thus, x ¹τ y ¹τ z. Therefore, y ∈ A.

3. Main results

In this section we prove the main result of this paper which is
a characterization of some low separation axioms in terms of the
Boolean algebra B(τ). First, we introduce an equivalence relation
over (X, τ):

(x, y) ∈ Eτ ⇔ cl(x) = cl(y)
⇔ ker(x) = ker(y).

We denote the Eτ -equivalence classes by [x]τ for x ∈ X. We will
show that they are the atoms of B(τ). Note that

[x]τ = {y ∈ X : x ¹τ y ¹τ x}.
Now we introduce the separation axioms we are going to use in

this article.

Definition 3.1. Let τ be a topology on X. Then τ is said to be

(T0) If for all x, y ∈ X with x 6= y, there is an open set
containing x or y but not both.

(T1/4) If every point of X is closed or kerneled.
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(T1/2) If every point of X is open or closed.
(T1) If every point of X is closed.
(T2) If for all x, y ∈ X with x 6= y there are disjoint

open sets U ∈ τ(x) and V ∈ τ(y).
(S1/4) If [x]τ is closed or kerneled for every x ∈ X.
(S1/2) If [x]τ is closed or open for every x ∈ X.
(S1) If for all x, y ∈ X, x ∈ cl(y) iff y ∈ cl(x), i.e. the closure

of points forms a partition of X.
(S2) If for all x, y ∈ X with cl(x) 6= cl(y), there are disjoint

open sets U ∈ τ(x) and V ∈ τ(y) such that
cl(x) ⊆ U and cl(y) ⊆ V .

We prove in Theorem 3.11 that the separation axioms Si, for
i = 2, 1, 1/2, and 1/4, can be characterized in terms of B(τ):

τ is S2 ⇔ B(τ) = B(τθ)
τ is S1 ⇔ B(τ) = τ
τ is S1/2 ⇔ B(τ) = λ∗τ
τ is S1/4 ⇔ B(τ) = CX(τ)

The most common notations for S1 and S2 are R0 and R1, re-
spectively. However, the notation we use is more uniform (it is
taken from [5]). The separation axioms R0 and R1 were intro-
duced by N. A. Shanin [12] and A. S. Davis [7], respectively. To
the best of our knowledge, the axioms S1/2 and S1/4 are introduced
in the literature for the first time in this paper.

It is easy to verify that S2 ⇒ S1 and that S1 is equivalent to
asking that [x]τ is closed for every x ∈ X. Thus, S2 ⇒ S1 ⇒
S1/2 ⇒ S1/4. The following example shows that the separation
axioms S1/2 and S1/4 are not in general equivalent. (They turn out
to be equivalent in AT spaces, as shown in §4.)

Example 3.2. Let X be an infinite set and x0, x1 be two different
points of X. Let Cof be the cofinite topology on X, and consider
the topology E = {G ⊆ X : G ⊆ X\{x0, x1}}∪{X}. The topology
τ = Cof∩E is S1/4 but is not S1/2. In fact, [x0]τ = [x1]τ = {x0, x1}
is a closed set, and for all y /∈ {x0, x1}, the set [y]τ = {y} is kerneled
but not open. Note that X is the only open set containing xi

(i = 0, 1); hence, τ is not T0.
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It is worth notice that the separation axioms Si defined above
are weaker than the regularity property. Recall that a topology τ
is said to be regular if for each x ∈ X and V ∈ τ(x), there exists
U ∈ τ(x) such that cl(U) ⊆ V. Thus, τ is regular iff τ = τθ. From
our result, τ is S2 iff B(τ) = B(τθ); it follows immediately that if τ
is regular, then τ satisfies S2.

To prove our main result, we need some facts concerning the
classes [x]τ .

Lemma 3.3. The following hold for any topology τ on X.
(i) [x]τ = cl(x) ∩ ker(x), for all x ∈ X (i.e., [x]τ is λ-closed);
(ii) if A is kerneled or saturated and x ∈ A, then [x]τ ⊆ A;
(iii) cl( [x]τ ) = cl(x), ker( [x]τ ) = ker(x), and clθ( [x]τ ) = clθ(x),

for all x ∈ X;
(iv) [x]τ ⊆ clθ(x) ⊆ [x]τθ

, for all x ∈ X.

Proof: (i) Let x ∈ X. By definition, y ∈ [x]τ iff cl(x) = cl(y) iff
ker(x) = ker(y) iff y ∈ cl(x) ∩ ker(x).

(ii) If A is kerneled (saturated, respectively) and x ∈ A, then
ker(x) ⊆ A (cl(x) ⊆ A, respectively). Thus, [x]τ ⊆ A.

(iii) Let x ∈ X. Since x ∈ [x]τ and since cl, ker, and clθ are
monotone operators, it is enough to prove that cl( [x]τ ) ⊆ cl(x),
ker( [x]τ ) ⊆ ker(x), and clθ( [x]τ ) ⊆ clθ(x). If y /∈ cl(x), there
exists V ∈ τ(y) such that x /∈ V. Then x ∈ X\V , a closed set and
so a saturated set. By (ii), [x]τ ⊆ X\V and thus, [x]τ ∩ V = ∅.
Therefore, y /∈ cl([x]τ ). Similarly, it can be proved that ker( [x]τ ) =
ker(x), for any x ∈ X. Now if y /∈ clθ(x), there exist U ∈ τ(x) and
V ∈ τ(y) such that U ∩ cl(V ) = ∅. By (ii), [x]τ ⊆ U and thus,
[x]τ ∩ cl(V ) = ∅. Then y /∈ clθ( [x]τ ).

(iv) Let x ∈ X. The first inclusion follows from the facts that
[x]τ ⊆ clθ([x]τ ) and that [x]τ . Now given y ∈ X, if y /∈ clτθ

(x), there
exists a θ-closed set B containing x such that y /∈ B. Since X\B
is θ-open containing y, there is V ∈ τ(y) such that cl(V ) ⊆ X\B.
Then x /∈ cl(V ) and thus, y /∈ clθ(x). Therefore, clθ(x) ⊆ clτθ

(x)
for all x ∈ X. On the other hand, if y ∈ clθ(x), then x ∈ clθ(y) ⊆
clτθ

(y). Thus, y ∈ kerτθ
(x), which proves that clθ(x) ⊆ kerτθ

(x) for
all x ∈ X. Applying (i) to the topology τθ, one has that [x]τθ

=
clτθ

(x) ∩ kerτθ
(x), for all x ∈ X. Therefore, [x]τ ⊆ clθ(x) ⊆ [x]τθ

,
for all x ∈ X. ¤
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Remark 3.4. It was proved in [1] that τ is T0 iff every point is
λ-closed, that is to say, [x]τ = x for every x ∈ X. From this, it is
clear that τ is Ti iff it is Si and T0, for i = 1/4, 1/2, 1, or 2.

As B(τ) is complete, then it is atomic and its atoms are given by
the following result.

Proposition 3.5. The atoms of B(τ) are the sets [x]τ , for x ∈ X.

Proof: Let C be the complete Boolean algebra generated by the
equivalence classes [x]τ with x ∈ X. Since the equivalence classes
form a partition of X, then they are the atoms of C. Thus, it
suffices to show that B(τ) = C. By Lemma 3.3(i), [x]τ is λ-closed
for all x ∈ X, so [x]τ ∈ B(τ) for all x ∈ X. Thus, C ⊆ B(τ). On the
other hand, if A is open and x ∈ A, then [x]τ ⊆ A (Lemma 3.3(ii)).
Thus, τ ⊆ C and therefore, B(τ) ⊆ C. And we are done. ¤
Corollary 3.6. τ is T0 iff B(τ) = P(X).

Proof: Since τ is T0 iff [x]τ = {x} for all x ∈ X and since
the singletons are the atoms of P(X), then the result follows from
Proposition 3.5. ¤
Theorem 3.7. B(τ) = τ ∨ τ∗.

Proof: Since τ ∨ τ∗ = {A : A is an arbitrary union of finite
intersections of kerneled and saturated sets}, then it is clear that
τ ∨ τ∗ ⊆ B(τ). Now since [x]τ = cl(x) ∩ ker(x), it follows that
[x]τ ∈ τ ∨ τ∗ for all x ∈ X. Then, if A ∈ B(τ), A = ∪x∈A[x]τ
(Proposition 3.5) and thus, A ∈ τ ∨ τ∗ since τ ∨ τ∗ is a topology on
X. Therefore, B(τ) ⊆ τ ∨ τ∗. ¤

The following lemma shows other properties of the Eτ -equivalence
classes [x]τ , which are crucial to the remainder of this paper.

Lemma 3.8. Let x ∈ X.
(i) [x]τ is closed iff [x]τ is saturated.
(ii) [x]τ is closed or open iff [x]τ is λ-open.
(iii) [x]τ is closed or kerneled iff [x]τ ∈ CX(τ)∗.
(iv) [x]τ is θ-closed iff [x]τ ∈ B(τθ).

Proof: (i) If [x]τ is saturated, then cl([x]τ ) = cl(x) ⊆ [x]τ , so
that [x]τ is closed. The other direction is obvious, as every closed
set is saturated.
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(ii) Since A is λ-open iff it is the union of an open set and a
saturated set, then every open set and every closed set is λ-open.
Now if [x]τ is λ-open, then [x]τ = V ∪ S, where V is open and S is
saturated. Thus, x ∈ V or x ∈ S and, by Lemma 3.3(ii), [x]τ = V
or [x]τ = S, respectively. Therefore, [x]τ is open or saturated.
Equivalently, by (i), [x]τ is open or closed.

The proof of (iii) is similar to that of (ii), noting that a set belongs
to CX(τ)∗ iff it is the union of a kerneled set and a saturated set.

(iv) Since B(τθ) is a complete Boolean algebra containing the
θ-open sets, then it is obvious that [x]τ ∈ B(τθ) if [x]τ is θ-closed.
Now, let [x]τ ∈ B(τθ). By Proposition 3.5, the atoms of B(τθ) are
the sets [x]τθ

. Then [x]τθ
⊆ [x]τ . By Lemma 3.3(iv), [x]τ ⊆ clθ(x) ⊆

[x]τθ
; thus, in particular, [x]τ = clθ(x). Finally, by Lemma 3.3(iii),

clθ(x) = clθ([x]τ ). Therefore, [x]τ is θ-closed. ¤

Proposition 3.9. τ satisfies S2 iff [x]τ is θ-closed for all x ∈ X.

Proof: Suppose τ satisfies S2. We will show that clθ([x]τ ) = [x]τ
for all x ∈ X. Let x ∈ X and y ∈ clθ([x]τ ). Since clθ([x]τ ) = clθ(x)
(Lemma 3.3(iii)), it follows that V ∩W 6= ∅ for all V ∈ τ(x) and all
W ∈ τ(y). It must be then that cl(x) = cl(y), for otherwise, cl(x)
and cl(y) can be separated by disjoint open sets, a contradiction.
Thus, y ∈ [x]τ , and it follows that clθ([x]τ ) ⊆ [x]τ . The reverse
inclusion is obvious by the definition of the θ-closure of a set.

Conversely, suppose that [x]τ is θ-closed for all x ∈ X. Since
[x]τ ⊆ ker(x), cl(x) ⊆ clθ(x) = clθ([x]τ ), then [x]τ = ker(x) =
cl(x) = clθ(x) for all x ∈ X. Let x, y ∈ X such that cl(x) 6= cl(y).
Then y /∈ [x]τ , and thus, there exist V ∈ τ(x) and W ∈ τ(y)
such that V ∩ W = ∅. It is clear that cl(x) = ker(x) ⊆ V and
cl(y) = ker(y) ⊆ W. Therefore, τ satisfies S2. ¤

From the above results, the separation axioms Si, i = 2, 1, 1/2,
and 1/4, can be characterized as follows.

Proposition 3.10. Let τ be a topology on X. Then τ satisfies

(i) S2 iff [x]τ ∈ B(τθ), for every x ∈ X;
(ii) S1 iff [x]τ ∈ τ∗, for every x ∈ X;
(iii) S1/2 iff [x]τ ∈ λτ , for every x ∈ X;
(iv) S1/4 iff [x]τ ∈ CX(τ)∗, for every x ∈ X.
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Proof: (i) follows immediately by Lemma 3.8(iv) and Proposition
3.9.

(ii) Recall that τ∗ is the family of the saturated sets. Since τ is
S1 iff [x]τ is closed for every x ∈ X, the result follows from Lemma
3.8(i).

Finally, (iii) and (iv) follow directly from the definition of the
separation axioms S1/2 and S1/4 and Lemma 3.8(ii) and (iii), re-
spectively. ¤

Now we are ready to prove the main result of this section.

Theorem 3.11. Let τ be a topology on X. Then τ satisfies
(i) S2 iff B(τ) = B(τθ);
(ii) S1 iff B(τ) = τ ;
(iii) S1/2 iff B(τ) = λ∗τ ;
(iv) S1/4 iff B(τ) = CX(τ).

Proof: Let A ⊆ B(τ) such that ∅ ∈ A and it is closed under
arbitrary unions. Since the atoms of B(τ) are the sets [x]τ , for x ∈
X, it follows immediately that [x]τ ∈ A for all x ∈ X iff B(τ) = A.
The result follows directly from this observation, Proposition 3.10,
and the fact that B(τ) is a complete Boolean algebra. ¤

Corollary 3.12. τ∨τ∗ is S1/4 for any topology τ.

Proof: We show first that the smallest AT topology containing
τ∨τ∗ is τ ∨ τ∗. In fact, since the supremum of two AT topologies
is AT (see [15]), and since τ ∨ τ∗ ⊇ τ∨τ∗, then τ ∨ τ∗ ⊇ τ∨τ∗. The
reverse inclusion follows from the fact that τ∨τ∗ contains τ and τ∗.
Thus, τ∨τ∗ = τ ∨ τ∗. Now by Theorem 3.7, τ ∨ τ∗ is a Boolean
algebra, so (τ∨τ∗)∗ = τ∨τ∗. Hence, τ∨τ∗ = B(τ∨τ∗). Note that
the family of convex sets for the topology τ∨τ∗ is precisely τ ∨ τ∗.
Therefore, B(τ∨τ∗) = τ∨τ∗ = CX(τ∨τ∗). The result follows from
Theorem 3.11(iv). ¤
Corollary 3.13. τ is S1 iff τ = τ∗ (i.e., the kerneled sets and
saturated sets of τ coincide).

Proof: By Theorem 3.11, if τ is S1, then B(τ) = τ . Since B(τ) =
τ ∨ τ∗ (Theorem 3.7), then τ∗ ⊆ τ and thus, τ = τ∗. Reciprocally,
if τ = τ∗, then B(τ) = τ ∨ τ∗ = τ and so, τ is S1. ¤
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The next result is an immediate consequence of Corollary 3.6,
Theorem 3.11, and the fact that a topology τ is Ti iff it is Si and
T0, for i = 2, 1, 1/2, and 1/4.

Corollary 3.14. Let τ be a topology on X. Then τ satisfies
(i) T2 iff P (X) = B(τθ);
(ii) T1 iff P (X) = τ ;
(iii) T1/2 iff P (X) = λ∗τ ;
(iv) T1/4 iff P (X) = CX(τ).

By definitions of λ-closed sets and convex sets, it is clear that
these concepts coincide on finite sets. We prove in the following
lemma that these two concepts also coincide for finite unions of
atoms.

Lemma 3.15. For every finite set F ⊂ X,
⋃

x∈F [x]τ is λ-closed iff
it is convex.

Proof: Let F = {x1,x2, ..., xn}, and suppose that
⋃n

i=1[xi]τ is
convex. Then

⋃n
i=1[xi]τ = K ∩ S for some K ∈ τ and S ∈ τ∗.

Since cl(F ) =
⋃n

i=1 cl(xi) ⊇
⋃n

i=1[xi]τ , then K ∩ cl(F ) ⊇ K ∩ S.
On the other hand, since S is saturated and contains F, it contains
cl(F ). Thus, K ∩ S ⊇ K ∩ cl(F ). Therefore,

⋃n
i=1[xi]τ = K ∩ cl(F )

is a λ-closed set. The converse is obvious as every λ-closed set is
convex. ¤

Part (ii) of the following theorem was proved differently in [1].

Theorem 3.16. (i) τ is S1/4 iff
⋃

x∈F [x]τ is convex for every finite
set F ⊂ X.

(ii) τ is T1/4 iff every finite set is λ-closed.

Proof: For each F ⊆ X, we will denote
⋃

x∈F [x]τ by [F ].
(i) Suppose τ is S1/4 and F ⊆ X is a finite set. By Theorem

3.11(iv), CX(τ) = B(τ). Since [x]τ ∈ B(τ) for each x ∈ X, and
since B(τ) is a Boolean algebra, then [F ] ∈ B(τ) and thus, [F ] is
convex. Conversely, suppose that [F ] is convex for every finite set
F . To show that τ is S1/4, it is enough to show that B(τ) ⊆ CX(τ).
If A /∈ CX(τ), there exist x, z ∈ A and y ∈ X\A such that x ¹τ

y ¹τ z. Since the set [x]τ ∪ [z]τ is convex and contains x and z,
then it contains y. It follows that A /∈ B(τ).

(ii) follows from (i) and Lemma 3.15. ¤
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The following proposition is a folklore fact. We give a proof using
results from this section.

Proposition 3.17. τ is T2 iff τθ is T1 iff τθ is T1/2 iff τθ is T0

[6].

Proof: By Corollary 3.11, τ is T2 iff P (X) = B(τθ), and by
Corollary 3.6, this equality holds iff τθ is T0. On the other hand,
if τ is T2, then τ is T0 and S2. Thus, {x} = [x]τ is θ-closed for
all x ∈ X, and therefore, τθ is T1. The rest of the equivalences are
obvious. ¤

4. Additional results

As an application of the previous section, we include some results
about λ-spaces, AT spaces, and the order theoretical property.

4.1. λ-spaces

In [1], λ-spaces were defined as those spaces (X, τ) for which the
family λτ of the λ-open sets is a topology. It is easy to prove that
(X, τ) is a λ-space iff V ∩ S ∈ λτ for all V ∈ τ and S ∈ τ∗. Since
τ is S1/2 iff B(τ) = λτ , every S1/2 space is a λ-space. Moreover,
every λ-space is S1/4 as shown in next result.

Proposition 4.1. Every λ-space is S1/4. Hence, every T0, λ-space
is T1/4.

Proof: If (X, τ) is a λ-space, then the finite union of λ-closed sets
is a λ-closed set. Thus, for every finite set F ⊂ X, the set

⋃
x∈F [x]τ

is λ-closed, therefore convex. By Theorem 3.16(i), τ is S1/4. ¤
Let LC(τ) be the family of τ -locally closed sets in X, i.e., LC(τ) =

{V ∩ F, with V ∈ τ and F ∈ τ∗}. The following theorem gives a
characterization of λ-spaces.

Theorem 4.2. The following are equivalent.
(i) (X, τ) is a λ-space.
(ii) LC(τ) ⊆ λτ .
(iii) λτ = τ ∨ τ∗.
(iv) clλ is a Kuratowski closure operator.

Proof: Suppose (X, τ) is a λ-space. Then λτ is a topology on X
and thus, the intersection of two λ-open sets is a λ-open set. Since
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τ ∪ τ∗ ⊆ λτ , then A ∈ LC(τ) implies A is λ-open. Therefore, (i) ⇒
(ii).

Recall that A ∈ λτ implies that A = V ∪ S for some V ∈ τ
and S ∈ τ∗; thus, it is obvious that λτ ⊆ τ ∨ τ∗. On the other
hand, since any set of the form V ∩ S, with V ∈ τ and S ∈ τ∗,
can be written as an arbitrary union of locally closed sets, (namely
V ∩ S =

⋃
x∈S V ∩ cl(x)), it follows that LC(τ) is a basis for the

topology τ ∨ τ∗. Thus, LC(τ) ⊆ λτ implies τ ∨ τ∗ ⊆ λτ , since the
family λτ is closed under arbitrary unions. Therefore, (ii) ⇒ (iii).

Now suppose that λτ = τ ∨ τ∗. Then λτ is a topology. To prove
that clλ is a Kuratowski operator, one has to prove that it is ad-
ditive on X. Let A,B ⊆ X. Since clλ(A) ∪ clλ(B) is a λ-closed
set containing A ∪ B, then clλ(A ∪ B) ⊆ clλ(A) ∪ clλ(B). The re-
verse inclusion follows from the monotonicity of the clλ operator.
Therefore, (iii)⇒ (iv). The equivalence of (i) and (iv) is trivial. ¤

The property of being a λ-space is strictly placed between S1/2

and S1/4, as the following examples show.

Example 4.3 (S1/4 6⇒ λ-space). Consider the S1/4 space (X, τ)
given in Example 3.2. Let A be an infinite proper subset of X \
{x0, x1} and let B = A∪{x0, x1}. Note that A = ∩{X \ {y, x0, x1} :
y /∈ B} is kerneled and so λ-closed. Also, the set {x0, x1} is λ-closed
since it is closed. But B is not λ-closed, since cl(B) = X = ker(B),
and hence, clλ(B) = X 6= B. Therefore, (X, τ) is not a λ-space.

Example 4.4 (λ-space 6⇒ S1/2). Let ρ be the topology of the
digital line on the set of integers numbers Z (i.e., the topology
generated by the sets {2n− 1, 2n, 2n + 1}n∈Z ). This is an AT and
T1/2 topology. Let τ be the topology on Z generated by Z \ clρ(F )
for F ⊆ Z finite. Note that τ = ρ. In fact, since τ ⊆ ρ and ρ is
an AT topology, then τ ⊆ ρ. On the other hand, since any basic
ρ-open set {2n − 1, 2n, 2n + 1} can be written as

⋂
k 6=n Z\{2k}, a

τ -kerneled set, then ρ ⊆ τ . The topology τ is T0 but not T1/2, as
the open points of (Z, ρ) are neither τ -open nor τ -closed. Thus, τ
is not S1/2. It is straightforward to check that LC(τ) ⊆ τ∗. Since
closed sets are λ-open, then (X, τ) is a λ-space by Theorem 4.2.
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4.2 AT spaces

If τ is an AT topology (i.e., τ = τ), then the smallest complete
Boolean algebra B(τ) containing τ is just the topology τ ∨ τ∗. We
prove below that some of the low separation axioms defined in sec-
tion 3 are indistinguishable for AT topologies. For instance, S1/2

and S1/4 are equivalent, and S1 and S2 are equivalent to the regu-
larity property. Note that, for AT topologies, CO(τ) = CO(τθ) =
τθ = B(τθ). This shows, in particular, that τθ is a complete Boolean
algebra.

Proposition 4.5. Let τ be an AT topology. Then,
(i) τ is S2 iff τ is S1 iff τ is regular;
(ii) τ is S1/2 iff τ is S1/4 iff (X, τ) is a λ-space.

Proof: (i) If τ is S1, then B(τ) = τ (Theorem 3.11) and so
B(τ) = CO(τ). Therefore, τ is regular. Since regular ⇒ S2 ⇒ S1,
the conclusion follows.

(ii) Since, for AT topologies, saturated sets are closed, then λ∗τ =
CX(τ). Thus, the equivalence S1/2 iff τ is S1/4 is a consequence of
Theorem 3.11. The other equivalence follows from the fact that
λ-space property is placed between S1/2 and S1/4. ¤

The separation axioms S1/2 and S1 are not equivalent in AT
spaces. In fact, the topology ρ of the digital line (see Example
4.4) is an AT and T1/2 topology, thus S1/2 and T0. But, being not
discrete, ρ is not T1. Therefore, it is not S1.

We end this section with a result about a notion taken from [16].
A property P (like a separation axiom) is said to be order theoretical
if the following holds: Given topologies τ and ρ such that ¹τ=¹ρ, if
(X, τ) satisfies P , then (X, ρ) also satisfies P . Since clτ (x) = clτ (x)
for any x ∈ X, then ¹τ=¹ρ iff τ = ρ for any pair of topologies τ
and ρ on X. Thus, a property P is order theoretical if the following
holds: (X, τ) satisfies P iff (X, τ) satisfies P.

Theorem 4.6. The separation axioms T0, T1, T1/4, S1, and S1/4

are order theoretical.

Proof: The result follows immediately from Corollary 3.6, The-
orem 3.11, Corollary 3.14, and the facts that B(τ) = B(τ) and
CX(τ) = CX(τ). ¤
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Remark 4.7. The separation axioms S2, S1/2, and λ-space are not
order theoretical.

Since B(τθ) ⊆ CO(τ) = (τ)θ = B((τ)θ) ⊆ B(τ), then if τ is
S2, it follows that τ is S2. Now let τ be the cofinite topology on
an infinite set. The topology τ is not S2, but τ is the discrete
topology which is obviously S2 (note that any singleton {x} can be
written as

⋂
y 6=x X\{y}, a kerneled set). Therefore, S2 is not order

theoretical.
Note that, for AT topologies, the family of λ-closed sets coincides

with the family of convex sets; thus, λ∗τ = CX(τ) = CX(τ). If τ
is S1/2, then λ∗τ = B(τ), and so λ∗τ = B(τ) = B(τ) which shows
that τ is S1/2. But the fact that τ is S1/2 does not imply that τ is
S1/2. Consider, for instance, the digital topology ρ on Z, and let τ
be the non S1/2 topology given in Example 4.4. Since τ = ρ and ρ
is T1/2, then τ is, in particular, S1/2. Therefore, S1/2 is not order
theoretical.

If (X, τ) is a λ-space, then τ is S1/4 by Proposition 4.5. The
above theorem implies that τ is S1/4. Since τ is an AT topology,
then (X, τ) is λ-space by Theorem 4.2(ii). But Example 4.3 shows
that λ-space and S1/4 are not equivalent. Then the fact that (X, τ)
is a λ-space does not imply that (X, τ) is a λ-space. Hence, the
property of being a λ-space is not order theoretical.
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