
Volume 34, 2009

Pages 17–26

http://topology.auburn.edu/tp/

Inverse Limits of Upper
Semi-Continuous Functions

That Are Unions of Mappings

by

W. T. Ingram

Electronically published on February 5, 2009

Topology Proceedings

Web: http://topology.auburn.edu/tp/
Mail: Topology Proceedings

Department of Mathematics & Statistics
Auburn University, Alabama 36849, USA

E-mail: topolog@auburn.edu
ISSN: 0146-4124

COPYRIGHT c© by Topology Proceedings. All rights reserved.



TOPOLOGY
PROCEEDINGS
Volume 34 (2009)
Pages 17-26

http://topology.auburn.edu/tp/

E-Published on February 5, 2009

INVERSE LIMITS OF UPPER SEMI-CONTINUOUS
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Abstract. In this paper we study inverse limits with upper
semi-continuous functions that are unions of mappings. We
show that if f is an upper semi-continuous function such that
f is the union of countably many mappings of a continuum
X into itself, one of which is universal with respect to the
countable collection of mappings, then lim←−f is a continuum.
Moreover, the dimension of lim←−f is not greater than m if X
is m-dimensional for some positive integer m. Under certain
conditions when X = [0, 1], the hypothesis of universality can
be relaxed while producing a similar result for unions of maps
that are not necessarily surjective.

1. Introduction

In [5], William S. Mahavier introduced the study of inverse limits
using upper semi-continuous bonding functions where he looked
at inverse limits with closed subsets of [0, 1] × [0, 1]. Later, he
and this author extended the definition to inverse limits of inverse
sequences of compact Hausdorff spaces with upper semi-continuous
bonding functions [4]. In this note, we study inverse limits using
an interesting class of upper semi-continuous functions as bonding
functions. These are functions that consist of the set theoretic
union of a collection of mappings. Specifically, we show that if X is
a continuum and f : X → 2X is an upper semi-continuous function
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18 W. T. INGRAM

from X into the closed subsets of X such that f is the union of
a collection of mappings of X into itself, one of which is universal
with respect to the collection whose union is f , then the inverse
limit is a continuum. Moreover, if m is a positive integer such that
X is m-dimensional and the collection of mappings is countable, the
dimension of the inverse limit is not greater than m. Conditions
are also given in the specific case when X = [0, 1] that insure that
the inverse limit is a one-dimensional continuum (see Theorem 4.2).
Without some conditions on the mappings, the statement is false
since the union of the mapping that is identically 0 on [0, 1] with
the mapping that is identically 1 on [0, 1] yields a Cantor set for
its inverse limit; see Figure 1. Although the subject of this article
is of interest in and of itself, some who are looking at applications
of inverse limits in economics have asked about the nature of such
inverse limits.

(0,1) (1,1)

(0,0) (1,0)

Figure 1. An upper semi-continuous function that
is the union of two mappings having a Cantor set as
its inverse limit
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By a continuum we mean a compact, connected subset of a metric
space. Suppose X and Y are continua and F is a collection of
mappings of X into Y . A mapping f : X → Y is said to be
universal with respect to F provided that if g ∈ F , then there is a
point x ∈ X such that f(x) = g(x), (i.e., f has a coincidence point
with each member of F).

If f1, f2, f3, . . . is a sequence of upper semi-continuous functions
such that fi : Xi+1 → 2Xi , by the inverse limit of the sequence
f = f1, f2, f3, . . . , denoted lim←−f , is meant the subset of

∏
i>0 Xi

that contains the point x = (x1, x2, x3, . . . ) if and only if xi belongs
to fi(xi+1) for each i. The reader should note that we use the usual
metric on the product space; i.e., d(x,y) =

∑
i>0 2−idi(xi, yi) where

di is a metric for Xi that is bounded by 1. For numerous examples
and basic results, such as some sufficient conditions that the inverse
limit be a continuum when each factor space is a continuum, see [5]
and [4]. The reader should note that we adopt from those articles
the convention of denoting a sequence in boldface type and the
terms of the sequence in italic type.

2. Dimension

If G is a finite collection of sets and m is a positive integer, we say
that the order of G is m provided m is the largest of the integers i
such that there are i+1 members of G with a common element. If G
and H are collections of sets, we say that H refines G provided that
for each element h of H, there is an element g of G such that h ⊂ g.
If m is a positive integer, the compact metric space X is said to have
dimension not greater than m, written dim(X) ≤ m, provided, for
each positive number ε, there is a collection of open sets covering
X that has mesh less than ε (i.e., the largest of the diameters
of the sets in the collection is less than ε) and order not greater
than m. We say the dimension of X is m, written dim(X) = m,
provided dim(X) ≤ m and dim(X) 6≤ m−1. It is convenient to use
this definition of dimension (sometimes called covering dimension)
in the study of inverse limits. For compact metric spaces it is
equivalent to the usual definition of small inductive dimension [3,
Theorem V 8, p. 67].

We now turn to showing that, in the case that the factor spaces
are continua each of dimension not greater than m and the bonding
functions are upper semi-continuous functions each of which is a
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union of countably many mappings, the dimension of the inverse
limit is not greater than m. A slightly more general version of the
first part of Theorem 2.1 is found in [8, Theorem 5.3]. However, our
proof is not long and we include it for the sake of completeness. In
[4], it is shown in the proofs of Theorem 3.1 and Theorem 3.2 that
if X1, X2, X3, . . . is a sequence of compact Hausdorff spaces and
f1, f2, f3, . . . is a sequence of upper semi-continuous functions such
that fi : Xi+1 → 2Xi for i = 1, 2, 3, . . . , then lim←−f =

⋂
i>2 Gn where

Gn is the compact set, {x ∈ ∏
i>0 Xi | xi ∈ fi(xi+1) for i < n}.

Although this is not difficult to show, we will not reprove it here,
but we do make use of this in the proof of the next theorem.

Theorem 2.1. Suppose X1, X2, X3, . . . is a sequence of continua,
m is a positive integer, and f1, f2, f3, . . . is a sequence of upper
semi-continuous functions such that fi : Xi+1 → Xi and Xi is a
continuum of dimension not greater than m for each positive integer
i. If fi is the union of countably many mappings f i

1, f
i
2, f

i
3, . . . of

Xi+1 into Xi for each i , then the dimension of lim←−f is not greater
than m. Moreover, if m = 1 and there is a sequence g such that
gi ∈ {f i

1,f
i
2,f

i
3 . . . } for each i and lim←− g is non-degenerate, then the

dimension of lim←−f is 1.

Proof: As we noted in the paragraph just preceding the state-
ment of this theorem, lim←−f =

⋂
n>2 Gn where Gn = {x ∈ ∏

i>0 Xi |
xi ∈ fi(xi+1) for i < n}. For each integer n > 1, let G′

n = {x ∈∏n
i=1 Xi | there exists a finite sequence g1, g2, . . . , gn−1 with

gj ∈ {f j
1 ,f j

2 ,f j
3i

,. . . } and xj = gj(xj+1) for 1 ≤ j < n}. Note
that Gn = G′

n ×
∏

i>n Xi and G′
n is compact.

If g1, g2, . . . , gn−1 is a finite sequence of maps such that gj ∈
{f j

1 , f j
2 , f j

3j
, . . . } for 1 ≤ j < n, then Xn is homeomorphic to

Γ(g1, g2, . . . , gn−1) = {x ∈ G′
n | xi = gi(xi+1) for 1 ≤ i < n}

(the map that takes the point t of Xn to the point (g1 ◦ g2 ◦ · · · ◦
gn−1(t), g2 ◦ · · · ◦ gn−1(t), · · · , gn−1(t), t) of Γ(g1, g2, . . . , gn−1) is a
homeomorphism). Thus, the dimension of Γ(g1, g2, . . . , gn−1) is not
greater than m. It follows that the dimension of G′

n is not greater
than m since G′

n is the union of the countably many members of
{Γ(g1, g2, . . . , gn−1) | gi ∈ {f i

1, f i
2,f

i
3i

, . . . } for 1 ≤ i < n}; see [7,
Theorem 7.1, p. 33] or [3, Theorem III 2, p. 30].
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Suppose n > 2. There is a finite collection H′n of open subsets
of

∏n
i=1 Xi covering G′

n such that the order of H′n is not greater
than m and the mesh of H′n is less than 1/2n. Note that if R ∈ H′n,
then R×∏

i>n Xi is a subset of
∏

i>0 Xi having diameter less than
1/2n−1. Let Hn = {R ×∏

i>n Xi | R ∈ H′}. Then Hn is a finite
collection of open sets covering Gn (and therefore lim←−f) such that
the order of Hn is not greater than m and the mesh of Hn is less
than 1/2n−1.

For each positive integer n, there is a finite open cover of lim←−f

of order not greater than m and mesh less than 1/2n−1; therefore,
the dimension of lim←−f is not greater than m.

Moreover, if m = 1 and there is a sequence g such that gi ∈
{f i

1,f
i
2,f

i
3i
},. . . for each positive integer i and lim←− g is non-degenerate,

then lim←−f contains a non-degenerate continuum so its dimension
is 1. ¤

3. Unions of mappings of continua

Lemma 3.1. Suppose X is a continuum and fi : X → X is a
mapping of X into itself for each positive integer i, g : X → X is
a mapping, and n is a positive integer such that fn and g have a
coincidence point. If fi is surjective for i > n and ϕ is a sequence
of mappings such that ϕi = fi for i 6= n and ϕn = g, then lim←−f
and lim←−ϕ have a point in common.

Proof: There is a point t of X such that fn(t) = g(t). Since fi

is surjective for each i > n, there is a point x of lim←−f such that
xn+1 = t. Since g(t) = fn(t), x is in lim←−ϕ. ¤
Theorem 3.2. If F is a collection of mappings of a non-degenerate
continuum X into itself one of which is surjective and universal
with respect to F and f is a closed subset of X ×X that is the set
theoretic union of the collection F , then f : X → 2X is an upper
semi-continuous function and lim←−f is a continuum.

Proof: Since f is a closed subset of X ×X and each point of X
is a first coordinate of some point of f , f is upper semi-continuous,
[4, Theorem 2.1, p. 120]. Since lim←−f is compact, we need only to
show that this inverse limit is connected. Suppose f1 is a member
of F that is surjective and universal with respect to F . Since f1

is surjective, the ordinary inverse limit, lim←−f1, is a non-degenerate
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continuum. Choose a point x ∈ lim←−f1 and let y be a point of
lim←−f . There exists a sequence ϕ1, ϕ2, ϕ3, . . . such that ϕi ∈ F
and ϕi(yi+1) = yi for each positive integer i. Let C1 = lim←−f1,
and, if n is a positive integer with n > 1, let Cn be the inverse
limit of the sequence ϕ1, ϕ2, . . . , ϕn−1, f1, f1, f1, . . . . For each n,
Cn is a continuum (in fact, Cn is homeomorphic to lim←−f1) and, by
Lemma 3.1, Cn∩Cn+1 6= ∅. Thus,

⋃
i>0 Ci is connected. Moreover,

for each n, since f1 is surjective, there is a point pn of Cn such
that πi(pn) = yi for i ≤ n. It follows that y ∈ C. Since lim←−f
is the union of a collection of continua all containing x, lim←−f is
connected. ¤

Since the set theoretic union of a finite collection of mappings of
a continuum X into itself is closed, the theorem below follows from
Theorem 3.2.

Theorem 3.3. If F is a finite collection of mappings of a contin-
uum into itself, one of which is surjective and universal with respect
to F and f is the set theoretic union of the maps in F , then lim←−f
is a continuum.

The inverse limit of the upper semi-continuous function depicted
in Figure 2 can be seen to be a continuum using Theorem 3.3. Its
inverse limit is known to be a simple fan.

4. Unions of mappings of [0, 1]

We end this article with some results on inverse limits on [0, 1]
with upper semi-continuous functions that are unions of finitely
many mappings. The reader should note that Theorem 4.2 gener-
alizes Theorem 3.3 as applied to upper semi-continuous functions
on [0, 1]. In Theorem 4.2, we do not assume surjectivity of any of
the maps in F . In Figure 3, we depict an upper semi-continuous
function that is the union of two maps of [0, 1] into itself neither of
which is surjective. If one takes the upper map to be f1 and pg = 1
(see the statement of Theorem 4.2), the collection consisting of the
two maps shown satisfies the hypothesis of Theorem 4.2, so its in-
verse limit is a one-dimensional continuum. This inverse limit is
known to be the Hurewicz continuum from [2].

In the proof of Lemma 3.1, as well as in the proof of Theorem
3.2, we made use of the well-known fact that if f : X →→ X is a
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(0,0) (1,0)

(1,1)

Figure 2. An upper semi-continuous function that
is the union of two mappings having a simple fan as
its inverse limit

surjective map of a compact space onto itself, then lim←−f is non-
empty. The following lemma is a slight generalization of this fact.

Lemma 4.1. If f : X → X is a mapping of a compact metric space
X into itself such that f(f(X)) = f(X) and t is a point of f(X),
then there is a point x of lim←− f such that x1 = t.

Proof: Let t be a point of f(X) and let x1 = t. Since f(f(X)) =
f(X), there is a point x2 of f(X) such that f(x2) = x1. Similarly,
since x2 is in f(X) = f(f(X)), there is a point x3 of f(X) such
that f(x3) = x2. Continuing in this manner, we obtain a point x
of lim←−f such that x1 = t. ¤

Theorem 4.2. Suppose F is a collection of mappings of [0, 1] into
itself such that the union f of the collection F is closed. Suppose
further that F contains a mapping f1 with the following properties:
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(0,1/2) (1,1/2)

(1/2,1)

(1/2,0)

Figure 3. An upper semi-continuous function that
is the union of two non-surjective mappings that has
the Hurewicz continuum as its inverse limit

(1) f1([0, 1]) is non-degenerate;
(2) if g ∈ F there is a point pg of f1([0, 1]) such that f1(pg) =

g(pg); and
(3) if g ∈ F , then g(f1([0, 1])) = g([0, 1]).

If f is the set theoretic union of all the elements of F , then lim←−f
is a one-dimensional continuum.

Proof: Observe that since f is closed, it is upper semi-continuous.
Choose a point y in lim←−f . There exists a sequence ϕ1, ϕ2, ϕ3, . . .

such that ϕi is in F and ϕi(yi+1) = yi for each positive integer i. Let
C1 be the inverse limit of the sequence f1, f1, f1, . . . , and if n > 1,
let Cn be the inverse limit of the sequence ϕ1, ϕ2, . . . , ϕn−1, f1, f1, . . . .
Using condition (2), it follows from Lemma 3.1 that Ci and Ci+1

have a point in common for each positive integer i. Thus, C1 ∪
C2 ∪C3 ∪ . . . is connected. Using Lemma 4.1, we obtain a point x
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of lim←−f1 such that x1 = yn. The point pn = (y1, y2, . . . , yn, x2,
x3, . . . ) belongs to Cn and the distance from y to pn is less than
1/2n. Thus, y belongs to cl(C1 ∪ C2 ∪ C3 ∪ . . . ). Since each point
of lim←−f belongs to a continuum lying in lim←−f that contains the
continuum lim←−f1, lim←−f is a continuum.

From condition (1) and Lemma 4.1, it follows that lim←−f1 is non-
degenerate. Thus, the dimension of lim←−f is one by Theorem 2.1.

¤

Any mapping f : I →→ I of I = [0, 1] onto itself is universal.
Therefore, if a finite family F of mappings of [0, 1] into itself con-
tains a map that is surjective, F satisfies the conditions of Theorem
4.2. We make use of this fact in the following theorem.

Theorem 4.3. If f : I → 2I is an upper semi-continuous function
that is the union of a finite collection F of mappings of [0, 1] into
itself and at least one member of F is surjective, then lim←−f is a
one-dimensional continuum that contains a copy of every inverse
limit lim←− g where gi ∈ F for each i.

Proof: Theorem 3.3 yields that lim←−f is a continuum. That the
dimension of the inverse limit is 1 follows from Theorem 2.1. ¤

Richard M. Schori [9] constructed a chainable continuum that
contains a copy of every chainable continuum. Although that is
much stronger than our next theorem, we still observe this corollary
to Theorem 3.3.

Corollary 4.4. There exists an upper semi-continuous function
f such that lim←−f is a one-dimensional continuum that contains a
copy of every chainable continuum.

Proof: There exist two mappings, ϕ : [0, 1] →→ [0, 1] and ψ :
[0, 1] → [0, 1], where ϕ is surjective such that if M is a chainable
continuum then there exists a sequence k such that ki ∈ {ϕ,ψ} for
each i and M is homeomorphic to lim←−k; see [1] (or [10] where it is
shown that there is a map g : [0, 1] →→ [0, 1] such that ϕ may be
chosen to be g and ψ may be chosen to be g/2). Let f = ϕ∪ψ and
apply Theorem 4.3. ¤
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