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GENERALIZED METRIC SPACES AND
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YOSHIO TANAKA

Abstract. We survey generalized metric spaces around sym-
metric spaces, quasi-metric spaces, and developable spaces.

As is well-known, a space X is metrizable (or metric), if X has
a metric d, that is, a non-negative real valued function d on X
satisfying the following conditions:

(a) d(x, y) = 0 iff x = y.
(b) d(x, y) = d(y, x) (symmetry).
(c) d(x, z) ≤ d(x, y) + d(y, z) (triangle inequality).
(d) G ⊂ X is open in X if and only if, for each x ∈ G, some ball

(or sphere) Bd(x; ε) ⊂ G. Here, Bd(x; ε) = {y ∈ X : d(x, y) < ε}.
A non-negative function d on a space X is an o-metric if d

satisfies (a) and (d) [24]. For an o-metric d, d is symmetric [3]
if d satisfies (b), and d is quasi-metric (or ∆-metric [24]) if d
satisfies (c). Clearly, an o-metric d is metric if and only if d is sym-
metric and quasi-metric. A symmetric d is semi-metric if whenever
x ∈ clA, d(x,A) = 0. An o-metric d is non-archimedean quasi-
metric (briefly, n.a.-quasi-metric) if d(x, z) ≤ Max {d(x, y), d(y, z)}
(stronger than (c)).

In [24] and [25], a space X is o-metrizable if X has an o-metric
d (which is compatible with the topology in X), and such a space
is also called generalized metrizable in [25]. For general definitions
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98 Y. TANAKA

(which are not precise) of “generalized metric spaces,” see [10]. A
space is symmetrizable, semi-metrizable, quasi-metrizable, or n.a.-
quasi-metrizable if it has a respective o-metric. For these spaces,
see [3], [10], [19], [24], [25], and others. In this paper, let us say
that a space is “symmetric,” “quasi-metric,” etc., instead of “sym-
metrizable,” “quasi-metrizable,” etc.

For a quasi-metric space (X, d), any Bd(x; ε) is open in X. But,
for a symmetric space (X, d), every Bd(x; ε) need not be open. Ev-
ery semi-metric or quasi-metric space is first countable, but not
every symmetric space is first countable.

In this paper, we survey generalized metric spaces around sym-
metric spaces, quasi-metric spaces, and developable spaces.

We assume that all spaces are regular T1, and all maps are con-
tinuous surjections.

The following basic fact about an o-metric is shown by the proof
of [10, Lemma 9.3].

Lemma 1. Let (X, d) be an o-metric. For a sequence L = {xn :
n ∈ N} in X, L converges to x ⇔ d(x, xn) → 0 ⇔ any Bd(x; ε)
contains L eventually (i.e., L−Bd(x; ε) is at most finite).

A space X is sequential if A ⊂ X is open in X whenever every
sequence converging to a point in A is eventually in A. A space X
is Fréchet (or Fréchet-Urysohn) if whenever x ∈ clA, there exists a
sequence in A converging to x. Every Fréchet space is sequential.

Remark 1. (1) A space X satisfies the weak first axiom of count-
ability [3] (briefly, X is g-first countable [28]) if, to each x ∈ X, one
can assign a decreasing sequence {Qn(x) : n ∈ N} of subsets such
that x ∈ Qn(x), and G ⊂ X is open in X if and only if for each
x ∈ G, some Qn(x) ⊂ G. A space is g-first countable if and only
if it is an o-metric [25]. Also, a space is first countable if and only
if it has an o-metric with any ball open. But, every semi-metric
space need not have a symmetric with any ball open [12].

(2) Every o-metric space is sequential. Precisely, let (X, d) be
an o-metric (symmetric, respectively); then for S ⊂ X, (S, d|S) is
so if and only if S is sequential by means of Lemma 1. Note that
not every subset of a symmetric space is necessarily an o-metric
(by Example 3(2) later), though any subset of a semi-metric space
((n.a.-) quasi-metric space, respectively) is so.
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An o-metric (symmetric, respectively) d is a strong o-metric [24]
(strong symmetric, respectively) if any intBd(x; ε) 3 x. A space
is strongly o-metric (strongly symmetric, respectively) if it has a
strong o-metric (strong symmetric, respectively).

The following theorem holds, using Lemma 1; see, for example,
[10]. ((a) ⇔ (c) in (1) is due to [31] (in (2), due to [25], respec-
tively)).

Theorem 1. (1) For a space X, the following are equivalent.
(a) X is semi-metric.
(b) X is Fréchet symmetric.
(c) X is hereditarily symmetric.
(d) X is strongly symmetric.
(e) X is symmetric, and for any symmetric d on X, d is a

strong symmetric.
(2) A space X is first countable if and only if (b), (c), (d), or

(e) in (1) holds, replacing “symmetric” with “o-metric.”

A space X is a developable (or a Moore) space if it has a de-
velopment {Vn : n ∈ N} (i.e., Vn are open covers of X such that
{St(x,Vn) : n ∈ N} is a local base at x for each x ∈ X). As is well-
known, developable spaces are semi-metric, and also collectionwise
normal developable spaces are metric.

Lemma 2. A symmetric and quasi-metric space X is developable.

Proof: Let d be a symmetric (ρ, a quasi-metric, respectively) on
X. Since X is first countable, any intBd(x, 1/n) 3 x by Theorem
1(1). For each x ∈ X and n ∈ N , let Vn(x) = intBd(x, 1/n) ∩
Bρ(x, 1/n), and let Vn = {Vn(x);x ∈ X}. Then, for each x ∈ X,
any sequence {xn;n ∈ N} with xn ∈ St(x,Vn) converges to the
point x, using Lemma 1. Thus, {Vn : n ∈ N} is a development for
X; hence, X is developable. ¤
Example 1. (1) The bow-tie space has a semi-metric d on R2 (de-
fined by d(x, y) = |x− y|+ a(x, y) if either x or y is on the x-axis;
otherwise, d(x, y) = |x − y|, where |x − y| is the ordinary dis-
tance and a(x, y) is the radian measure of the smallest non-negative
angle formed by a line through x and y with a horizontal line).
The bow-tie space is not developable, and hence not quasi-metric
by Lemma 2.
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(2) The Sorgenfrey line has a n.a.-quasi-metric d (indeed, for a
sequence {ri : i ∈ N} of all rationals, let d(x, y) = 1 if y < x;
otherwise, d(x, y) = inf{1/n : y ∈ ⋂n

i=1[x, ri), n ∈ N} (here, put
[x, ri) = R if ri ≤ x)). The line is not developable, hence not
symmetric by Lemma 2. The line is separable, but it has no point-
countable bases.

(3) The Michael line has a n.a.-quasi-metric d (indeed, for a
sequence {Ii : i ∈ N} of all open intervals with the end points
rational, define d(x, y) = 1 if x is irrational; otherwise, d(x, y) =
inf{1/n : y ∈ ⋂n

i=1{Ii : x ∈ Ii} (here, put Ii = R if x /∈ Ii)).
The line has a σ-disjoint base, but it is not developable, hence not
symmetric.

A cover P of X is a k-network [26] if, whenever K ⊂ U with K
compact and U open in X, K ⊂ ⋃F ⊂ U for some finite F ⊂ P.
When K is a single point, then such a k-network P is a network.
Every base is a k-network. For k-networks, see [35], (also [22] or
[32]).

Lemma 3. Let F be a closed discrete set in X and let D = X−F .
Then the following hold.

(1) Suppose F is a Gδ-set in X and D is isolated in X. If X is
first countable, then X is developable and n.a.-quasi-metric.

(2) Suppose that D is an infinite dense set in X.
(i) Let |F | > |D|. Then X is not meta-Lindelöf. When X is

Fréchet, X has no point-countable k-networks.
(ii) If |F | ≥ 2|D|, then X is neither normal nor meta-Lindelöf.

Proof: For (1), F is discrete in X; then each point x ∈ F has a
decreasing local base {Vn(x) : n ∈ N} in X with Vn(x) ∩ F = {x}.
Let F =

⋂{Gn : n ∈ N}, where the Gn are open in X with Gn+1 ⊂
Gn. For each n ∈ N , let An = {Vn(x)∩Gn : x ∈ F}∪{{d} : d ∈ D}.
Then {An : n ∈ N} is a development for X. For the latter part, let
p, q ∈ X. For p ∈ F and q ∈ D, let ρ(p, q) = inf{1/n : q ∈ Vn(p)}
and ρ(q, p) = 1. For p, q ∈ F or p, q ∈ D, let ρ(p, q) = 1. Then
(X, ρ) is n.a.-quasi-metric.

For (2), suppose X is meta-Lindelöf. Then any open cover of
X has a subcover of cardinality ≤ |D|. Thus, |F | ≤ |D|, a con-
tradiction. For the latter part, suppose X has a point-countable
k-network P. Let Q = {clP : P ∈ P with P ∩ D 6= ∅}. X is
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Fréchet and D is dense in X. Then Q is a network for X with
|Q| ≤ |D|. |F | ≤ |Q|; then |F | ≤ |D|, a contradiction. For (ii), as
is well-known, X is not normal by |F | ≥ 2|D| (see, for example, [8,
1.7.12(c)]), and X is not meta-Lindelöf by (i). ¤
Example 2. (1) A metacompact, developable, and n.a.-quasi-metric
space X which has a σ-point-finite base (or a point-finite cover) by
closed and open metric sets, but X is not normal.

(2) A separable developable and n.a.-quasi-metric space X which
is locally compact, but X is neither normal nor meta-Lindelöf, and
X has no point-countable k-networks.

(3) A Lindelöf n.a.-quasi-metric space X which has a σ-disjoint
base, but X is neither symmetric nor separable.

(4) A separable quasi-metric space X, but X is not symmetric,
not n.a.-quasi-metric, not meta-Lindelöf, and not normal.

(5) A n.a.-quasi-metric space X which has a σ-disjoint base by
closed and open metric sets and a countable open cover by metric
sets, but X is not symmetric.

(6) A separable developable space X which is locally metric, but
X is not quasi-metric, not meta-Lindelöf, and not normal.

(7) A developable space X which has a point-countable base by
closed and open metric sets, but X is not quasi-metric.

Proof: For (1), let X be the space Y in [29, Example 3.2] (or [32,
Example 5.3]); that is, Y = {(x, y) : x ∈ R, y ≥ 0}, but for each
r ∈ R and n ∈ N , let Vn(r) = {(x, y) : y = |x− r| < 1/n} be a nbd
of (r, 0), and let other points be isolated. Then X is developable and
n.a.-quasi-metric by Lemma 3(1), and a metacompact space with
a σ-point-finite base. But X is not normal by the Baire Category
Theorem.

For (2), let X be the space Ψ of Mrowka (see [8, 3.6.I]); that is,
let F be an infinite maximal pairwise almost disjoint collection of
infinite subsets of N (thus, |F| = 2ℵ0), and let Ψ = {ωF : F ∈
F} ∪ N with points of N be isolated, and nbds of ωF are those
subsets of Ψ containing ωF and all but finitely many points of F .
Then X is a locally compact, separable space. By Lemma 3, X
is developable and n.a.-quasi-metric, but X is neither normal nor
meta-Lindelöf, and X has no point-countable k-networks.

For (3), let X be the space obtained from [0, 1] by isolating
the points of a Bernstein set (i.e., an uncountable subset of [0, 1]
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containing no uncountable closed subsets). Then X is Lindelöf, but
not separable. X has a n.a.-quasi-metric as in the Michael line, and
X has a σ-disjoint base. But X is not symmetric by Lemma 2.

For (4), let X be the space T in [19, Example 1] which is not
n.a.-quasi-metric; that is, T = {(x, y) : x, y ∈ R} is the plane such
that for each point p = (a, b) ∈ R2, a nbd of a point p is p together
with an open disk tangent to y = b at p, lying above this line.
Then T has a quasi-metric d such that d(p, q) = r if q is on the
circumference of radius r ≤ 1 with the southern pole p; otherwise,
d(p, q) = 1 (p 6= q). Then the separable space X is neither meta-
Lindelöf nor normal by Lemma 3(2). Also, X is not symmetric
because X contains a closed vertical line which is the Sorgenfrey
line.

For (5), (6), and (7), see [34, Example 1.9], [10, Example 10.4],
and [34, Example 2.5(2)], respectively. ¤

A space X is a w∆-space if it has a sequence {Bn : n ∈ N} of
bases for X such that any sequence {Bn : n ∈ N} with Bn ∈ Bn

satisfies the following condition denoted by (w∆): if {x, xn} ⊂
Bn (n ∈ N), then the sequence {xn : n ∈ N} has a cluster point in
X. When the sequence has the cluster point x, then such a space
is precisely developable. Every developable space (or M -space) is
a w∆-space.

As generalizations of w∆-spaces, let us recall monotonic w∆-
spaces and β-spaces, which are independent. A space X is a mono-
tonic w∆-space (briefly, an mw∆-space) [40] if it has a sequence
{Bn : n ∈ N} of bases for X such that any decreasing sequence
{Bn : n ∈ N} with Bn ∈ Bn satisfies condition (w∆). w∆-spaces
or p-spaces [3], more generally, quasi-complete spaces [6] are mw∆-
spaces. Conversely, mw∆-spaces are w∆-spaces (or p-spaces) if
they are submetacompact (= θ-refinable); see [40].

A space X is a β-space [15] if there exists a function g from
N × X into the topology such that for any x and n, x ∈ g(n, x),
and if x ∈ g(n, xn) (n ∈ N), then the sequence {xn : n ∈ N} has a
cluster point in X. When the sequence has the cluster point x, then
such a space is precisely semi-stratifiable [15] (or pseudostratifiable
[17]). σ-spaces or semi-metric spaces are semi-stratifiable. Semi-
stratifiable spaces or w∆-spaces are β-spaces.
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In Theorem 2 below, (1) is due to [40, Corollary 2.11]. (2) holds
by [10, Theorem 10.7] and Lemma 2, for example. For (3), see
[10, Theorem 10.3] (or [19, Theorem 1]). An open collection is
interior-preserving if the intersection of any subcollection is open.

Theorem 2. (1) For a space X, X is developable ⇔ X is a sym-
metric mw∆-space ⇔ X is a semi-stratifiable mw∆-space.

(2) For a quasi-metric space X, X is developable ⇔ X is sym-
metric ⇔ X is a β-space.

(3) A space is a n.a.-quasi-metric if and only if it has a σ-
interior-preserving base.

Remark 2. (1) Every n.a.-quasi-metric and symmetric need not
be metric, not even normal; see Example 2(1).

(2) Every metric space is a n.a.-quasi-metric by Theorem 2(3),
while the (zero-dimensional) Baire space is n.a.-metric. A space is
n.a.-metric if and only if X has a σ-locally finite base by closed
and open sets (or balls) [9] (equivalently, Ind X = 0; see [8, 7.3.F]).
In particular, for a (locally) separable metric space X, X is n.a.-
metric ⇔ X has a metric with any ball closed and open ⇔ X has a
base by closed and open sets (equivalently, X is zero-dimensional).

A space is σ-orthocompact (σ-metacompact, respectively) if every
open cover has a σ-interior-preserving (σ-point-finite, respectively)
open refinement. Every σ-metacompact space is σ-orthocompact.

Corollary 1. For a space X, the following are equivalent.
(a) X is symmetric and n.a.-quasi-metric.
(b) X is a developable space with a σ-interior-preserving base.
(c) X is developable and σ-orthocompact.

In (a), we do not know whether the prefix “n.a.” can be deleted,
i.e., whether every developable quasi-metric space is n.a.-quasi-
metric (see [19, Question 6] or [10, p. 490]).

Locally mw∆-spaces, in particular locally developable spaces,
are mw∆-spaces [40]. The following holds by Theorem 2.

Corollary 2. Let X be a symmetric space or a semi-stratifiable
space. If X is locally developable or locally quasi-metric, then X is
developable.
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Remark 3. Not every locally metric space is symmetric or quasi-
metric; see (5) – (7) of Example 2. Below, (ii) is due to [30], but the
result for the case “locally symmetric” is due to [31, Theorem 3.6];
(i) is similarly shown (in terms of Remark 1(1)); and (iii) holds by
means of [19, Theorem 8].

(i) If X is locally o-metric, then X is an o-metric.
(ii) Let X be submetacompact. If X is locally developable (lo-

cally semi-metric, locally symmetric, respectively), then X is de-
velopable (semi-metric, symmetric, respectively).

(iii) Let X be σ-metacompact. If X is locally n.a.-quasi-metric
(locally quasi-metric, respectively), then X is n.a.-quasi-metric (quasi-
metric, respectively).

A cover P of a space X is a determining cover [22] (or, X is
determined by P [11]), if G ⊂ X is open in X if and only if G∩P is
open in P for each P ∈ P. Every open cover is a determining cover.
A sequential space (k-space, respectively) is precisely a space with a
determining cover by compact metric (compact, respectively) sub-
sets. A closed cover F of a space X is a dominating cover [22] (or,
X is dominated by F [23]), if for any P ⊂ F , S =

⋃{P : P ∈ P} is
closed in X, and P is a determining cover of S. A closed cover F
is dominating if F is hereditarily closure-preserving, or increasing
countable determining. As is well known, every CW-complex has
a dominating cover by compact metric subsets, and every space
with a dominating cover by metric subsets is paracompact (actu-
ally, stratifiable). For matters related to determining or dominating
covers, see [32], [36], or [22].

Example 3. (1) The sequential fan Sω (i.e., the space obtained
from the topological sum of countably many convergent sequences
by identifying all the limit points) is a Fréchet space with a count-
able dominating cover by compact metric subsets. Sω is not first
countable, thus not quasi-metric nor symmetric by Theorem 1(2).

(2) The Arens’ space S2 =
⋃{Ln : n ∈ N} ∪ {0}, where Ln =

{1/n}∪{1/n+1/k : k ∈ N}, has a symmetric d (defined by d(0, x) =
1 if 0 < x 6= 1/n; otherwise, d(x, y) = |x−y|). Then S2 has a point-
finite countable determining (or a countable dominating) cover by
compact metric subsets, while a subset S = S2 − {1/n : n ∈ N} is
not sequential. Thus, S2 is not Fréchet (hence, not quasi-metric),
and the set S is not an o-metric by Remark 1(2).
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The following theorem is due to [34], but for the last equivalence
in (ii) of (1), the Xα have a point-countable base; thus, X has a
point-countable k-network, using [11, Proposition 2.1]. Then, since
X is a k-space, the equivalence holds by [21, Corollary 2.13].

Theorem 3. (1) Let X have a point-finite determining cover {Xα :
α ∈ I}.

(i) If the Xα are symmetric (o-metric, respectively), then so
is X.

(ii) If the Xα are metacompact developable, then X is (meta-
compact) developable ⇔ X is (n.a.-) quasi-metric ⇔ X is Fréchet
⇔ X contains no closed copy of S2.

(2) Let X have a dominating cover {Xα : α ∈ I}.
(i) If the Xα are semi-metric, then X is symmetric ⇔ X is

an o-metric ⇔ X contains no closed copy of Sω.
(ii) If the Xα are metric (semi-metric, quasi-metric, n.a.-

quasi-metric, developable, respectively), then so is X ⇔ X is first
countable ⇔ X contains no closed copy of Sω and no S2.

Remark 4. (1) In Theorem 3(1), we can’t replace “point-finite
determining cover” with “countable dominating cover” (by Ex-
ample 3(1)), or with “point-countable open cover” (by Example
2(5), (7)).

(2) Every Fréchet space with a point-countable determining cover
by (locally) separable metric subsets is paracompact in view of [11,
Corollary 8.9]. But every separable symmetric space with a point-
finite determining cover by compact metric subsets need not be
meta-Lindelöf, and not normal (indeed, the space Y in [11, Example
9.3] has the desired properties, using Lemma 3(2)).

(3) In [34], the author asked if every first countable space with a
point-finite determining cover by (n.a.-) quasi-metric subsets
(developable subsets, respectively) is a (n.a.-) quasi-metric (devel-
opable, respectively). Also, he asked if every o-metric space with a
dominating cover by symmetric subsets is symmetric.

Let (X, d) be an o-metric space. For A ⊂ X, let the diameter
D(A) = sup{d(p, q) : p, q ∈ A}. For a sequence L = {xn : n ∈ N}
converging to x ∈ X, we say that L is d-Cauchy if for each ε > 0,
some D({xn; n ≥ k} ∪ {x}) < ε. We say that (X, d) satisfies the
condition of Cauchy (briefly, (X, d) is Cauchy) if every convergent
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sequence is d-Cauchy. Also, (X, d) satisfies the weak condition of
Cauchy (briefly, (X, d) is weak Cauchy) when every convergent se-
quence has a d-Cauchy subsequence. For Cauchy or weak Cauchy
symmetric spaces, see, for example, [5] and [33].

Let f : X → Y be a map such that (X, d) is metric. Then f is a
π-map [2], [3] (or P -map [13]) (with respect to d), if for any y ∈ Y
and any nbd V of y, d(f−1(y), X − f−1(V )) > 0; equivalently, if
d(an, xn) → 0 with f(an) = y, then f(xn) → y. Every compact
map f (i.e., all f−1(y) are compact) from a metric space X is a
π-map (with respect to any metric on X). Developable spaces are
precisely open π-images of metric spaces [13].

Remark 5. (1) Let f : X → Y be a quotient π-map such that
(X, d) is metric. Then Y has a weak Cauchy symmetric ρ defined
by ρ(y, y′) = d(f−1(y), f−1(y′)) (see, for example, [3]).

(2) Every symmetric space with any ball open is weak Cauchy.
Every semi-metric has a weak Cauchy semi-metric (see [5] or [18]).

An o-metric d is a strong* o-metric if any intB∗
d(x; ε) 3 x. Here,

B∗
d(x; ε) = {y ∈ X : d(y, x) < ε}. Every semi-metric d is a strong*

o-metric. A space is a strongly* o-metric space [20] if it has a
strongly* o-metric.

Theorem 4. For a space X, (a) ⇔ (b) ⇒ (c) below holds ((a) ⇔
(b) is due to [20], and (b) ⇒ (c) is due to [18]).

(a) X is strongly* o-metric.
(b) X is semi-stratifiable o-metric.
(c) X is weak Cauchy symmetric.

Remark 6. In the previous theorem, (c) ⇒ (a) or (b) need not
hold. Indeed, in view of [33, Theorem 2.3 and Theorem 2.8], there
exists a Cauchy symmetric space X which is a quotient finite-to-
one image of a metric space, but X is not perfect; hence, X is not
semi-stratifiable. Here, a space is perfect if every closed set is a
Gδ-set.

Corollary 3. (1) For a space X, the following are equivalent. ((a)
⇔ (b) is due to [6].)

(a) X is semi-metric.
(b) X is first countable and semi-stratifiable.
(c) X is Fréchet and strongly* o-metric.



GENERALIZED METRIC SPACES AND DEVELOPABLE SPACES 107

(d) X has a strong o-metric and a strong* o-metric.
(e) X has an o-metric d such that for each x ∈ X, any {y ∈

X : Max{d(x, y), d(y, x)} < ε} contains a nbd of x.
(2) For a quasi-metric space X, the following are equivalent.
(a) X is developable.
(b) X is strongly* o-metric.
(c) X is semi-stratifiable.

A sequence {An : n ∈ N} (An+1 < An) of covers of X is semi-
refined if U ⊂ X is open if and only if for each x ∈ U , some
st(x,An) ⊂ U ; see, for example, [33]. A space is symmetric if and
only if it has a semi-refined sequence (see, for example, [42]). We
say that a space X is g-developable if it has a semi-refined sequence
{An : n ∈ N} satisfying condition (*) for each n ∈ N , and for each
convergent sequence L in X, some A ∈ An contains L eventually,
and its limit point. Also, X is weakly g-developable if we replace
“eventually” with “frequently.” A space is g-developable if and only
if it is g-developable in the sense of [20]; see [33].

A map f : X → Y is sequence-covering [28] if each convergent se-
quence in Y is an image of some convergent sequence in X under f .
Every open map from a first countable space is sequence-covering.

Theorem 5. For a space X, the following are equivalent.
(a) X is g-developable (weakly g-developable, respectively).
(b) X is Cauchy symmetric (weak Cauchy symmetric, respec-

tively).
(c) X is Cauchy o-metric (weak Cauchy o-metric, respectively).
(d) X is a quotient sequence-covering (quotient, respectively)

π-image of a (locally compact) metric space.

Proof: The equivalence among (a), (b), and (d) is due to [33].
For (c) ⇒ (b), let (X, d) be Cauchy o-metric (weak Cauchy o-

metric, respectively). For each n ∈ N , let An = {A : D(A) < 1/n}.
Since X is sequential, {An : n ∈ N} is a semi-refined sequence in
X satisfying condition (*). For x, y ∈ X, define ρ(x, y) = inf{1/n :
y ∈ St(x,An)}. Then (X, ρ) is Cauchy symmetric. The implication
for the parenthetic part is similarly shown. ¤

Remark 7. A space is weak Cauchy symmetric if and only if it
is a quotient π-image of a metric space; see, for example, [17] and
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[33]. But every symmetric space need not be a quotient π-image
of a metric space because every symmetric space need not be weak
Cauchy [18]. A characterization for a symmetric space by a certain
π-image of a metric space is given in [25]. However, we do not know
any characterization for a (n.a.-) quasi-metric space by an image of
a metric space under a (nice) map.

A map f : X → Y is pseudo-open if, for f−1(y) ⊂ G with G
open in X, y ∈ intf(G); equivalently, f is hereditarily quotient
(i.e., f |f−1(A) is quotient for any A ⊂ Y ) [1]. Open or closed maps
are pseudo-open.

Lemma 4 ([1]). Let f : X → Y be a quotient map with X metric.
Then f is pseudo-open if and only if Y is Fréchet.

Corollary 4. For a Fréchet space X, the following are equivalent.
(a) X is developable (semi-metric, respectively).
(b) X is g-developable (weakly g-developable, respectively).
(c) X is Cauchy o-metric (weak Cauchy o-metric, respectively).
(d) X is a pseudo-open sequence-covering (pseudo-open, respec-

tively) π-image of a (locally compact) metric space.

Proof: For (c) ⇒ (a), let (X, d) be a Cauchy o-metric. For any
x ∈ X, D(Bd(x; 1/n)) → 0 since d is Cauchy, and intBd(x; 1/n) 3 x
by Theorem 1(2). For each n ∈ N , let Vn = {intBd(x; 1/n) : x ∈
X}. Then {Vn : n ∈ N} is a development for X; thus, X is
developable.

Other implications hold by Theorem 1(1), Theorem 5, Lemma
4, and Remark 5(2). ¤
Corollary 5. A space is developable if it is Cauchy semi-metric or
weak Cauchy quasi-metric.

Lemma 5 below holds by [14, Theorem 1] (with Theorem 1(1)),
but for the latter case, recall that every first countable space with
a point-countable k-network has a point-countable base [11].

Lemma 5. A space X is developable if X is a symmetric space
with a point-countable base, or X is a semi-metric space with a
point-countable k-network.

Lemma 6 ([13]). Let X have a development {Bn : n ∈ N}, and
let Bn = {Bα : α ∈ In}. Let M = {σ = (σ(n)) ∈ ΠIn :

⋂{Bσ(n) :
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n ∈ N} = {xσ}}. Let M be a subspace of the Baire space (ΠIn, ρ),
where the In are discrete spaces. Define f : M → X by f(σ) = xσ.
Then f is an open π-map with respect to ρ, and f−1(x) = Π{α ∈
In : x ∈ Bα}.
Theorem 6. For a space X, the following are equivalent.

(a) X is developable and metacompact (meta-Lindelöf, respec-
tively).

(b) X is a developable space with a σ-point-finite (point-count-
able, respectively) base.

(c) Same as (b), but replace “developable” with “symmetric.”
(d) X is an open compact image (open s-and-π-image, respec-

tively) of a metric space.
(e) Same as (d), but replace “open” with “pseudo-open” twice.

Proof: (a) ⇒ (b) is obvious.
(c) ⇔ (b) holds by Lemma 5.
For (b) ⇒ (d), we show that X has a development by point-

finite (point-countable, respectively) open covers. The implication
for the parenthetic part holds by Lemma 6, so let X have a σ-
point-finite base {Bn : n ∈ N}. For each m ∈ N , let Bnm be the
collection of all intersections of m distinct elements of Bn, and let
{Bnm : n,m ∈ N} = {Gi : i ∈ N}. Since X is semi-metric, it is
perfect, so each

⋃{G : G ∈ Gi} =
⋃{Fij : j ∈ N} for some closed

sets Fij in X. Let Dij = Gi ∪ {(X − Fij)}. Then {Dij : i, j ∈ N} is
a development by point-finite open covers. Thus, (b) ⇒ (d) holds
by Lemma 6.

For (e) ⇒ (a), let X be a pseudo-open compact image of a metric
space. Then X is metacompact by [4, Proposition 1]. To see that
X is developable, let X be, more generally, a pseudo-open s-and-
π-image of a metric space. Then X is symmetric by Remark 5(1).
Since X is Fréchet by Lemma 4, X is semi-metric by Theorem 1(1).
Also, X is a quotient s-image of a metric space, so X has a point-
countable k-network in view of [11]. Thus, X is developable by
Lemma 5. ¤

Corollary 6. For a space X, the following are equivalent.
(a) X is developable and (σ-) metacompact.
(b) X is a perfect space with a σ-point-finite base.
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(c) X is symmetric, (n.a.-) quasi-metric, and (σ-) metacom-
pact.

Remark 8. (1) Every paracompact, perfect space with a point-
countable base need not be developable; see [41].

(2) Every semi-metric space is perfect (but need not be a σ-space;
see [10, Example 9.10]). But every symmetric space need not be
perfect by [7, Example 3.1] or Remark 6, and neither must every
quasi-metric space by Example 1(3) or by Example 2(3), (4) with
Corollary 6. However, we do not know whether points are Gδ-sets
among symmetric spaces, in particular, among spaces with a point-
finite determining cover by compact metric subsets; equivalently,
quotient compact images of locally compact metric spaces; see [22].

Corollary 7. Let X be a Fréchet space which is a quotient compact
image of a metric space. Then X is a developable, n.a.-quasi-metric
space with a σ-point-finite base.

For a symmetric space X, X is ω1-compact (i.e., any uncountable
subset has an accumulation point in X) ⇔ X is Lindelöf ⇔ X is
hereditarily Lindelöf (⇐ X is hereditarily separable); see [25]. For
a semi-metric (generally, semi-stratifiable) space X, X is Lindelöf
if and only if X is hereditarily separable [6], [17]. The existence of
a Lindelöf, non-separable, symmetric space is consistent with ZFC
[27].

Theorem 7. (1) Let X be a weak Cauchy symmetric space. If X
is Lindelöf, then X is (hereditarily) separable.

(2) Let X be a symmetric space with a point-countable k-network.
If X is Lindelöf, then X is separable.

Proof: (1) is due to [25, Corollary 13].
For (2), let P be a point-countable k-network for X; here assume

P is closed under finite intersections. For each n ∈ N , let Pn =
{P ∈ P : P is contained in some Bd(x; 1/n)}, and let Qn = {Q : Q
is a finite union of elements of Pn}. Let x ∈ X and n ∈ N .
Then, since P is a point-countable k-network for X, each sequence
converging to x is eventually contained in some Q ∈ Qn with x ∈
Q ⊂ Bd(x; 1/n), in view of the proof of Lemma 1.5 in [39] (using
Lemma 1 there). Thus, for each n ∈ N , Pn is a point-countable
cover of X, andQn is a determining cover of X since X is sequential
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by Remark 1(2). Then any Pn has a countable subcover of X.
Indeed, suppose some Pn has no countable subcovers. Let Pn =
{Pα : α < γ}, and let A(x) = {α : x ∈ Pα} for each x ∈ X. Since
each A(x) is countable, by induction, take a subset D = {xβ : β <
ω1} of X such that xβ ∈ X − ⋃{Pα : α ∈ ⋃{A(xρ) : ρ < β}}.
Then D ∩ Q is at most finite for each Q ∈ Qn. Thus, D is closed
discrete in X with |D| = ω1. But since X is Lindelöf, D has an
accumulation point in X. This is a contradiction. Hence, any Pn

has a countable subcover of X. Thus, X has a countable cover
{Bd(xnm; 1/n) : n,m ∈ N}. Then {xnm : n, m ∈ N} is dense in X,
so X is separable. ¤
Remark 9. (1) Every separable Cauchy symmetric space need not
be Lindelöf even if it has a n.a.-quasi-metric (by Example 2(2)), or
has a point-countable k-network (by the space Y in Remark 4(2)).

(2) Among n.a.-quasi-metric spaces, the Lindelöf property and
separability are independent in view of Example 2(2), (3), but we do
not know whether every hereditarily separable (n.a.-) quasi-metric
space is Lindelöf (or ω1-compact).

Corollary 8. Let X be a symmetric space which is a quotient s-
image of a metric space. Then X is Lindelöf if and only if every
closed subset is separable.

Any countable product of semi-metric spaces ((n.a.-) quasi-metric
spaces, respectively) is so. But not every product of two symmetric
spaces is an o-metric; see, for example, [31]. The following holds in
view of [39].

Theorem 8. (1) Let X be a symmetric space such that (a) X has
a point-countable k-network, (b) each point of X is a Gδ-set, or
(c) X is meta-Lindelöf; otherwise, CH holds. Let Y be semi-metric.

(i) X × Y is symmetric if and only if X is semi-metric
(developable for (a)), or Y is locally compact.

(ii) Xω is symmetric if and only if X is semi-metric (devel-
opable for (a)).

(2) Let X be an o-metric space satisfying (a) or (b) in (1). Let
Y be first countable.

(i) X × Y is o-metric if and only if X is first countable, or
Y is locally countably compact.

(ii) Xω is o-metric if and only if X is first countable.
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Theorem 9. (1) Let P be the product of countably many symmetric
spaces. Then P is symmetric if and only if P is a k-space [25].

(2) Same as (1), but replace “symmetric” with “o-metric” twice.

Proof: The “only if” parts for (1) and (2) hold because every
o-metric space is sequential by Remark 1(2), hence a k-space.

For the “if” part for (1), let P = Π{Xn : n ∈ N} be a k-space,
and let each Xn have a symmetric dn such that each D(Xn) ≤ 1/n.
Since P is the product of sequential spaces Xn, P is sequential in
view of [38, Theorem 2.15]. Now, for x = (xn), y = (yn) ∈ P ,
let d(x, y) = sup{dn(xn, yn) : n ∈ N}. Then d is a symmetric
on P . Indeed, let G ⊂ P . If G is open, then for each x ∈ G,
Bd(x; ε) ⊂ G for some ε > 0. The converse also holds. To see
that G is open, since P is sequential, it suffices to show that each
sequence L in P converging to a point x = (xn) ∈ G is eventually
in G. Let Bd(x; ε) ⊂ G for some ε > 0. For m ∈ N with 1/m < ε,
B(x) = Bd1(x1; ε)× · · · ×Bdm(xm; ε)×Π{Xn : n > m} ⊂ Bd(x; ε).
Thus, the sequence L is eventually in B(x) by Lemma 1, and hence
is also in G.

The “if” part for (2) holds by replacing “symmetric” with “o-
metric” in the above. ¤

Remark 10. If Xω is an o-metric, then X need not be first count-
able under CH. Indeed, under CH, there exists a compact o-metric
space which is not first countable [16]. Then Xω is o-metric by
Theorem 9(2), but X is not first countable. However, we do not
know if X needs to be first countable for Xω to be symmetric [22].
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