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NOTES ON g-FUNCTIONS AND MCP AND
QUASI-NAGATA SPACES

ER-GUANG YANG AND WEI-XUE SHI

Abstract. We give characterizations of stratifiable spaces
and MCP spaces. Moreover, we study some generalized met-
ric spaces which can be defined or characterized by g-functions
and present several theorems concerning the metrization of
quasi-Nagata spaces.

1. Introduction

The notion of monotonically countably paracompact (MCP)
spaces was introduced by Chris Good, Robin Knight, and Ian Stares
[6] as a monotone version of countable paracompactness. Ying Ge
and Good [5] gave characterizations of stratifiable spaces and MCP
spaces from which one can see that stratifiable spaces have simi-
lar structures to MCP spaces. In this paper, we shall give other
characterizations of stratifiable spaces and MCP spaces.

As is known, in the field of generalized metric spaces, one impor-
tant task is to find conditions which imply metrizability for certain
classes of generalized metric spaces. In [19], Iwao Yoshioka showed
that a c-stratifiable quasi-Nagata quasi-γ space is metrizable and,
in [16], A. M. Mohamad proved that a quasi-Nagata wθ space X
with a quasi-G∗

δ(2) diagonal is metrizable. In this paper, we provide
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116 E.-G. YANG AND W.-X. SHI

several other theorems concerning the metrization of quasi-Nagata
spaces.

Throughout, a space means a topological space and all spaces in
this paper are assumed to be T1 unless stated otherwise.

Let X be a space. K(X) and C(X) denote the families of all
closed subsets and compact subsets of X, respectively. τ is reserved
for the topology of a space X. The set of all positive integers is
denoted by N. 〈xn〉 denotes a sequence.

The following notation is due to Good, Knight, and Stares [6]:

Let (Aj)j∈N and (Bj)j∈N be two sequence of subsets of a space X;
we write (Aj) ¹ (Bj) if An ⊂ Bn for every n ∈ N.

Definition 1 ([1]). A space X is called a stratifiable space if for
each F ∈ K(X) there exists a sequence {U(n, F )}n∈N of open sets
satisfying

(1) F =
⋂

n∈N U(n, F ) =
⋂

n∈N U(n, F );
(2) for each n ∈ N, U(n, F ) ⊂ U(n,H) whenever F ⊂ H.

Definition 2 ([6]). A space X is said to be monotonically countably
paracompact (MCP) if there is an operator U assigning to each
decreasing sequence (Fj)j∈N of closed sets with empty intersection,
a sequence of open sets (U(n, (Fj)))n∈N such that

(1) Fn ⊂ U(n, (Fj)) for each n ∈ N;
(2) if (Fj) ¹ (Hj), then U(n, (Fj)) ⊂ U(n, (Hj)) for all n ∈ N;
(3)

⋂
n∈N U(n, (Fj)) = ∅.

A g-function for a space X is a map g : N×X → τ such that for
every x ∈ X and n ∈ N, x ∈ g(n, x) and g(n + 1, x) ⊂ g(n, x).

Consider the following conditions on g.

(kβ) For every K ∈ C(X), if K ∩ g(n, xn) 6= ∅ for all
n ∈ N, then 〈xn〉 has a cluster point.

(Θ) If {x, xn} ⊂ g(n, yn) for all n ∈ N and 〈yn〉 has a
cluster point, then x is a cluster point of 〈xn〉.

(θ) If {x, xn} ⊂ g(n, yn) and yn ∈ g(n, x) for all n ∈
N, then x is a cluster point of 〈xn〉.

(wθ) If {x, xn} ⊂ g(n, yn) and yn ∈ g(n, x) for all n ∈
N, then 〈xn〉 has a cluster point.

(ks) If yn ∈ g(n, xn) for all n ∈ N and yn → x, then
xn → x.
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(wcc) If yn ∈ g(n, xn) for all n ∈ N and 〈yn〉 has a
cluster point, then 〈xn〉 has a cluster point.

(quasi-Nagata) If yn ∈ g(n, xn) for all n ∈ N and 〈yn〉 converges,
then 〈xn〉 has a cluster point.

(γ) If yn ∈ g(n, x) and xn ∈ g(n, yn) for all n ∈ N,
then x is a cluster point of 〈xn〉.

(wγ) If yn ∈ g(n, x) and xn ∈ g(n, yn) for all n ∈ N,
then 〈xn〉 has a cluster point.

(quasi-γ) If xn ∈ g(n, yn) for all n ∈ N and 〈yn〉 converges,
then 〈xn〉 has a cluster point.

(q) If xn ∈ g(n, x) for all n ∈ N, then 〈xn〉 has a
cluster point.

A space X which has a g-function satisfying condition (kβ) is
called a kβ space and the corresponding function is called a kβ
function. The others are defined analogously.

First countable spaces can be characterized by g-functions satis-
fying the following condition:

If xn ∈ g(n, x) for all n ∈ N, then x is a cluster point of 〈xn〉.
ks spaces are called strongly quasi-Nagata spaces in [15] and a ks

space is equivalent to the condition [that:] there exists a g-function
g such that if yn ∈ g(n, xn) for all n ∈ N and yn → x, then x is a
cluster point of the sequence 〈xn〉.

It is known that the following implications hold.

MCP space
[20] // wcc space

Proposition 2.6 of
this paper

²²
stratifiable space

[20] //

[5]

OO

ks space
[17] // kβ space

[18]

²²
quasi-Nagata space

2. Characterizations of stratifiable spaces

Theorem 2.1. For a space X, the following are equivalent.
(a) X is stratifiable.
(b) For each F ∈ K(X), there exists a sequence {U(n, F )}n∈N

of open sets such that
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(1)
⋂

n∈N U(n, F ) = F ;
(2) for each n ∈ N, U(n, F ) ⊂ U(n,H) whenever F ⊂ H;
(3) for every K ∈ C(X) and F ∈ K(X) with K ∩ F = ∅,

there exists m ∈ N such that K ∩ U(m,F ) = ∅.
(c) For each F ∈ K(X), there exists a sequence {U(n, F )}n∈N

of open sets such that
(1) F ⊂ U(n, F ) for all n ∈ N;
(2) for each n ∈ N, U(n, F ) ⊂ U(n,H) whenever F ⊂ H;
(3) let {Fn}n∈N be a decreasing sequence of closed sets.

Then
⋂

n∈N U(n, Fn) =
⋂

n∈N Fn, and for every K ∈
C(X), if K ∩ Fn = ∅ for some n ∈ N, then K ∩
U(m,Fm) = ∅ for some m ∈ N.

(d) There exists an operator V assigning to each decreasing
sequence (Fj)j∈N of closed sets, a sequence of open sets
(V (n, (Fj)))n∈N such that
(1) for each n ∈ N, Fn ⊂ V (n, (Fj));
(2) if (Fj) ¹ (Hj), then V (n, (Fj)) ⊂ V (n, (Hj)) for all

n ∈ N;
(3)

⋂
n∈N V (n, (Fj)) =

⋂
n∈N Fn, and for every K ∈ C(X),

if K∩Fn = ∅ for some n ∈ N, then K∩V (m, (Fj)) = ∅
for some m ∈ N.

Proof: (a)⇒ (b) Suppose that X is a stratifiable space. Then for
each F ∈ K(X), there exists a sequence {U(n, F )}n∈N of open sets
satisfying the conditions in Definition 1. Without loss of generality,
we may assume that U(n + 1, F ) ⊂ U(n, F ) for all n ∈ N and
F ∈ K(X). Obviously, conditions (1) and (2) are satisfied. Let K ∈
C(X) and F ∈ K(X) with K ∩F = ∅. From

⋂
n∈N U(n, F ) = F , it

follows that K ∩⋂
n∈N U(n, F ) = ∅. Since K ∈ C(X), there exist

finitely many ni, i = 1, 2, · · · , k such that K ∩ ⋂k
i=1 U(ni, F ) = ∅.

Let m = max{ni, i = 1, 2, · · · , k}. Then K ∩ U(m,F ) = ∅.
(b) ⇒ (c) Assume (b). We may assume that U(n + 1, F ) ⊂

U(n, F ) for all n ∈ N. Then, clearly, conditions (1) and (2) of (c)
are satisfied. Let {Fn}n∈N be a decreasing sequence of closed sets.
Then

⋂
n∈N Fn ⊂

⋂
n∈N U(n, Fn). We show that

⋂
n∈N U(n, Fn) ⊂⋂

n∈N Fn also holds. Suppose that x /∈ ⋂
n∈N Fn. Then there exists

m ∈ N such that x /∈ Fm =
⋂

j∈N U(j, Fm), and so there is n ∈
N such that x /∈ U(n, Fm). Setting N = max{m, n}, we have
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U(N,FN ) ⊂ U(N, Fm) ⊂ U(n, Fm). Thus, x /∈ U(N, FN ), which
implies that x /∈ ⋂

n∈N U(n, Fn). Consequently,
⋂

n∈N U(n, Fn) ⊂⋂
n∈N Fn.
Suppose now K ∈ C(X) and K ∩ Fn = ∅ for some n ∈ N.

Then there exists a k ∈ N such that K ∩ U(k, Fn) = ∅. Let m =
max{k, n}. Then K ∩U(m,Fm) ⊂ K ∩U(k, Fm) ⊂ K ∩U(k, Fn) =
∅.

(c) ⇒ (d) Assume (c). Let (Fj)j∈N be a decreasing sequence of
closed sets. For each n ∈ N, put V (n, (Fj)) = U(n, Fn). One easily
verifies that V is an operator which satisfies all the items of (d).

(d) ⇒ (c) Suppose (d). Let V be the operator in (d). For
each x ∈ X and n ∈ N, put Fn

j (x) = {x} whenever j ≤ n

and Fn
j (x) = ∅, otherwise. Then for fixed x ∈ X and n ∈ N,

(Fn
j (x))j∈N is a decreasing sequence of closed sets. For each closed

set F , put U(n, F ) =
⋃

x∈F V (n, (Fn
j (x))). Since {x} = Fn

n (x) ⊂
V (n, (Fn

j (x))), we have F ⊂ U(n, F ) for all n ∈ N, and it is clear
that U(n, F ) ⊂ U(n,H) whenever F ⊂ H. Suppose now (Fj)j∈N
is a decreasing sequence of closed sets. Since F ⊂ U(n, F ) for
all n ∈ N, we have

⋂
n∈N Fn ⊂ ⋂

n∈N U(n, Fn). For each n ∈ N
and each x ∈ Fn, since Fn

j (x) = ∅ for all j > n and Fn
j (x) =

{x} ⊂ Fn ⊂ Fj whenever j ≤ n, we have Fn
j (x) ⊂ Fj for all

j ∈ N and so V (n, (Fn
j (x))) ⊂ V (n, (Fj)) for all n ∈ N. Therefore,

U(n, Fn) =
⋃

x∈Fn
V (n, (Fn

j (x))) ⊂ V (n, (Fj)) for all n ∈ N, which
shows that

⋂
n∈N U(n, Fn) ⊂ ⋂

n∈N V (n, (Fj)) =
⋂

n∈N Fn.
Suppose now K ∈ C(X) and K ∩ Fn = ∅ for some n ∈ N.

Then there exists m ∈ N such that K ∩ V (m, (Fj)) = ∅. Thus,
K ∩ U(m,Fm) ⊂ K ∩ V (m, (Fj)) = ∅.

(c) ⇒ (b) Suppose (c). By letting Fn = F for all n ∈ N, one
readily verifies that all the conditions in (b) are satisfied.

(b) ⇒ (a) Suppose (b). Then for each n ∈ N, U(n, F ) ⊂ U(n,H)
whenever F ⊂ H. From (3) of (b), it follows that for each F ∈
K(X), if x /∈ F , then there exists an m ∈ N such that x /∈ U(m,F ),
which implies that

⋂
n∈N U(n, F ) ⊂ F . Thus,

⋂
n∈N U(n, F ) = F

and X is stratifiable. ¤

From the above theorem, we see that stratifiable spaces have sim-
ilar structures to k-semi-stratifiable spaces. Since k-semi-stratifiable
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spaces can be characterized with g functions satisfying (ks) in the
introduction, it is natural to ask whether stratifiable spaces can
also be characterized with g functions satisfying similar conditions.
We have no idea, but we do have the following.

Proposition 2.2. Let X be a stratifiable space. Then the following
statements hold.

(a) There exists a g-function g for X such that if yn ∈ g(n, xn)
for all n ∈ N and x is a cluster point of 〈yn〉, then x is a
cluster point of 〈xn〉.

(b) There exists a g-function g for X such that if yn ∈ g(n, xn)
for all n ∈ N and yn → x, then xn → x.

(c) There exists a g-function g for X such that for each K ∈
C(X), if K ∩ g(n, xn) 6= ∅ for all n ∈ N, then 〈xn〉 has a
cluster point in K.

Proof: (a) Suppose that X is a stratifiable space. Then for
each F ∈ K(X), there exists a sequence {U(n, F )}n∈N of open
sets satisfying the conditions in Definition 1. We may assume that
U(n+1, F ) ⊂ U(n, F ) for all n ∈ N and F ∈ K(X). For each n ∈ N
and x ∈ X, put g(n, x) = U(n, {x}). Then g is a g-function for X.
Suppose now yn ∈ g(n, xn) for all n ∈ N and x is a cluster point of
〈yn〉. If x is not a cluster point of 〈xn〉, then there exists m ∈ N
such that x /∈ {xn : n ≥ m} = F , and then there is k ≥ m such that
x /∈ U(k, F ). As x is a cluster point of 〈yn〉, there is l ≥ k such that
y

l
/∈ U(k, F ). But y

l
∈ g(l, x

l
) = U(l, {x

l
}) ⊂ U(l, F ) ⊂ U(k, F ), a

contradiction.
(b) Let g be the function in (a). Suppose that yn ∈ g(n, xn) for

all n ∈ N and yn → x. Let 〈xnk
〉 be an arbitrary subsequence of

〈xn〉. Since ynk
∈ g(nk, xnk

) ⊂ g(k, xnk
) and x is a cluster point of

〈ynk
〉, x is a cluster point of 〈xnk

〉. Therefore, xn → x.
(c) Let g be the function in (a). Take K ∈ C(X). Suppose

that K ∩ g(n, xn) 6= ∅ for all n ∈ N. For each n ∈ N, choose
yn ∈ K ∩ g(n, xn). Then 〈yn〉 has a cluster point p in K, and p is
a cluster point of 〈xn〉. ¤

Lemma 2.3 ([5]). X is an MCP space if and only if for each
F ∈ K(X), there exists a sequence {U(n, F )}n∈N of open sets such
that
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(1) F ⊂ U(n, F ) for all n ∈ N;
(2) for each n ∈ N, U(n, F ) ⊂ U(n,H) whenever F ⊂ H;
(3) let {Fn}n∈N be a decreasing sequence of closed sets with

empty intersection. Then
⋂

n∈N U(n, Fn) = ∅.
By Lemma 2.3 and with the same method as in the proof of

Theorem 2.1, we can prove the following.

Proposition 2.4. For a space X, the following are equivalent.
(a) X is an MCP space.
(b) There exists an operator V assigning to each decreasing se-

quence (Fj)j∈N of closed sets with empty intersection, a se-
quence of open sets (V (n, (Fj)))n∈N such that
(1) for each n ∈ N, Fn ⊂ V (n, (Fj));
(2) if (Fj) ¹ (Hj), then V (n, (Fj)) ⊂ V (n, (Hj)) for all

n ∈ N;
(3) for every K ∈ C(X), there exists m ∈ N such that

K ∩ V (m, (Fj)) = ∅.
(c) For each F ∈ K(X), there exists a sequence {U(n, F )}n∈N

of open sets such that
(1) F ⊂ U(n, F ) for all n ∈ N;
(2) for each n ∈ N, U(n, F ) ⊂ U(n,H) whenever F ⊂ H;
(3) let {Fn}n∈N be a decreasing sequence of closed sets with

empty intersection. Then for every K ∈ C(X), K ∩
U(m,Fm) = ∅ for some m ∈ N.

It was shown in [20] that an MCP space is a wcc space. Actually,
we have the following stronger result.

Proposition 2.5. If X is an MCP space, then there exists a g-
function g for X such that if yn ∈ g(n, xn) for all n ∈ N and 〈yn〉
has a cluster point, then 〈xn〉 has a cluster point.

Proof: Suppose that U is the operator in Lemma 2.3 and that
U(n + 1, F ) ⊂ U(n, F ) for all n ∈ N and F ∈ K(X). For each
n ∈ N and x ∈ X, put g(n, x) = U(n, {x}). Then g is a g-function
for X. Suppose now yn ∈ g(n, xn) for all n ∈ N and 〈yn〉 has
a cluster point p. If 〈xn〉 has no cluster point, then, by putting
Fn = {xm : m ≥ n} for all n ∈ N, we get a decreasing sequence
of closed sets {Fn}n∈N and it is obvious that

⋂
n∈N Fn = ∅. From

Lemma 2.3, it follows that
⋂

n∈N U(n, Fn) = ∅. Then there is k ∈ N
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such that p /∈ U(k, Fk). Since p is a cluster point of 〈yn〉, there
exists m ≥ k such that ym ∈ X −U(k, Fk) ⊂ X −U(m,Fk) ⊂ X −
U(m,Fm) ⊂ X−U(m, {xm}) = X−g(m, xm), a contradiction. ¤

A space X is said to be weakly subsequential [9] if each sequence
of X with a cluster point has a subsequence with compact closure.

Proposition 2.6. A weakly subsequential space X is a wcc space
if and only if it is a kβ space.

Proof: Let g be a wcc function and let K ∈ C(X). Suppose
that K ∩ g(n, xn) 6= ∅ for all n ∈ N. For each n ∈ N, choose
yn ∈ K ∩ g(n, xn). Then 〈yn〉 has a cluster point and so 〈xn〉 has a
cluster point. This shows that X is a kβ space.

Conversely, let g be a kβ function. Suppose yn ∈ g(n, xn) for
all n ∈ N and 〈yn〉 has a cluster point. As X is a weakly subse-
quential space, there exists a subsequence 〈ynk

〉 of 〈yn〉 such that
K = {ynk

} is a compact set. But ynk
∈ g(k, xnk

) for all k ∈ N, so
K ∩ g(k, xnk

) 6= ∅ for all k ∈ N. Therefore, 〈xnk
〉 and hence, 〈xn〉

has a cluster point. ¤
A space X is said to be subsequential [9] if each sequence of X

with a cluster point has a convergent subsequence.

Proposition 2.7. A subsequential space X is a wcc space if and
only if it is a quasi-Nagata space.

Proof: Similar to the proof of Proposition 2.6. ¤

3. Metrization of quasi-Nagata spaces

A space X is called a strongly α space [20] (an α space, respec-
tively, [7]) if it has a g-function satisfying the following conditions:

(1)
⋂

n∈N g(n, x) = {x} (
⋂

n∈N g(n, x) = {x}, respectively );
(2) if y ∈ g(n, x), then g(n, y) ⊂ g(n, x).
Clearly, every strongly α space is Hausdorff.

Lemma 3.1. A strongly α q space X is first countable.

Proof: Let h be a strongly α function and let l be a q function.
For each x ∈ X and n ∈ N, put g(n, x) = h(n, x)∩ l(n, x). We show
that g is a first countable function.

Suppose that xn ∈ g(n, x) for all n ∈ N. Then 〈xn〉 has a cluster
point, say p, because l is a q function. If x 6= p, then there exists
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m ∈ N such that p /∈ h(m, x). As p is a cluster point of 〈xn〉, there
is k ≥ m such that xk /∈ h(m,x) ⊃ h(k, x), a contradiction. ¤
Proposition 3.2. A strongly α quasi-Nagata space X is a ks-space.

Proof: Let h be a strongly α function and let l be a quasi-Nagata
function. For each x ∈ X and n ∈ N, put g(n, x) = h(n, x)∩ l(n, x).
We show that g is a ks-function.

Suppose that yn ∈ g(n, xn) for all n ∈ N and the sequence 〈yn〉
converges to p. We show that p is a cluster point of 〈xn〉. Since l
is a quasi-Nagata function, the sequence 〈xn〉 has a cluster point,
say q. If p 6= q, then there exists m ∈ N such that p /∈ h(m, q).
As yn → p, there is k ≥ m such that yn /∈ h(m, q) ⊃ h(m, q) for
all n ≥ k. But q is a cluster point of 〈xn〉, so there is j ≥ k such
that xj ∈ h(m, q), and then yj ∈ h(j, xj) ⊂ h(m,xj) ⊂ h(m, q), a
contradiction. Therefore, p = q and p is a cluster point of 〈xn〉. ¤
Proposition 3.3. A strongly α quasi-γ space X is a γ space.

Proof: Suppose that X is a strongly α quasi-γ space. Yoshioka
[19] has shown that a strongly α wγ space is a γ space, so it suffices
to show that X is a wγ space. Since a quasi-γ space is a q space,
by Lemma 3.1, X is first countable, and thus, X is a wγ space. ¤

Yoshioka [20] proved that a strongly α wθ space is a θ space.
Actually, we have the following stronger result.

Proposition 3.4. (a) An α θ space X is a Θ space. (b) A strongly
α wθ space X is a Θ space.

Proof: (a) Let h be an α function and let l be a θ function. For
each x ∈ X and n ∈ N, put g(n, x) = h(n, x) ∩ l(n, x). Suppose
that {p, xn} ⊂ g(n, yn) for all n ∈ N and 〈yn〉 has a cluster point
q. We show that p is a cluster point of 〈xn〉. Since q is a cluster
point of 〈yn〉, there exists a subsequence 〈ynk

〉 of 〈yn〉 such that
ynk

∈ h(k, q) and thus, h(k, ynk
) ⊂ h(k, q) for all k ∈ N. Now, from

p ∈ g(nk, ynk
) ⊂ h(k, ynk

), it follows that p ∈ ⋂
k∈N h(k, q) = {q}.

Hence, p = q and then p is a cluster point of 〈yn〉. Again, there
exists a subsequence 〈yni〉 of 〈yn〉 such that yni ∈ l(i, q) for all i ∈ N.
Since {p, xni} ⊂ l(i, yni) for all i ∈ N and l is a θ function, p is a
cluster point of 〈xni〉 and hence of 〈xn〉.

(b) Since a strongly α wθ space is a θ space [20] and a strongly
α space is an α space, by (a), one readily sees that (b) holds. ¤
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A space X is said to have a quasi-G∗
δ(2) diagonal (quasi-G∗

δ diag-
onal, respectively) [15] if there exists a sequence {Gn}n∈N of open
families of X such that for any pairs of distinct points x, y ∈ X,
there exists m ∈ N such that x ∈ st2(x,Gm) ⊂ X − {y} (x ∈
st(x,Gm) ⊂ X − {y}, respectively).

It is clear that a space X which has a quasi-G∗
δ(2) diagonal is

Hausdorff and if X has a quasi-G∗
δ(2) diagonal, then it has a quasi-

G∗
δ diagonal.

Proposition 3.5. (a) A wγ space X with a quasi-G∗
δ(2) diagonal

is a γ space. (b) A quasi-γ space X with a quasi-G∗
δ(2) diagonal is

a γ space.

Proof: (a) Let {Gn}n∈N be a quasi-G∗
δ(2) diagonal sequence and

let k be a wγ function. For each x ∈ X and n ∈ N, put

f(n, x) =
{

st(x,Gn), x ∈ ∪Gn;
X, x /∈ ∪Gn.

Let h(n, x) =
⋂n

i=1 f(i, x) and let g(n, x) = h(n, x) ∩ k(n, x). We
show that g is a γ function. Suppose that xn ∈ g(n, yn) and yn ∈
g(n, p) for all n ∈ N. Since k is a wγ function, the sequence 〈xn〉
has a cluster point, say q. For each n ∈ c(p) = {i ∈ N : p ∈
∪Gi}, we have ym ∈ g(m, p) ⊂ g(n, p) ⊂ f(n, p) = st(p,Gn) ⊂ ∪Gn

whenever m ≥ n, and then xm ∈ g(m, ym) ⊂ g(n, ym) ⊂ f(n, ym) =
st(ym,Gn). Consequently, xm ∈ st2(p,Gn) whenever m ≥ n. Since
q is a cluster point of 〈xn〉, q ∈ {xm : m ≥ n} ⊂ st2(p,Gn) for all
n ∈ c(p). Thus, q ∈ ⋂

n∈c(p) st2(p,Gn) = {p}, which implies that
p = q and p is a cluster point of 〈xn〉.

(b) Suppose that X is a quasi-γ space with a quasi-G∗
δ(2) diago-

nal. Mohamad [15] proved that a q space with a quasi-G∗
δ diagonal

is first countable and it is easy to show that a first countable quasi-
γ space is a wγ space. Since a quasi-γ space is a q space and X
has a quasi-G∗

δ diagonal, we conclude that X is a wγ space. Now,
by (a), X is a γ space. ¤

A space X is called a c-stratifiable [10] (c-semi-stratifiable [13],
respectively,) space if it has a g-function g such that for any K ∈
C(X),

⋂
n∈N g(n,K) = K (

⋂
n∈N g(n,K) = K, respectively), where

g(n, K) = ∪{g(n, x) : x ∈ K}.
Obviously, a c-stratifiable space is Hausdorff.



NOTES ON g-FUNCTIONS 125

Proposition 3.6. A c-stratifiable quasi-Nagata space X is a ks-
space.

Proof: Let h be a c-stratifiable function and let l be a quasi-
Nagata function. For each x ∈ X and n ∈ N, put g(n, x) = h(n, x)∩
l(n, x). We show that g is a ks-function.

Suppose that yn ∈ g(n, xn) for all n ∈ N and the sequence 〈yn〉
converges to p. We show that p is a cluster point of 〈xn〉. Since l
is a quasi-Nagata function, every subsequence of 〈xn〉 has at least
a cluster point. Let q be a cluster point of 〈xn〉 and suppose that
p 6= q. Then there exists a subsequence 〈xnk

〉 of 〈xn〉 such that
xnk

∈ h(k, q) and xnk
6= p for all k ∈ N. We now show that q is

a unique cluster point of 〈xnk
〉. Let r be a cluster point of 〈xnk

〉
with r 6= q. Since h is a c-stratifiable function, there is m ∈ N such
that r /∈ h(m, q), but r is a cluster point of 〈xnk

〉, so there is j ≥ m

such that xnj /∈ h(m, q) ⊃ h(j, q). The contradiction shows that
r = q, and from the above process of the proof, we know that q is a
unique cluster point of 〈xnk

〉. Since every subsequence of 〈xnk
〉 has

a cluster point, q is a cluster point of every subsequence of 〈xnk
〉,

which implies that 〈xnk
〉 converges to q.

Now, let K = {xnk
: k ∈ N} ∪ {q}. Then K ∈ C(X) and p /∈ K.

Since h is a c-stratifiable function, we have p /∈ ⋂
n∈N h(n,K) and

hence, there exists m ∈ N such that p /∈ h(m,K). As 〈yn〉 converges
to p, which shows that p is a cluster point of 〈ynk

〉, there exists j ≥
m such that ynj /∈ h(m,K) ⊃ h(j,K) ⊃ h(j,K) ⊃ ⋃

k∈N h(j, xnk
).

This implies that ynj /∈ h(j, xnk
) for all k ∈ N. As a special case,

we have ynj /∈ h(j, xnj ), a contradiction. Thus, p = q and then p is
a cluster point of 〈xn〉. ¤

Proposition 3.7. (a) A Hausdorff c-semi-stratifiable θ space X is
a Θ space [4]. (b) A c-stratifiable wθ space X is a Θ space.

Proof: (a) This has been proved in [4].

(b) Since c-stratifiable spaces are c-semi-stratifiable spaces and
Hausdorff, by (a), it suffices to show that a c-stratifiable wθ space
is a θ space.

Let h be a c-stratifiable function and let l be a wθ function. For
each x ∈ X and n ∈ N, put g(n, x) = h(n, x) ∩ l(n, x). We show
that g is a θ function.
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Suppose that {p, xn} ⊂ g(n, yn) and yn ∈ g(n, p) for all n ∈ N.
Then 〈xn〉 has a cluster point q. Similar to Lemma 3.1, one can
verify that a c-stratifiable q space is first countable. Since a wθ
space is a q space, g is a first countable function. Then there
is a subsequence 〈xnk

〉 of 〈xn〉 such that xnk
→ q. Also, since

ynk
∈ g(k, p) for all k ∈ N, we have ynk

→ p. If p 6= q, then there is
a subsequence 〈ynki

〉 of 〈ynk
〉 such that ynki

→ p and ynki
6= q for

all i ∈ N.
Now, set K = {ynki

: i ∈ N} ∪ {p}; then K is compact and
q /∈ K and hence, there exists m ∈ N such that q /∈ h(m,K).
Since q is a cluster point of 〈xnki

〉, there is j ≥ m such that xnkj
/∈

h(m, K) ⊃ h(j,K), which implies that xnkj
/∈ h(j, ynki

) for all
i ∈ N. As a special case, xnkj

/∈ h(j, ynkj
), which contradicts the

fact that xnkj
∈ g(nkj , ynkj

) ⊂ h(j, ynkj
). The contradiction shows

that p = q and then p is a cluster point of 〈xn〉. ¤

A space X is said to have property A′ (property A, respectively)
[11] if there is a sequence 〈Vn〉 of relations on X satisfying the
following.

(1) For each x ∈ X and n ∈ N, x ∈ Vn+1(x) ⊂ Vn(x) ∈ τ .
(2) For each x ∈ X,

⋂
n∈N V 2

n (x) = {x} (
⋂

n∈N V 2
n (x) = {x},

respectively).
It is easy to see that a space X having property A′ is Hausdorff,

and similar to the proof of Lemma 3.1, one can prove that a q space
with property A′ is first countable. W. F. Lindgren and P. Fletcher
[11] proved that a wγ space which has property A′ is a γ-space.
Since a quasi-γ space is a q space and a first countable quasi-γ
space is a wγ space, we have the following.

Proposition 3.8. A quasi-γ space X that has property A′ is a γ
space.

Proposition 3.9. A quasi-Nagata space X that has property A′ is
a ks-space.

Proof: Let h be a quasi-Nagata function and let 〈Vn〉 be a se-
quence of relations satisfying the conditions of property A′. For
each x ∈ X and n ∈ N, put g(n, x) = h(n, x) ∩ Vn(x). We show
that g is a ks-function.
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Suppose that yn ∈ g(n, xn) for all n ∈ N and the sequence 〈yn〉
converges to p. Then 〈xn〉 has a cluster point q, and hence, there
exists a subsequence 〈xnk

〉 of 〈xn〉 such that xnk
∈ Vk(q) for all

k ∈ N. From ynk
∈ Vnk

(xnk
) ⊂ Vk(xnk

), it follows that ynk
∈ V 2

k (q)
for all k ∈ N.

Suppose p 6= q. Then there exists m ∈ N such that p /∈ V 2
m(q).

As yn → p, p is a cluster point of 〈ynk
〉 and thus, there is j ≥ m

such that ynj /∈ V 2
m(q) ⊃ V 2

j (q) ⊃ V 2
j (q). The contradiction shows

that p = q and thus, p is a cluster point of 〈xn〉. ¤

Proposition 3.10. (a) A θ space X that has property A is a Θ-
space. (b) A wθ space X that has property A′ is a Θ-space.

Proof: (a) Let h be a θ function and let 〈Vn〉 be a sequence of
relations satisfying the conditions of property A. For each x ∈ X
and n ∈ N, put g(n, x) = h(n, x) ∩ Vn(x).

Suppose that {p, xn} ⊂ g(n, yn) for all n ∈ N and q is a cluster
point of 〈yn〉. Then there exists a subsequence 〈ynk

〉 of 〈yn〉 such
that ynk

∈ Vk(q) for all k ∈ N. From p ∈ Vk(ynk
), it follows that

p ∈ ⋂
k∈N V 2

k (q) = {q}. Hence, p = q and then p is a cluster point
of 〈yn〉. Now, since h is a θ function, p is a cluster point of 〈xn〉.
Thus, g is a Θ function.

(b) Since property A′ implies property A, by (a), it suffices to
show that a wθ space that has property A′ is a θ-space.

Let h be a wθ function and let 〈Vn〉 be a sequence of relations
satisfying the conditions of property A′. For each x ∈ X and n ∈ N,
put g(n, x) = h(n, x) ∩ Vn(x). We show that g is a θ function.

Suppose that {p, xn} ⊂ g(n, yn) and yn ∈ g(n, p) for all n ∈ N.
Then xn ∈ V 2

n (p) for all n ∈ N. Since h is a wθ function, 〈xn〉
has a cluster point q. If p 6= q, then there exists m ∈ N such that
q /∈ V 2

m(p), and thus, there is k ≥ m such that xk /∈ V 2
m(p) ⊃ V 2

k (p),
a contradiction. Therefore, p is a cluster point of 〈xn〉 and g is a θ
function. ¤

Lemma 3.11 ([19]). For a T0 space X, the following are equivalent.

(a) X is metrizable;
(b) X is a ks γ space;
(c) X is a ks θ space.
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Statement (c) of Theorem 3.12 and (b) of Theorem 3.13 have
been proved in [19] and [16], respectively. We restate them here for
completeness.

Theorem 3.12. (a) A strongly α quasi-Nagata quasi-γ space X is
metrizable.

(b) A quasi-Nagata quasi-γ space X with a quasi-G∗
δ(2) diagonal

is metrizable.
(c) A c-stratifiable quasi-Nagata quasi-γ space X is metrizable

[18].
(d) A quasi-Nagata quasi-γ space X that has property A′ is metriz-

able.

Proof: (a) follows from Proposition 3.2, Proposition 3.3, and
Lemma 3.11.

(b) follows from Theorem 4.10 in [15], Proposition 3.5, and Lemma
3.11.

(c) has been proved in [19].
(d) follows from Proposition 3.8, Proposition 3.9, and Lemma

3.11. ¤
Theorem 3.13. (a) A strongly α quasi-Nagata wθ space X is
metrizable.

(b) A quasi-Nagata wθ space X with a quasi-G∗
δ(2) diagonal is

metrizable [16].
(c) A c-stratifiable quasi-Nagata wθ space X is metrizable.
(d) A quasi-Nagata wθ space X that has property A′ is metriz-

able.

Proof: (a) follows from Proposition 3.2, Proposition 4.7 in [20]
(a strongly α wθ space X is a θ space), and Lemma 3.11.

(b) has been proved in [16].
(c) follows from Proposition 3.6, Proposition 3.7, and Lemma

3.11.
(d) follows from Proposition 3.9, Proposition 3.10, and Lemma

3.11. ¤
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