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PRZYMUSIŃSKI’S CHARACTERIZATION OF
COUNTABLY KATĚTOV SPACES

HARUTO OHTA

Abstract. We determine a subset A of a space X such that
A×M is C-embedded in X×M for every σ-locally compact,
metric space M with w(M) ≤ κ. Using this, we give a proof
of a theorem, announced by Teodor C. Przymusiński, which
asserts that a space X is countably Katětov if and only if
X ×M is rectangularly normal for every σ-locally compact,
metric space M .

1. Introduction

A space X is called countably Katětov if it is normal and for every
closed set A in X, every countable, locally finite open cover G of A
can be extended to a locally finite open cover H of X; i.e., there is a
bijection e : G → H such that e[G]∩A = G for each G ∈ G (see [9]).
A space is called σ-locally compact if it is the union of countably
many locally compact, closed subspaces. A subset A of a space X is
said to be C-embedded in X if every real-valued continuous function
on A extends continuously over X. Recall from [8] that a product
space X×Y is rectangularly normal if every closed rectangle, i.e., a
closed set of the form A×B, in X×Y is C-embedded in X×Y . In
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148 H. OHTA

[7, Theorem 4], Teodor C. Przymusiński announced the following
theorem.

Theorem 1 (Przymusiński). The following are equivalent .

(i) X×M is rectangularly normal for every σ-locally compact,
metric space M ;

(ii) X is countably Katětov.

The implication (i) → (ii) follows from [8, Theorem 2.3], and
(ii) → (i) was proved in [7] assuming that dimM = 0. Przymusiński
stated in [7] that he has a very complicated proof that eliminates
the assumption of dim M = 0, but his proof has not appeared
anywhere until now. He also asked in [7] how to eliminate the
assumption of dimM = 0 from the proof in a reasonably simple
way. The purpose of this note is to prove the following theorem,
which implies Theorem 1 without the assumption that dimM = 0,
by applying the technique developed in [6].

Theorem 2. For a subset A of a space X and an infinite cardinal
κ, the following are equivalent .

(1) A×M is C-embedded in X×M for every σ-locally compact,
metric space M with w(M) ≤ κ;

(2) A× J(κ) is C-embedded in X × J(κ);
(3) A is C-embedded in X and every locally finite map G : ω →

T0(A)κ admits a locally finite expansion H : ω → T0(X)κ.

Here, we give the definitions of terms and symbols used in the
above theorem. A zero-set in a space X is a set of the form f−1(0)
for some real-valued continuous function f on X and a cozero-set
is the complement of a zero-set. For a space X, let T (X) denote
the set of all open sets in X and let T0(X) denote the set of all
cozero-sets in X. Let κ be an infinite cardinal. Following [6], for
a map H : Γ → T0(X)κ, we define a map 〈H, κ〉 : Γ → T (X)
by 〈H, κ〉(γ) =

⋃
α<κH(γ)(α) for γ ∈ Γ. We say that a map

H : Γ → T0(X)κ is locally finite if the family {〈H, κ〉(γ) : γ ∈ Γ}
is locally finite in X. For a subset A of a space X and two maps
G : Γ → T0(A)κ andH : Γ → T0(X)κ, we say thatH is an expansion
of G if G(γ)(α) ⊆ H(γ)(α) for every γ ∈ Γ and α < κ. Finally, let
J(κ) be the hedgehog of spininess κ, i.e., J(κ) = {θ} ∪ (κ × ω)
topologized by declaring that each point of κ × ω is isolated and
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a basic neighborhood of the point θ is a set of the form B(n) =
{θ} ∪ (κ× (ω \ n)) for n < ω (see [4, Example 4.1.5]).

In section 2, we prove Theorem 2, from which we deduce Theo-
rem 1. Section 3 is devoted to applications and remarks. Through-
out this note, |A| denotes the cardinality of a set A and ω denotes
the first infinite cardinal. As usual, a cardinal is an initial ordi-
nal and an ordinal is the set of smaller ordinals. Other terms and
notation will be used as in [4] and [5].

2. Proofs of theorems 1 and 2

Let κ be an infinite cardinal and let κ<ω =
⋃

n<ω kn. For every
σ ∈ κn and α < κ, σ α̂ ∈ κn+1 is defined by (σ α̂)|n = σ and
(σ α̂)(n) = α. For a metric space M , a map S : κ<ω → T (M) is
called a strong sieve on M if

(i) S(∅) = M ;
(ii) S(σ) =

⋃
α<κ S(σ α̂) for every σ ∈ κ<ω;

(iii) ∅ 6∈ S[κ<ω];
(iv) S[κn] is locally finite in M for every n < ω;
(v) for each z ∈ M , {Sn(z) : n < ω} is a local base at z, where

Sn(z) =
⋃{S(σ) : σ ∈ κn and z ∈ clMS(σ)}; and

(vi) diameterS(σ) ≤ 1/n for each σ ∈ κn and n < ω.
A space M is called weight-homogeneous if w(U) = w(M) for every
nonempty open set U in M . By [6, Lemma 5.5], a metric space M
has a strong sieve S : κ<ω → T (M) if it is weight-homogeneous,
nowhere locally compact, and w(M) = κ. The following lemma is
a consequence of König’s lemma and local finiteness of S[κn] for all
n < ω (see also [4, Theorem 3.2.13]).

Lemma 1. Let S : κ<ω → T (M) be a strong sieve on M . Then,
for each z ∈ M , there exists t ∈ κω such that {S(t|n) : n < ω} is a
local base at z in M .

For a space Y , we say that a map H : κ<ω → T0(Y )κ is decreas-
ing if for every σ ∈ κ<ω and α < κ, the family H(σ α̂)[κ] refines
H(σ)[κ]; i.e., each member of H(σ α̂)[κ] is included in some mem-
ber of H(σ)[κ]. For a strong sieve S : κ<ω → T (M) on M , we say
that a map H : κ<ω → T0(Y )κ is S-free if

⋂
n<ω

(clY 〈H, κ〉(t|n)× clMS(t|n)) = ∅ for every t ∈ κω.
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The following lemma, which is a special case of [6, Theorem 5.1], is
a key to our proof of Theorem 2.

Lemma 2. Let A be a C-embedded subset of a space X and let M be
a weight-homogeneous, nowhere locally compact, metric space with
w(M) = κ. Then A×M is C-embedded in X×M provided that for
every strong sieve S : κ<ω → T (M) on M , every decreasing S-free
map G : κ<ω → T0(A)κ satisfying that

(2.1) (∀σ, τ ∈ κ<ω)(if S(σ) ⊆ S(τ), then 〈G, κ〉(σ) ⊆ 〈G, κ〉(τ))

admits an S-free expansion H : κ<ω → T0(X)κ.

Remark 1. In [6, Theorem 5.1], it is not required that G satisfies
(2.1); however, we can add this condition without any change of
the proof. Indeed, the maps Gk : κ<ω → T0(A)κ, k < ω, defined in
the proof of [6, Theorem 5.1], satisfy (2.1).

Proof of Theorem 2: (1) ⇒ (2): Obvious.
(2) ⇒ (3): We use an argument similar to those in the proofs of

Proposition 2.2 in [8] and Theorem 2.1 in [11]. Let G : ω → T0(A)κ

be a locally finite map. For each n < ω and α < κ, there exist
zero-sets Zn,α,i, i < ω, in A such that G(n)(α) =

⋃
i<ω Zn,α,i. For

each i < ω, there exists a continuous function fn,α,i : A → [0, 1]
such that fn,α,i[Zn,α,i] = {1} and fn,α,i[A \ G(n)(α)] = {0}. Take a
bijection ϕ : κ× ω → κ and define a function f : A× J(κ) → [0, 1]
by

f(〈x, z〉) =

{
0 if z = θ,

fn,α,i(x) if z = 〈ϕ(α, i), n〉.
Then f is continuous by local finiteness of {〈G, κ〉(n) : n < ω}.
By (2), f extends to a continuous function g : X × J(κ) → [0, 1].
Define H : ω → T0(X)κ by

H(n)(α) =
⋃

i<ω

{x ∈ X : |g(〈x, θ〉)− g(〈x, 〈ϕ(α, i), n〉〉)| > 2/3}

for n < ω and α < κ. Since H(n)(α)∩A = G(n)(α) for each n < ω
and α < κ, H is an expansion of G. To show that H is locally finite,
let x ∈ X, and choose a neighborhood U of x in X and m < ω such
that diameter g[U × B(m)] < 1/3. Then, by the definition of H,
U ∩ 〈H, κ〉(n) = ∅ for all n ≥ m. Hence, H is locally finite.
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(3) ⇒ (1): Let M be a σ-locally compact, metric space with
w(M) ≤ κ. We have to show that A×M is C-embedded in X×M .

Claim 1. We may assume that M is a weight-homogeneous,
nowhere locally compact, σ-locally compact, metric space with
w(M) = κ.

Proof of Claim 1: We consider κ the discrete space, and let T be
the subspace of the product κω consisting of all t ∈ κω satisfying
that t(i) ≤ t(j) whenever i < j, and t|ω\n is constant for some
n < ω. Then T is a weight-homogeneous, nowhere locally compact,
σ-locally compact, metric space with weight κ, and hence, so is the
product space M0 = M×T . If we prove that A×M0 is C-embedded
in X×M0, then A×M is also C-embedded in X×M , since A×M
is homeomorphic to A×M×{t}, where t is an arbitrary fixed point
in T . Hence, we may consider the space M0 instead of M .

By Claim 1, we can apply Lemma 2. Let S : κ<ω → T (M)
be a strong sieve on M and consider a decreasing S-free map G :
κ<ω → T0(A)κ satisfying (2.1). It is enough to show that G has
an S-free expansion. Since M is a σ-locally compact, metric space,
there exist discrete collections {Mi,λ : λ < ξ(i)}, i < ω, of non-
empty compact sets such that M =

⋃
i<ω

⋃
λ<ξ(i) Mi,λ. For each

σ ∈ κ<ω, there exist unique k(σ) < ω and ψ(σ) < ξ(k(σ)) such
that clMS(σ) ∩ Mk(σ),ψ(σ) 6= ∅, and clMS(σ) ∩ Mi,λ = ∅ if either
i < k(σ), or i = k(σ) and λ < ψ(σ). For each n < ω, i < ω, and
λ < ξ(i), put

Σn(i, λ) = {σ ∈ κn : k(σ) = i, ψ(σ) = λ} and

Gn(i, λ) =
⋃
{〈G, κ〉(σ) : σ ∈ Σn(i, λ)}.

Claim 2. For each i < ω and λ < ξ(i), {Gn(i, λ) : n < ω} is
locally finite in A.

Proof of Claim 2: Fix i < ω and λ < ξ(i). For each n < ω, put

Σ∗n(i, λ) = {σ ∈ κn : clMS(σ) ∩Mi,λ 6= ∅} and

Un(i, λ) =
⋃
{〈G, κ〉(σ) : σ ∈ Σ∗n(i, λ)}.

Then Gn(i, λ) ⊆ Un(i, λ), because Σn(i, λ) ⊆ Σ∗n(i, λ). Hence, it
suffices to show that {Un(i, λ) : n < ω} is locally finite in A. If
m < n, then for each σ ∈ κn, S(σ) ⊆ S(σ|m) and 〈G, κ〉(σ) ⊆
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〈G, κ〉(σ|m) since G is decreasing, which implies that Un(i, λ) ⊆
Um(i, λ). Hence, {Un(i, λ) : n < ω} is decreasing. Now, suppose
that there exists a point x ∈ ⋂

n<ω clAUn(i, λ). Then, for each
n < ω, since Σ∗n(i, λ) is finite, there exists σn ∈ Σ∗n(i, λ) such that
x ∈ clA〈G, κ〉(σn). Since Mi,λ is compact, {S(σn) : n < ω} has
an accumulation point z ∈ M . By Lemma 1, there exists t ∈
κω such that {S(t|n) : n < ω} is a local base at z in M . Since
diameterS(σn) → 0, for each n < ω, there exists m > n such that
S(σm) ⊆ S(t|n), and thus, x ∈ clA〈G, κ〉(σm) ⊆ clA〈G, κ〉(t|n) by
(2.1). Hence,

〈x, z〉 ∈
⋂
n<ω

(clA〈G, κ〉(t|n)× clMS(t|n)),

which contradicts the fact that G is S-free. Consequently, {Un(i, λ) :
n < ω} is locally finite in A, since

⋂
n<ω clAUn(i, λ) = ∅.

Fix i < ω and λ < ξ(i) for a while. Since each Gn(i, λ) is empty
or the union of κ many cozero-sets in A, it follows from (3) that for
each n < ω, there exists a set of the form

Hn(i, λ) =
⋃
{Hσ,α : σ ∈ Σn(i, λ), α < κ}

such that G(σ)(α) ⊆ Hσ,α ∈ T0(X) for each σ ∈ Σn(i, λ) and
α < κ, and the collection {Hn(i, λ) : n < ω} is locally finite in
X. Taking such sets for all i < ω and λ < ξ(i), we define a map
H : κ<ω → T0(X)κ by

H(σ)(α) = Hσ,α for each σ ∈ κ<ω and α < κ.

This is well-defined, since each σ ∈ κ<ω belongs to the unique
Σn(i, λ). Since H is an expansion of G, it remains to show that H
is S-free. Let t ∈ κω be fixed and suppose that there exists a point
z ∈ ⋂

n<ω clMS(t|n). We have to show that

(2.2)
⋂
n<ω

clX〈H, κ〉(t|n) = ∅.

Now, there exist j < ω and µ < ξ(j) such that z ∈ Mj,µ and
z 6∈ Mi,λ if either i < j, or i = j and λ < µ. If we put F =⋃{Mi,λ : (i < j) or (i = j and λ < µ)}, then F is closed in M
and z 6∈ F . Since diameterS(t|n) → 0, there exists m < ω such
that clMS(t|n) ∩ F = ∅ for all n > m. Since z ∈ clMS(t|n) ∩Mj,µ
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for each n < ω, this means that t|n ∈ Σn(j, µ) for all n > m, and
hence,

〈H, κ〉(t|n) =
⋃
α<κ

Ht|n,α ⊆ Hn(j, µ) for all n > m.

Therefore, we have (2.2) by local finiteness of {Hn(j, µ) : n < ω},
which completes the proof. ¤

Next, we deduce Theorem 1 from Theorem 2. We need some
lemmas and definitions; the first one is due to Ernest Michael (see
[10, Theorem 4]).

Lemma 3 (Michael). Let B be a closed set in a metric space M .
Then X ×B is C-embedded in X ×M for every space X.

For an infinite cardinal κ, recall that a set is κ-open if it is the
union of less than κ many cozero-sets, and a κ-open cover is a cover
consisting of κ-open sets. The smallest cardinal greater than κ is
denoted by κ+. We consider the following three conditions on a
subspace A of a space X.

(1)κ Every locally finite map G : ω → T0(A)κ admits a locally
finite expansion H : ω → T0(X)κ;

(2)κ every countable, locally finite κ+-open cover of A can be
extended to a locally finite κ+-open cover of X;

(3)κ every countable, locally finite κ+-open cover of A can be
extended to a locally finite open cover of X.

Lemma 4. Let κ be an infinite cardinal. For a closed set A in a
normal space X, the conditions (1)κ, (2)κ, and (3)κ are equivalent
to each other.

Proof: (1)κ ⇒ (2)κ: Let G = {Gn : n < ω} be a countable,
locally finite κ+-open cover of A. Since each Gn is the union of at
most κ many cozero-sets in A, we can consider G as a locally finite
map G : ω → T0(A)κ, and thus, G has a locally finite expansion
H : ω → T0(X)κ by (1)κ. Put Hn = 〈H, κ〉(n) for each n < ω. Since
X is normal and A is closed, we may assume that Hn ∩ A = Gn

for each n < ω and we can take a cozero-set U in X such that
X \ ⋃

n<ω Hn ⊆ U and U ∩ A = ∅. Define U0 = H0 ∪ U and
Un = Hn for each n ≥ 1. Then {Un : n < ω} is a locally finite
κ+-open cover of X which extends G.

(2)κ ⇒ (3)κ: Obvious.
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(3)κ ⇒ (1)κ: Let G : ω → T0(A)κ be a locally finite map. Then
{〈G, κ〉(n) : n < ω} ∪ {A} is a κ+-open cover of A. Hence, by (3)κ,
there exists a locally finite open cover {Vn : n < ω}∪{V } of X such
that Vn ∩ A = 〈G, κ〉(n) for each n < ω and V ∩ A = A. For each
n < ω and α < κ, G(n)(α) is an Fσ-set in X, since it is a cozero-set
in A and A is closed in X. By the normality of X, we can find a
cozero-set Vn,α in X such that Vn,α ∩ A = G(n)(α) and Vn,α ⊆ Vn.
Then we obtain a locally finite expansion H : ω → T0(X)κ of G by
letting H(n)(α) = Vn,α for each n < ω and α < κ. ¤

Remark 2. Conditions (1)κ and (2)κ are not equivalent for a
C-embedded subset A of a space X (see Remark 4 below). An
essential difference between them is that if µ < κ, then (1)κ implies
(1)µ, but, in general, (2)κ does not imply (2)µ.

For an infinite cardinal κ, Kaori Yamazaki [12] defined a space
X to be (ω, κ)-Katětov if it is normal and every closed set A in
X satisfies condition (2)κ. A space X is countably Katětov if and
only if X is (ω, κ)-Katětov for κ = w(X), since every open set in
a normal space X is w(X)+-open. Hence, Theorem 1 is included
in the following theorem; the “if ” part was essentially proved by
Przymusiński [8] and also follows from [12, Theorem 3.1].

Theorem 3. Let κ be an infinite cardinal. A space X is (ω, κ)-
Katětov if and only if X × M is rectangularly normal for every
σ-locally compact, metric space M with w(M) ≤ κ.

Proof: By Lemma 3, if M is a metric space, then X × M is
rectangularly normal if and only if A×M is C-embedded in X×M
for every closed set A in X. Hence, this follows from Theorem 2
and Lemma 4. ¤

3. Applications and remarks

The following theorem, which is the case κ = ω of Theorem 2
above, improves Yamazaki [12, Corollary 2.5], where the equiva-
lences (3) ⇔ (4) ⇔ (5) were proved. Let Q denote the space of
rational numbers.

Theorem 4. For a subset A of a space X, the following are equiv-
alent .
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(1) A×M is C-embedded in X×M for every σ-locally compact,
separable, metric space M ;

(2) A×Q is C-embedded in X ×Q;
(3) A× J(ω) is C-embedded in X × J(ω);
(4) A×M is C-embedded in X ×M for some non-locally com-

pact, metric space M ;
(5) every countable, locally finite cozero-set cover of A can be

extended to a locally finite cozero-set cover of X.

Proof: It is obvious that (1) ⇒ (2) ⇒ (4).
Since every non-locally compact, metric space contains a closed

copy of J(ω), it follows from Lemma 3 that (4) implies (3).
Finally, it is not difficult to prove that if κ = ω, then condition

(3) in Theorem 2 is equivalent to condition (5) above. Hence, we
have (3) ⇒ (5) ⇒ (1) by Theorem 2. ¤

Recall from [3] that a subset A of a space X is P γ(locally finite)-
embedded in X if every locally finite partition of unity α on A with
|α| ≤ γ extends to a locally finite partition of unity on X, where γ is
an infinite cardinal. It is known ([9] and [11]) that (5) in Theorem 4
is equivalent to the statement that A is Pω(locally finite)-embedded
in X.

Corollary 1. Let A be a Pω(locally finite)-embedded subset of a
space X and let M be a σ-locally compact, separable, metric space.
Then A×M is Pω(locally finite)-embedded in X ×M .

Proof: For every σ-locally compact, separable, metric space T ,
A× (M ×T ) is C-embedded in X× (M ×T ) by Theorem 4. Hence,
A×M is Pω(locally finite)-embedded in X×M , again, by Theorem
4. ¤

The author does not know if Corollary 1 remains true if ω is
replaced by any uncountable cardinal γ.

Remark 3. Let us consider the countable sequential fan S(ω) =
((ω + 1) × ω)/({ω} × ω). There exists a perfectly normal space
X with a closed subset A such that A × S(ω) is not C-embedded
in X × S(ω). Note that every perfectly normal space is countably
Katětov, since it is countably paracompact (see also [9, Theorem
9]). Hence, in Theorem 2 and Theorem 4, the hedgehog cannot be
replaced by the sequential fan. This can be seen from the following
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fact proved by Tôru Chiba and Keiko Chiba [2]: Let Y be a space
with a point y0 such that χ(y0, Y ) > d(Y ) ≥ ω, and let {Bp : p ∈ P}
be a neighborhood base at y0 with |P | = χ(y0, Y ). On the other
hand, let X be the perfectly normal space constructed from the
uncountable set P in [1, Example H], and let XP = {xp : p ∈ P}
be the closed discrete set of nonisolated points in X. In part (i) of
the proof of Theorem 3 in [2], they proved that disjoint closed sets

C = XP × {y0} and D =
⋃

p∈P

({xp} × (Y \Bp))

in X×Y cannot be separated by disjoint open sets in X×Y . Now,
consider the space S(ω) as the space Y above, and let y0 be the
unique non-isolated point in S(ω). Then χ(y0, S(ω)) > d(S(ω)) =
ω. Since the sets C and D are disjoint zero-sets in XP × S(ω), it
follows from [5, Theorem 1.18] that XP × S(ω) is not C-embedded
in X × S(ω).

Remark 4. We show that for every uncountable cardinal κ with
uncountable cofinality, there is an example of a closed C-embedded
subset A of a space X which satisfies condition (2)κ but not (1)κ.
This answers Yamazaki’s question in [12, Remark 2.4(a)] negatively.

Fix an uncountable cardinal κ with uncountable cofinality. We
consider a cardinal a space with the usual order topology. First,
we show that if there exists a space Q, with |Q| = κ, having a
point q and a countable, locally finite collection {Gn : n < ω} of
cozero-sets in Q \ {q} satisfying conditions (a), (b), and (c) below,
then we have a required example.

(a) Q \ {q} is C-embedded in Q;
(b) for each n < ω, there is a homeomorphism ψn : κ×ω → Gn

such that every neighborhood of q in Q intersects ψn[(κ \
α)× (ω \ i)] for each α < κ and each i < ω; and

(c) there exists a collection {Oα : α < κ} of open-closed sets in
Q such that Oβ ⊆ Oα whenever α < β, and

⋂
α<κ Oα = {q}.

Assume that such a space Q exists. Then, we define

X = (Q× (κ + 1)) \ {〈q, κ〉} and A = (Q× {κ}) ∩X.

Since A is C-embedded in Q× {κ} by (a) and Q× {κ} is a retract
of Q× (κ + 1), A is C-embedded in X. First, we show that A does
not satisfy (1)κ. Since (1)κ implies (1)ω, it is enough to show that
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the locally finite collection {Gn × {κ} : n < ω} of cozero-sets in
A cannot be extended to any locally finite collection of cozero-sets
in X. Suppose on the contrary that there exists a locally finite
collection {Hn : n < ω} of cozero-sets in X such that Hn ∩ A =
Gn × {κ} for each n < ω. Note that every real-valued continuous
function on κ2 is constant on (κ \ α)2 for some α < κ, since the
cofinality of κ is uncountable. Thus, for each n < ω and each i < ω,
we can find αn,i < κ such that

(3.1) ψn[(κ \ αn,i)× {i}]× (κ \ αn,i) ⊆ Hn.

Put α = sup{αn,i : n < ω, i < ω}. Then α < κ, and by (b),
〈q, α〉 ∈ clXHn for each n < ω, which contradicts local finiteness
of {Hn : n < ω}. Next, to prove that A satisfies (2)κ, note that
every open set in A or X is κ+-open in A or X, respectively, since
|X| = κ. Hence, it suffices to show that every countable, locally
finite open cover {Un : n < ω} of A can be extended to a locally
finite open cover of X. For each n < ω, put Vn = pr−1

Q [prQ[Un]],
where prQ is the projection from Q× (κ + 1) to Q. Then each Vn

is open in X and {Vn : n < ω} is locally finite at each point of
X \ ({q} × κ). Put

K =
⋃
α<κ

(Oα × α) and

L =
⋃
α<κ

((Q \Oα)× ((κ + 1) \ (α + 1))).

Then K and L are disjoint open sets in X such that {q} × κ ⊆ K
and A ⊆ L. Thus, putting W0 = V0 ∪ (X \A) and Wn = Vn ∩L for
each n > 0, we obtain a locally finite open cover {Wn : n < ω} of
X such that Wn ∩A = Un for each n < ω.

Finally, we show that such a space Q exists. Let P be the quo-
tient space obtained from (κ+ 1)2 \ ({κ}×ω) by identifying points
〈α, ω〉 and 〈α, κ〉 for each α ≤ κ. As a set, P can be written as

P = (κ + 1)2 \ (((κ + 1)× {ω}) ∪ ({κ} × ω)).

When we write P as above, a basic neighborhood of a point 〈α, κ〉
for α ≤ κ is a set of the form

Bβ,γ,n = [((α + 1) \ (β + 1))× (((κ + 1) \ (γ + 1)) ∪ (ω \ n))] ∩ P
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for β < α, γ < κ, and n < ω, and P \ ((κ + 1) × {κ}) has the
subspace topology induced from the product topology on (κ + 1)2.
Put p = 〈κ, κ〉, G = κ× ω, and

Nα = [((κ + 1) \ (α + 1))× (((κ + 1) \ (α + 1)) ∪ ω)] ∩ P

for each α < κ. Then, by a reason similar to that of (3.1), P \ {p}
is C-embedded in P . Moreover, G is a cozero-set in P and {Nα :
α < κ} is a decreasing family of open-closed sets in P such that⋂

α<κ Nα = {p}. Finally, let Q be the quotient space obtained from
P × ω by collapsing the set {〈〈κ, α〉, n〉 : n < ω} to a point qα for
each α with ω < α ≤ κ, and ϕ : P × ω → Q the quotient map.
Put q = qκ, Gn = ϕ[G× {n}] for each n < ω, and Oα = ϕ[Nα × ω]
for each α < κ. Then {Gn : n < ω} is a countable, locally finite
collection of cozero-sets in Q \ {q}, and Oα is open-closed in Q for
each α < κ. The proof that Q, q, {Gn : n < ω}, and {Oα : α < κ}
satisfy conditions (a), (b), and (c) is left to the reader.
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COUNTABLY KATĚTOV SPACES 159
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