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PRZYMUSINSKI’S CHARACTERIZATION OF
COUNTABLY KATETOV SPACES

HARUTO OHTA

ABSTRACT. We determine a subset A of a space X such that
A x M is C-embedded in X x M for every o-locally compact,
metric space M with w(M) < k. Using this, we give a proof
of a theorem, announced by Teodor C. Przymusinski, which
asserts that a space X is countably Katétov if and only if
X X M is rectangularly normal for every o-locally compact,
metric space M.

1. INTRODUCTION

A space X is called countably Katétovif it is normal and for every
closed set A in X, every countable, locally finite open cover G of A
can be extended to a locally finite open cover H of X; i.e., there is a
bijection e : G — H such that e[G]N A = G for each G € G (see [9]).
A space is called o-locally compact if it is the union of countably
many locally compact, closed subspaces. A subset A of a space X is
said to be C'-embedded in X if every real-valued continuous function
on A extends continuously over X. Recall from [8] that a product
space X XY is rectangularly normal if every closed rectangle, i.e., a
closed set of the form A x B, in X xY is C-embedded in X xY. In
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148 H. OHTA

[7, Theorem 4], Teodor C. Przymusiniski announced the following
theorem.

Theorem 1 (Przymusiniski). The following are equivalent.

(i) X x M is rectangularly normal for every o-locally compact,
metric space M;
(ii) X is countably Katétov.

The implication (i) — (ii) follows from [8, Theorem 2.3], and
(ii) — (i) was proved in [7] assuming that dim M = 0. Przymusiriski
stated in [7] that he has a very complicated proof that eliminates
the assumption of dim M = 0, but his proof has not appeared
anywhere until now. He also asked in [7] how to eliminate the
assumption of dim M = 0 from the proof in a reasonably simple
way. The purpose of this note is to prove the following theorem,
which implies Theorem 1 without the assumption that dim M = 0,
by applying the technique developed in [6].

Theorem 2. For a subset A of a space X and an infinite cardinal
K, the following are equivalent.

(1) AxM is C-embedded in X x M for every o-locally compact,
metric space M with w(M) < k;

(2) A x J(k) is C-embedded in X x J(k);

(3) A is C-embedded in X and every locally finite map G : w —
To(A)" admits a locally finite expansion H : w — To(X)".

Here, we give the definitions of terms and symbols used in the
above theorem. A zero-set in a space X is a set of the form f~1(0)
for some real-valued continuous function f on X and a cozero-set
is the complement of a zero-set. For a space X, let 7(X) denote
the set of all open sets in X and let 7yp(X) denote the set of all
cozero-sets in X. Let x be an infinite cardinal. Following [6], for
amap H : I' — 75(X)", we define a map (H,k) : I' — 7(X)
by (H,65)(7) = Uger H(¥)(a) for v € I'. We say that a map
H: T — To(X)" is locally finite if the family {(H,x)(y) : v € T'}
is locally finite in X. For a subset A of a space X and two maps
G:T - Ty(A)fand H : T — To(X)", we say that H is an expansion
of G if G(v)(a) C H(y)(«) for every v € I' and o < k. Finally, let
J(k) be the hedgehog of spininess k, i.e., J(k) = {0} U (k X w)
topologized by declaring that each point of kK X w is isolated and
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a basic neighborhood of the point € is a set of the form B(n) =
{6} U (k x (w\n)) for n <w (see [4, Example 4.1.5]).

In section 2, we prove Theorem 2, from which we deduce Theo-
rem 1. Section 3 is devoted to applications and remarks. Through-
out this note, |A| denotes the cardinality of a set A and w denotes
the first infinite cardinal. As usual, a cardinal is an initial ordi-
nal and an ordinal is the set of smaller ordinals. Other terms and
notation will be used as in [4] and [5].

2. PROOFS OF THEOREMS 1 AND 2

Let x be an infinite cardinal and let k<% = J,,_, k. For every
o € k" and a < K, 0’a € K" is defined by (0°a)|, = o and
(c°a)(n) = a. For a metric space M, a map S : k<% — T (M) is
called a strong sieve on M if
(i) S(0) = M;
(ii) ( )= Ua<,{ S(o’a) for every o € K<
(iii) 0 & S[=*];
(iv) [ "] is locally finite in M for every n < w;
(v) for each z € M, {S,(z) : n < w} is a local base at z, where
w(2) = U{S(o ) o€ k" and z € clyS(o)}; and
(vi) diameter S(o) < 1/n for each o € k" and n < w.

A space M is called weight-homogeneous if w(U) = w(M) for every
nonempty open set U in M. By [6, Lemma 5.5], a metric space M
has a strong sieve S : k<% — T (M) if it is weight-homogeneous,
nowhere locally compact, and w(M) = k. The following lemma is
a consequence of Konig’s lemma and local finiteness of S[k"] for all
n < w (see also [4, Theorem 3.2.13]).

H‘C/)S*C/)

C/)

Lemma 1. Let S : k<% — T (M) be a strong sieve on M. Then,
for each z € M, there exists t € k* such that {S(t|,) : n < w} is a
local base at z in M.

For a space Y, we say that a map H : k<% — To(Y)" is decreas-
ing if for every o € k<% and a < k, the family H (o «)[x] refines
H(o)[k]; i.e., each member of H(o «)[k] is included in some mem-
ber of H(o)[k]. For a strong sieve S : k< — T (M) on M, we say
that a map H : k<¥ — To(Y)" is S-free if

ﬂ (cly (H, k)(t]n) x clprS(t])) =0 for every t € .

n<w
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The following lemma, which is a special case of [6, Theorem 5.1], is
a key to our proof of Theorem 2.

Lemma 2. Let A be a C-embedded subset of a space X and let M be
a weight-homogeneous, nowhere locally compact, metric space with
w(M) = k. Then Ax M is C-embedded in X x M provided that for
every strong sieve S : k<% — T (M) on M, every decreasing S-free
map G : K<Y — To(A)" satisfying that

(2.1) (Vo7 € s7¥)(if S(0) € S(7), then (G, k)(0) C(G,K)(T))
admits an S-free expansion H : k<Y — To(X)".

Remark 1. In [6, Theorem 5.1], it is not required that G satisfies
(2.1); however, we can add this condition without any change of
the proof. Indeed, the maps G : k<% — Ty(A)", k < w, defined in
the proof of [6, Theorem 5.1], satisfy (2.1).

Proof of Theorem 2: (1) = (2): Obvious.

(2) = (3): We use an argument similar to those in the proofs of
Proposition 2.2 in [8] and Theorem 2.1 in [11]. Let G : w — Zo(A)"
be a locally finite map. For each n < w and «a < k, there exist
zero-sets Zy o4, i < w, in A such that G(n)(a) = U, Zn,a,i- For
each i < w, there exists a continuous function fy, 4; : A — [0,1]
such that f, a.i[Znai = {1} and f 0,i[A\ G(n)(a)] = {0}. Take a
bijection ¢ : kK X w — k and define a function f: A x J(k) — [0, 1]
by
0 if z=20,
frai(z) if 2= (p(a,i),n).

Then f is continuous by local finiteness of {(G,k)(n) : n < w}.
By (2), f extends to a continuous function g : X x J(k) — [0,1].
Define H : w — 7o(X)" by

H(n)(a) = | J {z € X : |g((2.9)) — 9((z. (p(a,i),n)))| > 2/3}

1<w

f(z,2)) = {

for n < w and a < k. Since H(n)(a) N A = G(n)(a) for each n < w
and a < K, H is an expansion of G. To show that H is locally finite,
let z € X, and choose a neighborhood U of z in X and m < w such
that diameter g[U x B(m)] < 1/3. Then, by the definition of H,
UN(H,rk)(n) =0 for all n > m. Hence, H is locally finite.
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(3) = (1): Let M be a o-locally compact, metric space with
w(M) < k. We have to show that A x M is C-embedded in X x M.

CrLAM 1. We may assume that M is a weight-homogeneous,
nowhere locally compact, o-locally compact, metric space with
w(M) = k.

Proof of Claim 1: We consider k the discrete space, and let T" be
the subspace of the product k“ consisting of all t € xk“ satisfying
that ¢(i) < #(j) whenever i < j, and t,\, is constant for some
n < w. Then T is a weight-homogeneous, nowhere locally compact,
o-locally compact, metric space with weight x, and hence, so is the
product space My = M xT. If we prove that A x M is C-embedded
in X x My, then A x M is also C-embedded in X x M, since A x M
is homeomorphic to A x M x {t}, where ¢ is an arbitrary fixed point
in T. Hence, we may consider the space My instead of M.

By Claim 1, we can apply Lemma 2. Let S : k< — T (M)
be a strong sieve on M and consider a decreasing S-free map G :
K<Y — To(A)" satisfying (2.1). It is enough to show that G has
an S-free expansion. Since M is a o-locally compact, metric space,
there exist discrete collections {M;  : A < £(i)}, ¢ < w, of non-
empty compact sets such that M = U, Uy<¢() Mix. For each
o € k<%, there exist unique k(0) < w and (o) < &(k(o)) such
that cly/S(o) N Mk(g)ﬂz,(g) # 0, and clpS(o) N M; \ = () if either
i < k(o), ori=Fk(c)and A\ < ¢(o). For each n < w, i < w, and
A < (i), put

Yn(i,\) ={oc € k" : k(o) =i,¢(0) = A} and
Gn(i,N) = | J{(G. k)(0) 1 0 € Tuli, A)}.
CrLAamM 2. For each i < w and A < £(7), {Gn(i,A) 1 n < w} is
locally finite in A.
Proof of Claim 2: Fix i < w and A < £(i). For each n < w, put
X5 (1, A) ={o € k" : clyS(o) N M; \ # 0} and
Un(i, A) = J{(G, k) (o) : 0 € T4, M)}

Then G, (i,A) C Up(i,\), because ¥, (i,\) C ¥ (i, ). Hence, it
suffices to show that {U,(i,\) : n < w} is locally finite in A. If
m < n, then for each o € k", S(o) C S(o|n) and (G, k)(c) C
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(G,K)(0|m) since G is decreasing, which implies that Up(i,\) C
Un(i,A). Hence, {U,(i,\) : n < w} is decreasing. Now, suppose
that there exists a point € (), ., claUy(i,A). Then, for each
n < w, since ¥ (i, \) is finite, there exists o, € 37 (i, A) such that
z € cla(G,k)(op). Since M; ) is compact, {S(op) : n < w} has
an accumulation point z € M. By Lemma 1, there exists t €
k¥ such that {S(t|,) : n < w} is a local base at z in M. Since
diameter S(o,,) — 0, for each n < w, there exists m > n such that
S(om) C S(t]p), and thus, z € cla(G, k)(om) C cla(G, k)(t]n) by
(2.1). Hence,

(2, 2) € () (alG, m) (tla) X clarS(tla),
n<w
which contradicts the fact that G is S-free. Consequently, {U,, (i, \) :
n < w} is locally finite in A, since (), claU, (i, \) = 0.
Fix i <w and A < £(i) for a while. Since each G, (i, A) is empty
or the union of kK many cozero-sets in A, it follows from (3) that for
each n < w, there exists a set of the form

Hy(i,A) = | {Hon : 0 € Tn(i, V), < K}

such that G(o)(o) € Hyn € 7o(X) for each 0 € %,(i,\) and
a < K, and the collection {H,(i,\) : n < w} is locally finite in
X. Taking such sets for all i < w and A\ < £(i), we define a map
H: k<Y — To(X)" by

H(o)(a) = Hy o for each o0 € k< and o < k.

This is well-defined, since each ¢ € xk<“ belongs to the unique
Y, (i, A). Since H is an expansion of G, it remains to show that H
is S-free. Let t € k¥ be fixed and suppose that there exists a point
2 € (<o lrS(t],). We have to show that

(2.2) ﬂ clx (H, k) (t],) = 0.

n<w
Now, there exist j < w and p < &(j) such that z € M;, and
z & M, if either ¢ < j, or i = j and A < p. If we put F' =
U{M;» : (i < j)or (i =jand A < p)}, then F is closed in M
and z ¢ F. Since diameter S(t|,) — 0, there exists m < w such
that clpS(t),) N F = 0 for all n > m. Since z € clyS(t],) N M,
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for each n < w, this means that t|, € X, (j,p) for all n > m, and
hence,

(M, k) (tn) = U Ht\n,oz C Hn(j,p) foralln>m.

a<K
Therefore, we have (2.2) by local finiteness of {H,,(j, 1) : n < w},
which completes the proof. ]

Next, we deduce Theorem 1 from Theorem 2. We need some
lemmas and definitions; the first one is due to Ernest Michael (see
[10, Theorem 4]).

Lemma 3 (Michael). Let B be a closed set in a metric space M.
Then X x B is C-embedded in X x M for every space X.

For an infinite cardinal k, recall that a set is x-open if it is the
union of less than x many cozero-sets, and a k-open cover is a cover
consisting of k-open sets. The smallest cardinal greater than k is
denoted by k™. We consider the following three conditions on a
subspace A of a space X.
(1), Every locally finite map G : w — 7p(A)" admits a locally
finite expansion H : w — 7o(X)";

(2)x every countable, locally finite xT-open cover of A can be
extended to a locally finite x™-open cover of X;

(3)x every countable, locally finite xT-open cover of A can be
extended to a locally finite open cover of X.

Lemma 4. Let k be an infinite cardinal. For a closed set A in a
normal space X, the conditions (1), (2)x, and (3)x are equivalent
to each other.

Proof: (1), = (2)x: Let G = {Gy, : n < w} be a countable,
locally finite x*-open cover of A. Since each G, is the union of at
most k many cozero-sets in A, we can consider G as a locally finite
map G : w — Tyo(A)", and thus, G has a locally finite expansion
H:w— To(X)" by (1)s. Put H, = (H, k)(n) for each n < w. Since
X is normal and A is closed, we may assume that H, N A = G,
for each n < w and we can take a cozero-set U in X such that
X\ UpcwHn €U and UNA = (. Define Uy = Hy UU and
U, = H, for each n > 1. Then {U, : n < w} is a locally finite
kT-open cover of X which extends G.

(2)x = (3)x: Obvious.
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(3)k = (1)x: Let G: w — To(A)" be a locally finite map. Then
{{G,k)(n) : n <w}U{A} is a kt-open cover of A. Hence, by (3),
there exists a locally finite open cover {V,, : n < w}U{V'} of X such
that V,, N A = (G, k)(n) for each n < w and VN A = A. For each
n <wand a < kK, G(n)(a) is an Fy-set in X, since it is a cozero-set
in A and A is closed in X. By the normality of X, we can find a
cozero-set Vj, o in X such that V;, o N A = G(n)(a) and V,, o C V.
Then we obtain a locally finite expansion H : w — 7o(X)" of G by
letting H(n)(a) = Vj,o for each n < w and a < k. O

Remark 2. Conditions (1), and (2), are not equivalent for a
C-embedded subset A of a space X (see Remark 4 below). An
essential difference between them is that if 4 < &, then (1), implies
(1), but, in general, (2),, does not imply (2),,.

For an infinite cardinal x, Kaori Yamazaki [12] defined a space
X to be (w, k)-Katétov if it is normal and every closed set A in
X satisfies condition (2),. A space X is countably Katétov if and
only if X is (w,k)-Katétov for kK = w(X), since every open set in
a normal space X is w(X)"-open. Hence, Theorem 1 is included
in the following theorem; the “if” part was essentially proved by
Przymusinski [8] and also follows from [12, Theorem 3.1].

Theorem 3. Let k be an infinite cardinal. A space X is (w,K)-
Katétov if and only if X x M is rectangularly normal for every
o-locally compact, metric space M with w(M) < k.

Proof: By Lemma 3, if M is a metric space, then X x M is
rectangularly normal if and only if A x M is C-embedded in X x M
for every closed set A in X. Hence, this follows from Theorem 2
and Lemma 4. O

3. APPLICATIONS AND REMARKS

The following theorem, which is the case kK = w of Theorem 2
above, improves Yamazaki [12, Corollary 2.5], where the equiva-
lences (3) < (4) < (5) were proved. Let Q denote the space of
rational numbers.

Theorem 4. For a subset A of a space X, the following are equiv-
alent.
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(1) Ax M is C-embedded in X x M for every o-locally compact,
separable, metric space M

(2) A xQ is C-embedded in X x Q;

(3) A x J(w) is C-embedded in X x J(w);

(4) Ax M is C-embedded in X x M for some non-locally com-
pact, metric space M,

(5) every countable, locally finite cozero-set cover of A can be
extended to a locally finite cozero-set cover of X.

Proof: 1t is obvious that (1) = (2) = (4).
Since every non-locally compact, metric space contains a closed
copy of J(w), it follows from Lemma 3 that (4) implies (3).

Finally, it is not difficult to prove that if k = w, then condition
(3) in Theorem 2 is equivalent to condition (5) above. Hence, we
have (3) = (5) = (1) by Theorem 2. O

Recall from [3] that a subset A of a space X is P7(locally finite)-
embedded in X if every locally finite partition of unity o on A with
|a] < v extends to a locally finite partition of unity on X, where ~ is
an infinite cardinal. It is known ([9] and [11]) that (5) in Theorem 4
is equivalent to the statement that A is P“(locally finite)-embedded
in X.

Corollary 1. Let A be a P“(locally finite)-embedded subset of a
space X and let M be a o-locally compact, separable, metric space.
Then A x M is P“(locally finite)-embedded in X x M.

Proof: For every o-locally compact, separable, metric space T,
Ax (M xT) is C-embedded in X x (M xT) by Theorem 4. Hence,
Ax M is P¥(locally finite)-embedded in X x M, again, by Theorem
4. O

The author does not know if Corollary 1 remains true if w is
replaced by any uncountable cardinal ~.

Remark 3. Let us consider the countable sequential fan S(w) =
((w+1) x w)/({w} x w). There exists a perfectly normal space
X with a closed subset A such that A x S(w) is not C-embedded
in X x S(w). Note that every perfectly normal space is countably
Katétov, since it is countably paracompact (see also [9, Theorem
9]). Hence, in Theorem 2 and Theorem 4, the hedgehog cannot be
replaced by the sequential fan. This can be seen from the following
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fact proved by Toru Chiba and Keiko Chiba [2]: Let Y be a space
with a point y such that x(yo,Y) > d(Y) > w, and let {B,, : p € P}
be a neighborhood base at yo with |P| = x(y0,Y). On the other
hand, let X be the perfectly normal space constructed from the
uncountable set P in [1, Example H|, and let Xp = {z, : p € P}
be the closed discrete set of nonisolated points in X. In part (i) of
the proof of Theorem 3 in [2], they proved that disjoint closed sets

C=Xpx{y} and D= U({l“p} x (Y'\ Bp))
peP

in X xY cannot be separated by disjoint open sets in X x Y. Now,
consider the space S(w) as the space Y above, and let yy be the
unique non-isolated point in S(w). Then x(yo, S(w)) > d(S(w)) =
w. Since the sets C' and D are disjoint zero-sets in Xp x S(w), it
follows from [5, Theorem 1.18] that Xp x S(w) is not C-embedded
in X x S(w).

Remark 4. We show that for every uncountable cardinal x with
uncountable cofinality, there is an example of a closed C-embedded
subset A of a space X which satisfies condition (2),, but not (1).
This answers Yamazaki’s question in [12, Remark 2.4(a)] negatively.

Fix an uncountable cardinal xk with uncountable cofinality. We
consider a cardinal a space with the usual order topology. First,
we show that if there exists a space @, with |@Q| = &, having a
point ¢ and a countable, locally finite collection {G,, : n < w} of
cozero-sets in @ \ {q} satisfying conditions (a), (b), and (c) below,
then we have a required example.

(a) Q\ {q} is C-embedded in Q;

(b) for each n < w, there is a homeomorphism v, : K X w — G,
such that every neighborhood of ¢ in @ intersects 1, [(k \
a) X (w\ )] for each a < k and each i < w; and

(c) there exists a collection {O, : a < k} of open-closed sets in
@ such that Og C O, whenever a < 3, and [, Oa = {q}.

Assume that such a space () exists. Then, we define

X =(@x(r+1))\{{g,x)} and A=(Qx{r})NX.

Since A is C-embedded in @ x {x} by (a) and @ x {k} is a retract
of @ x (k+1), Ais C-embedded in X. First, we show that A does
not satisfy (1).. Since (1), implies (1),, it is enough to show that
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the locally finite collection {G,, x {k} : n < w} of cozero-sets in
A cannot be extended to any locally finite collection of cozero-sets
in X. Suppose on the contrary that there exists a locally finite
collection {H,, : n < w} of cozero-sets in X such that H, N A =
Gy, x {k} for each n < w. Note that every real-valued continuous
function on x? is constant on (x \ a)? for some a < &, since the
cofinality of x is uncountable. Thus, for each n < w and each i < w,
we can find «,; < & such that

(3.1) Yn[(k\ ani) X {i}] x (k\ an,i) C Hp.

Put o = sup{ay; : n < w,i < w}. Then o < &, and by (b),
(q,a) € clxH, for each n < w, which contradicts local finiteness
of {H, : n < w}. Next, to prove that A satisfies (2)., note that
every open set in A or X is k-open in A or X, respectively, since
|X| = k. Hence, it suffices to show that every countable, locally
finite open cover {U,, : n < w} of A can be extended to a locally
finite open cover of X. For each n < w, put V,, = prél[prQ[Un]],
where prg, is the projection from @ x (k + 1) to Q. Then each V,,
is open in X and {V,, : n < w} is locally finite at each point of
X\ ({¢} x k). Put

K = U(Oaxa) and
a<k

L=[J(@Q\0a) x (+ 1)\ (a+1))).

a<k

Then K and L are disjoint open sets in X such that {¢} x Kk C K
and A C L. Thus, putting Wy = VU (X \ A) and W,, =V, N L for
each n > 0, we obtain a locally finite open cover {W,, : n < w} of
X such that W,, " A = U, for each n < w.

Finally, we show that such a space () exists. Let P be the quo-
tient space obtained from (k+1)2\ ({x} x w) by identifying points
(o,w) and (a, k) for each oo < k. As a set, P can be written as

P = (k+ 1"\ (s +1) x {w}) U ({x} x w)).

When we write P as above, a basic neighborhood of a point («, k)
for o < kK is a set of the form

Bgyn=[((a+ D\ (B+1) x (r+ D\ (v +1))U(w\n)]NP
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for 0 < o, v < kK, and n < w, and P\ ((k + 1) x {k}) has the
subspace topology induced from the product topology on (x + 1)2.
Put p = (k,k), G = k X w, and

No=[((r+ D\ (a+1)) x (r+ D\ (a+1D)Uw)]NP

for each @ < k. Then, by a reason similar to that of (3.1), P\ {p}
is C-embedded in P. Moreover, G is a cozero-set in P and {N, :
a < k} is a decreasing family of open-closed sets in P such that
Na<r Na = {p}. Finally, let Q be the quotient space obtained from
P x w by collapsing the set {{{k,a),n) : n < w} to a point g, for
each a with w < a < k, and ¢ : P X w — @ the quotient map.
Put ¢ = g, Gy, = ¢[G x {n}] for each n < w, and O, = ¢[N, X w]
for each @ < k. Then {G,, : n < w} is a countable, locally finite
collection of cozero-sets in @ \ {¢}, and O, is open-closed in @ for
each a < k. The proof that @, q, {G,, : n < w}, and {O, : @ < K}
satisfy conditions (a), (b), and (c) is left to the reader.
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