

http://topology.auburn.edu/tp/

The Smallest Ideal of $(\beta \mathbb{N}, \cdot)$

by

Gugu Moche and Gosekwang Moremedi

Electronically published on June 8, 2009

Topology Proceedings

Web:	http://topology.auburn.edu/tp/
Mail:	Topology Proceedings
	Department of Mathematics & Statistics
	Auburn University, Alabama 36849, USA
E-mail:	topolog@auburn.edu
ISSN:	0146-4124
COPYRIGHT © by Topology Proceedings. All rights reserved.	

E-Published on June 8, 2009

THE SMALLEST IDEAL OF $(\beta \mathbb{N}, \cdot)$

GUGU MOCHE AND GOSEKWANG MOREMEDI

ABSTRACT. In this paper we are concerned with the semigroup $(\beta \mathbb{N}, +)$. As with any compact (Hausdorff) right topological semigroup, $(\beta \mathbb{N}, +)$ has a smallest two sided ideal $K(\beta \mathbb{N}, +)$. Known results about this ideal will be presented in Section 2.

By way of contrast, not much has been known about the smallest ideal of $(\beta \mathbb{N}, \cdot)$. In Theorem 3.2 in Section 3, we will present one such result. In particular, in this theorem, we will show that each maximal subgroup of $K(\beta \mathbb{N}, \cdot)$ contains a copy of the free group on $2^{\mathfrak{c}}$ generators.

1. INTRODUCTION

The structure of $K(\beta S)$ yields many significant consequences in that part of combinatorics known as *Ramsey Theory*. An example of such application is provided by the Finite Sums Theorem. This theorem states that whenever \mathbb{N} is partitioned into finitely many classes (or finitely colored), there is a sequence $\langle x_n \rangle_{n=1}^{\infty}$ with $FS(\langle x_n \rangle_{n=1}^{\infty})$ contained in one class (or monochrome). (Here $FS(\langle x_n \rangle_{n=1}^{\infty}) = \{\sum_{n \in F} x_n : F \text{ is a finite nonempty subset of } \mathbb{N}\}$). The initial proof did not use $\beta \mathbb{N}$ and was complex. A simpler proof using the algebraic structure of $\beta \mathbb{N}$ was provided in 1975 by Galvin and Glazer.

²⁰⁰⁰ Mathematics Subject Classification. 22A15, 54D35.

Key words and phrases. Topological semigroups, Stone-Čech compactification of semigroups, smallest ideal of $\beta \mathbb{N}$.

^{©2009} Topology Proceedings.

Given a discrete semigroup (S,+), one can extend the operation + to βS , the Stone-Čech compactification of S, so that $(\beta S, +)$ becomes a right topological semigroup with S contained in its topological center. That is, for each $p \in \beta S$, the function $\rho_p : \beta S \to \beta S$, defined by $\rho_p(q) = q + p$, is continuous and for each $x \in S$, the function $\lambda_x : \beta S \to \beta S$ defined by $\lambda_x(p) = x + p$ is continuous. We take βS to be the set of ultrafilters on S and identify the principal ultrafilters with the points of βS .

To explain the topology of βS , choose sets of the form $\overline{A} = \{p \in \beta S : A \in p\}$, where $A \subseteq S$, as a base for the open sets. In the semigroup $(\beta S, +)$, given $p,q \in \beta S$ and $A \subseteq S$, one has that $A \in p + q$ if and only if $\{x \in S : -x + A \in q\} \in p$ where $-x + A = \{s \in S : x + s \in A\}$. It should be noted that even though we are denoting the operation by + because we will be concerned with the semigroup $(\beta \mathbb{N}, +), (\beta S, +)$ is almost never commutative.

Since we are concerned with the semigroup $(\beta \mathbb{N}, +)$, as with any compact (Hausdorff) right topological semigroup, $(\beta \mathbb{N}, +)$ has a smallest two sided ideal $K(\beta \mathbb{N}, +)$. Known results about this ideal will be presented in Section 2.

By way of contrast, not much has been known about the smallest ideal of $(\beta \mathbb{N}, \cdot)$. In Section 3 we will present one such result. In Theorem 3.2, we will show that each maximal subgroup of $K(\beta \mathbb{N}, \cdot)$ contains a copy of the free group on 2^c generators. It should be noted that a more general version of of this theorem was obtained independently in [5, Theorem 4.17].

Acknowledgement

We thank Prof. Mamokghethi Setati, the Executive Dean of the College of Science, Engineering, and Technology at the University of South Africa for creating a working environment that promotes research. The second author acknowledges the NRF (South Africa) for financial support through grant TTK2006062800025.

2. Definitions and Preliminary Results

In this section we review some well-known definitions and facts that we shall use in Section 3.

84

Notation.

- (a) Given a set A, $\mathcal{P}_f(A) = \{F : \emptyset \neq F \subseteq A \text{ and } F \text{ is finite } \}.$
- (b) $\mathbb{N}\mathbb{N} = \{f: f: \mathbb{N} \to \mathbb{N}\}.$
- (c) $[A]^k = \{B \subseteq A : |B| = k\}.$

Definition 2.1. Let (S, +) be a semigroup.

- (a) L is a *left ideal* of S if and only if $\emptyset \neq L \subseteq S$ and $S + L \subseteq L$.
- (b) R is a right ideal of S if and only if $\emptyset \neq R \subseteq S$ and $R+S \subseteq R$.
- (c) I is an *ideal* of S if and only if I is both a left ideal and a right ideal of S.

Definition 2.2. Let (S, +) be a semigroup.

- (a) L is a minimal left ideal of S if and only if L is a left ideal of S and whenever J is a left ideal of S and $J \subseteq L$ one has J = L.
- (b) R is a minimal right ideal of S if and only if R is a right ideal of S and whenever J is a right ideal of S and $J \subseteq R$ one has J = L.
- (c) S is left simple if and only if S is a minimal left ideal of S.
- (d) S is right simple if and only if S is a minimal right ideal of S.
- (e) S is simple if and only if the only ideal of S is S.

The following theorems give characterizations of the smallest two sided ideal of a compact right topological semigroup.

Theorem 2.3. If S is any compact right topological semigroup, then S has a smallest two sided ideal K(S) which satisfies the following statements.

- (a) $K(S) = \bigcup \{R : R \text{ is a minimal right ideal of } S\}$.
- (b) $K(S) = \bigcup \{L : L \text{ is a minimal right ideal of } S\}.$
- (c) If L is a minimal left ideal and R is a minimal right ideal, then $L \cap R$ is a maximal subgroup of K(S) and all maximal subgroups of K(S) are of this form.
- (d) All maximal subgroups of S contained in K(S) are isomorphic.
- (e) All maximal subgroups of S contained in in the same minimal right ideal are isomorphic and homeomorphic via the same function.

Proof. [8, Theorems 1.64, 2.8, and 2.11].

Theorem 2.4. Let S be a semigroup with a minimal left ideal L, and a minimal right ideal R. Then $RL = R \cap L$ is a group and if e denotes the identity of RL, then R = eS, L = Se and RL = eSe.

Proof. Clearly, $RL \subseteq R \cap L$. Also, RL is a semigroup since $(RL)(RL) = R(LRL) \subseteq RL$. Let $s \in RL$. Then $s \in L$, so Ls = L [1, Theorem 1.2.4(ii)] and hence RLs = RL. Similarly, sRL = RL. Therefore, RL is left and right simple and so must be a group [1, Theorem 1.1.17]. Furthermore, since $e \in L \cap R$, we have L = Se and R = eS, hence $RL = eSSe \subseteq eSe = Re \subseteq RL$ and therefore RL = eSe. Since $eS \cap Se \subseteq eSe$, $RL = R \cap L$.

In the case of $K(\beta \mathbb{N}, +)$ much is known about the smallest ideal. In particular, we have, where \mathfrak{c} is the cardinality of the continuum:

Theorem 2.5. In $K(\beta \mathbb{N}, +)$

- (a) there are 2^{c} minimal left ideals;
- (b) there are $2^{\mathfrak{c}}$ minimal right ideals; and
- (c) each maximal group contains a copy of the free group on 2^c generators.

Proof. [8, Theorem 6.9 and Corollary 7.37].

By way of contrast, not much has been known about the smallest ideal of $(\beta \mathbb{N}, \cdot)$. In Section 3 we will present results on this smallest ideal.

3. Smallest Ideal of $(\beta \mathbb{N}, \cdot)$

The following Lemma was presented in [12, Lemma 1.2] with few details in the proof.

Lemma 3.1. Let S and T be compact right topological semigroups and let $\phi : S \to T$ be a surjective homomorphism. If $A \subseteq S$ is a minimal left ideal, minimal right ideal, or maximal subgroup of K(S), then $\phi[A]$ is the corresponding object in T.

Proof. Let $\phi: S \to T$ be a surjective homomorphism. Suppose A is a left ideal of S. We claim that $\phi[A]$ is a left ideal of T. Let $x \in \phi[A]$ and $y \in T$. It suffices to show that $y \cdot x \in \phi[A]$. Since ϕ is surjective pick $y' \in S$ such that $y = \phi(y')$. Also, $x \in \phi[A]$ implies there is some $x' \in A$ such that $x = \phi(x')$. So, $yx = \phi(y') \cdot \phi(x') = \phi(y'x') \in \phi[A]$ since $y'x' \in A$. Thus, $\phi[A]$ is a left ideal of T.

86

Now we shall show that if A is a minimal left ideal of S, then $\phi[A]$ is minimal in T. From above $\phi[A]$ is a left ideal of T. Also since Sa = A for all $a \in A$, $Tt = \phi[A]$ for all $t \in \phi[A]$. Therefore by Theorem 2.3a $\phi[A]$ is minimal.

Notice that the topological hypotheses were not used in the proof that the image of a minimal left ideal is a minimal left ideal. Thus, by a right-left switch, we have that if A is a minimal right ideal of S, then $\phi[A]$ is a minimal right ideal of T.

We now show that if A is a maximal group in S then $\phi[A]$ is a maximal group in T. Pick by Theorem 2.3(c) a minimal left ideal L and a minimal right ideal R of S such that $A = L \cap R$. Then $\phi[L]$ is a minimal left ideal of T and $\phi[R]$ is a minimal right ideal of T, and so by Theorem 2.3(c), $\phi[L] \cap \phi[R]$ is a maximal subgroup of K(T). Let e be the identity of A. Then $\phi(e) \in \phi[L] \cap \phi[R] \subseteq K(T)$. By Theorem 2.4, A = eSe and the maximal group with $\phi(e)$ as identity in $\phi(e)T\phi(e)$. Since ϕ is surjective, we have that $\phi[A] = \phi[eSe] = \phi(e)\phi[S]\phi(e) = \phi(e)T\phi(e)$.

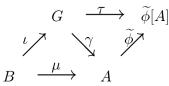
We saw in Theorem 2.5 some of the many things that are known about the structure of $K(\beta \mathbb{N}, +)$. Much less is known about the structure of $K(\beta \mathbb{N}, \cdot)$, and this is a motivating factor behind the research presented here. The following result is new. As mentioned earlier, a more general version of this theorem was obtained independently in [13, Theorem 4.17].

Theorem 3.2. Each maximal subgroup of $K(\beta \mathbb{N}, \cdot)$ contains a copy of the free group on $2^{\mathfrak{c}}$ generators.

Proof. Let $\omega = \mathbb{N} \cup \{0\}$. Define the map $\phi : \mathbb{N} \to \omega$ by $\phi(n) = k$ where $n = 2^k \cdot (2r+1)$. (Thus $\phi(n)$ is the number of factors of 2 in n.) Then ϕ is a surjective homomorphism from (\mathbb{N}, \cdot) to $(\omega, +)$ and consequently the continuous extension $\tilde{\phi} : (\beta \mathbb{N}, \cdot) \to (\beta \omega, +)$ is a homomorphism by [8, Corollary 4.22]. Since $\tilde{\phi}[\beta \mathbb{N}]$ is a compact subset of $\beta \omega$ containing ω , we have that $\tilde{\phi}$ is surjective.

Let A be a maximal group in $K(\beta \mathbb{N}, \cdot)$. Then by Lemma 2.6, $\widetilde{\phi}[A]$ is a maximal group in $K(\beta \omega, +)$.

Let G be the free group on the sequence $\langle b_i \rangle_{i<2^{\mathfrak{c}}}$ of generators and let $B = \{b_i : i < 2^{\mathfrak{c}}\}$. Then there is an injective homomorphism $\tau : G \to \widetilde{\phi}[A]$ by Theorem 2.5(c). For each $i < 2^{\mathfrak{c}}$, pick $a_i \in A$ such that $\widetilde{\phi}(a_i) = \tau(b_i)$. Define $\mu : B \to A$ by $\mu(b_i) = a_i$ for all $i < 2^{\mathfrak{c}}$. By the universal extension property of free groups [8, Lemma 1.22], there is a unique homomorphism $\gamma : G \to A$ such that for each $i < 2^{\mathfrak{c}}, \gamma(b_i) = \mu(b_i) = a_i$.



We claim that the above diagram commutes. For *i* fixed, $\tilde{\phi}(\gamma(b_i)) = \tilde{\phi}(a_i) = \tau(b_i)$. Thus $\tilde{\phi} \circ \gamma$ is a homorphism which agrees with τ on B so, again by [8, Lemma 1.22], we have that $\tilde{\phi} \circ \gamma = \tau$.

Let e be the identity of G, let α be the identity of A, and let δ be the identity of $\widetilde{\phi}[A]$. To complete the proof we show that the kernel of γ is $\{e\}$. To this end, let $x \in G$ and assume that $\gamma(x) = \alpha$. Then $\tau(x) = \widetilde{\phi}(\gamma(x)) = \widetilde{\phi}(\alpha) = \delta$ and so x = e because τ is injective. \Box

It should be noticed that the function $\phi : (\mathbb{N}, \cdot) \to (\omega, +)$ defined as in the previous proof by $\phi(n) = k$, where $n = 2^k \cdot (2r + 1)$, is rather badly not one to one.

References

- J. Berglund, H. Junghenn, and P. Milnes, Analysis on semigroups, J. Wiley & Sons., New York, 1989.
- [2] A. Blass, Orderings of ultrafilters, Thesis, Harvard University, Cambridge, Mass., 1970.
- [3] A. Blass, Amalgamation of nonstandard models of arithmetic, J. Symbolic Logic, 42(1977), 372-385.
- [4] W. Comfort and S. Negrepontis, *The theory of ultrafilters*, Springer-Verlag, Berlin, 1974.
- [5] M. Daguenet, Rapport entre l'ensemble des ultrafiltres admettant un ultrafiltre donné pour image et l'ensemble des images de cet ultrafiltre, Comment. Math. Univ. Carolinae 16(1975), 99-113.
- [6] R. Graham, B. Rothschild, and J. Spencer, *Ramsey Theory*, Wiley, New York, 1990.
- [7] N. Hindman, Preimages of points under the natural map from $\beta(\mathbb{N} \times \mathbb{N})$ to $\beta\mathbb{N} \times \beta\mathbb{N}$, Proc. Amer. Math. Soc. **37**(1973), 603-608.
- [8] N. Hindman and D. Strauss, Algebra in the Stone-Čech compactification, W. de Gruyter & Co., Berlin, 1998.
- [9] F. Ramsey, On a problem of formal logic, Proc. London Math. Soc. 30(1930), 264-286.

- [10] W. Rudin, Homogeneity problems in the theory of Čech compactifications, Duke Math. J. 23(1966), 409-419.
- [11] S. Shelah, *Proper forcing*, Springer-Verlag, Berlin, 1982.
- [12] N. Hindman and J. Pym, Free and semigroups in βN, Semigroup Forum 30(1984), 177-193
- [13] S. Ferri, N. Hindman, and D. Strauss, *Digital representation of semigroups* and groups, Semigroup Forum **77**(2008), 36-63

E-mail address: mocheiog@unisa.ac.za *E-mail address*: moremgm@unisa.ac.za

Department of Mathematical Sciences, University of South Africa, P.O.Box 392, 0003, South Africa