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ARONSZAJN COMPACTA

JOAN E. HART AND KENNETH KUNEN

Abstract. We consider a class of compacta X such that the
maps from X onto metric compacta define an Aronszajn tree
of closed subsets of X.

1. Introduction

All topologies discussed in this paper are assumed to be
Hausdorff. We begin by defining an Aronszajn compactum, along
with a natural tree structure, by considering a space embedded into
a cube. An equivalent definition, in terms of elementary submodels,
is considered in Section 2.

Notation 1.1. Given a product
∏

ξ<λ Kξ: If α ≤ β ≤ λ, then π
β
α

denotes the natural projection from
∏

ξ<β Kξ onto
∏

ξ<α Kξ. If we
are studying a space X ⊆

∏
ξ<λ Kξ then Xα denotes πλ

α(X), and

σ
β
α denotes the restricted map π

β
α�Xβ; so σ

β
α : Xβ � Xα.

Definition 1.2. An embedded Aronszajn compactum is a closed
subspace X ⊆ [0, 1]ω1 with w(X) = ℵ1 and χ(X) = ℵ0 such that for
some club C⊆ω1: for each α∈C Lα := {x∈Xα : |(σω1

α )−1{x}| >1}
is countable. For each such X , define T = T (X) :=

⋃
{Lα : α ∈ C},

and let C denote the following order: if α, β ∈ C, α < β, x ∈ Lα

and y ∈ Lβ , then x C y iff x = πβ
α(y).
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The σω1
α for which |Lα| ≤ ℵ0 are called countable rank maps in

[2, 9]. Observe that 〈T (X), C〉 is an Aronszajn tree: Each levelLα is
countable by definition, each Lα is non-empty because w(X) = ℵ1,
and every chain in T (X) is countable because χ(X) = ℵ0 and an
uncountable path through T (X) would yield a point of uncountable
character in X . Of course, a compactum X of weight ℵ1 may be
embedded into [0, 1]ω1 in many ways, but if one copy of X is an
Aronszajn compactum, then so are the others.

Lemma 1.3. If X, Y ⊆ [0, 1]ω1, X is an embedded Aronszajn com-
pactum, and Y is homeomorphic to X, then Y is an embedded
Aronszajn compactum.

Proof. Let f : X → Y be a homeomorphism. Then use the fact
that there is a club D ⊆ ω1 on which f commutes with projection;
that is, for γ ∈ D, there is a homeomorphism fγ : Xγ � Yγ such
that πω1

γ ◦ f = fγ ◦ πω1
γ .

To get D: Let B be the base for [0, 1]ω1 consisting of all
finite unions of rational open boxes. For U ∈ B, let supt(U)
denote the least α such that U = (πω1

α )−1(πω1
α (U)). Then let

Bγ = {U ∈ B : supt(U) < γ}. Let D ⊆ ω1 be the set of all γ
such that Bγ is closed under homeomorphic images, by f and f−1,
of disjoint pairs; more precisely, γ ∈ D iff for each pair U0, U1 ∈ Bγ ,
if cl(f(U0 ∩X)), cl(f(U1 ∩X)) are disjoint, then there are disjoint
V0, V1 ∈ Bγ separating them, and if cl(f−1(U0∩Y )), cl(f−1(U1∩Y ))
are disjoint, then there are disjoint V0, V1 ∈ Bγ separating them. �

The proof of this lemma shows that the Aronszajn trees derived
from X and from Y are isomorphic on a club.

Definition 1.4. An Aronszajn compactum is a compact X such
that w(X) = ℵ1 and χ(X) = ℵ0 and for some (equivalently, for
all ) Z ⊆ [0, 1]ω1 homeomorphic to X , Z is an embedded Aronszajn
compactum.

The next lemma is immediate from the definition. Further clo-
sure properties of the class of Aronszajn compacta are considered
in Section 4.

Lemma 1.5. A closed subset of an Aronszajn compactum is either
second countable or an Aronszajn compactum.
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The Dedekind completion of an Aronszajn line is an Aronszajn
compactum (see Section 2), and the associated tree is essentially the
same as the standard tree of closed intervals. A special case of this
is a compact Suslin line, which is a well-known compact L-space;
that is, it is HL (hereditarily Lindelöf) and not HS (hereditarily
separable). The line derived from a special Aronszajn tree is much
different topologically, since it is not even ccc.

In Section 5 we shall prove:

Theorem 1.6. Assuming ♦, there is an Aronszajn compactum
which is both HS and HL.

Our construction is flexible enough to build in additional prop-
erties for the space and its associated tree, which may be either
Suslin or special; see Theorem 5.8. The form of the tree is (up to
club-isomorphism) a topological invariant of X , but seems to be
unrelated to more conventional topological properties of X ; for ex-
ample, X may be totally disconnected, or it may be connected and
locally connected, with dim(X) finite or infinite.

Question 1.7. Is there, in ZFC, an HL Aronszajn compactum?

We would expect a ZFC example to be both HS and HL. Note
that an Aronszajn compactum is dissipated in the sense of [10], so
it cannot be an L-space if there are no Suslin lines by Corollary 5.3
of [10].

To refute the existence of an HL Aronszajn compactum, one
needs more than just an Aronszajn tree of closed sets, since this
much exists in the Cantor set:

Proposition 1.8. There is an Aronszajn tree T whose nodes are
closed subsets of the Cantor set 2ω. The tree ordering is ⊃, with
root 2ω. Each level of T consists of a pairwise disjoint family of
sets.

One can construct T inductively, as in the proof of Theorem 4
of Galvin and Miller [5], which is attributed there to Todorčević.
The following proof, suggested by the referee, is simpler and gets a
stronger result.

Proof. Let S be any special Aronszajn tree. Let ϕ : S → Q
be an order-preserving map that is 1-1 on each level Lβ(S);
ϕ is easy to get by adapting the natural embedding (described
in Theorem 5, page 15, of [1]). Let ϕ∗(s) = {ϕ(t) : t ≤ s}.
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Then define Φ : S → P(Q) ∼= 2Q by Φ(s) = {ϕ∗(s) ∪ B : B ⊆
(ϕ(s),∞)∩ Q}; these are the subsets of Q which have ϕ∗(s) as an
initial segment. Note that Φ(s1) ∩ Φ(s2) = ∅ whenever s1, s2 are
incomparable in S; this follows from the fact that ϕ is 1-1 on each
level. �

2. Elementary Submodels

We consider Aronszajn compacta from the point of view of ele-
mentary submodels. Assume that X is compact, with X (and its
topology) in some suitably large H(θ). If X is first countable, so
that |X | ≤ c and its topology is a set of size ≤ 2c, then θ can be any
regular cardinal larger than 2c, assuming that the set X is chosen
so that its transitive closure has size ≤ c.

If X ∈ M ≺ H(θ), then there is a natural quotient map π =
πM : X � X/M obtained by identifying two points of X iff they
are not separated by any function in C(X, R) ∩M . Furthermore,
X/M is second countable whenever M is countable.

Lemma 2.1. Assume that X is compact, w(X) = ℵ1, and χ(X) =
ℵ0. Then the following are equivalent:

1. X is an Aronszajn compactum.
2. Whenever M is countable and X ∈ M ≺ H(θ), there are

only countably many q ∈ X/M such that π−1{q} is not a
singleton.

3. (2) holds for all M in some club of countable elementary
submodels of H(θ).

Proof. For (1) → (2), note that X ∈ M ≺ H(θ) implies that M
contains some club satisfying Definition 1.2. �

This elementary submodel characterization will help us deter-
mine when a compact LOTS (linearly ordered topological space) is
an Aronszajn compactum. First, note the following more explicit
description of the quotient:

Lemma 2.2. Let X be a compact LOTS, X ∈ M ≺ H(θ), and
x, y ∈ X with x < y. Then π(x) = π(y) iff |[x, y] ∩ M | ≤ 1;
hence, each equivalence class is convex. Furthermore, if X is first
countable, then |[x, y]∩M | can never equal 1.
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Proof. If |[x, y]∩M | ≥ 2, fix a, b ∈M∩X with x ≤ a < b ≤ y. There
is then an h ∈M∩C(X, R) which maps (−∞, a] to 0 and [b, +∞) to
1, so π(x) 6= π(y). Conversely, if π(x) 6= π(y), fix h ∈M ∩C(X, R)
with |h(x) − h(y)| ≥ 1. To prove that |[x, y] ∩M | ≥ 2, find, in
M , a cover of X by convex open sets U1, . . .Un such that each
diam(h(Ui)) ≤ 1/3.

For the “furthermore”, fix b ∈ [x, y]∩M ; WLOG x < b ≤ y. If
b has an immediate predecessor, that predecessor must be in M ;
otherwise, b is a limit from the left of an ω–sequence of elements of
M ∩X . In either case, |[x, y]∩M | ≥ 2. �

The LOTS version of an Aronszajn compactum is a compacted
Aronszajn line. The term “compact Aronszajn line” is not common
in the literature. An Aronszajn line is usually defined to be a
LOTS of size ℵ1 with no increasing or decreasing ω1–sequences and
no uncountable subsets of real type (that is, order-isomorphic to a
subset of R). Such a LOTS cannot be compact, but its Dedekind
completion is a compacted Aronszajn line.

Definition 2.3. A compacted Aronszajn line is a compact LOTS
X such that w(X) = ℵ1 and χ(X) = ℵ0, and the closure of every
countable set is second countable.

Note that by χ(X) = ℵ0 plus compactness, X has no increas-
ing or decreasing ω1–sequences. But our definition allows for the
possibility that X contains uncountably many disjoint intervals iso-
morphic to [0, 1].

Lemma 2.4. A LOTS X is an Aronszajn compactum iff X is a
compacted Aronszajn line.

Proof. For ←: suppose that X ∈ M ≺ H(θ) and M is count-
able. Then X/M is a compact metric LOTS, and is hence order-
embeddable into [0, 1]. Suppose there were an uncountable E ⊆
X/M such that |π−1{y}| ≥ 2 for all y ∈ E. Say π−1{y} = [ay, by] ⊂
X for y ∈ E, where ay < by. If D is a countable dense subset of
E then cl({ay : y ∈ D}) ⊆ X would not be second countable, a
contradiction. �

We use the standard definition of a Suslin line as any LOTS
which is ccc and not separable; this is always an L-space. Then
a compact Suslin line is just a Suslin line which happens to be
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compact. A compacted Aronszajn line may be a Suslin line, but a
compact Suslin line need not be a compacted Aronszajn line. For
example, we may form X from a connected compact Suslin line Y
by doubling uncountably many points lying in some Cantor subset
of Y . More generally, for any compact Suslin line, its subset D of
points having a right nearest neighbor determines whether the line
is an Aronszajn compactum.

Lemma 2.5. Let X be a compact Suslin line. Then X is a com-
pacted Aronszajn line iff D := {x ∈ X : ∃y > x ([x, y] = {x, y})}
does not contain an uncountable subset of real type.

Proof. If D contains an uncountable set E real type, let B ⊆ E
be countable and dense in E. Then whenever M is countable and
X, B ∈ M ≺ H(θ), there are uncountably many y ∈ X/M such
that |π−1{y}| ≥ 2, so that X is not an Aronszajn compactum.

Conversely, if X is not an Aronszajn compactum, consider any
countable M with X∈M ≺H(θ) and A :={y∈X/M : |π−1{y}|≥2}
uncountable. Let A′ := {y ∈ X/M : |π−1{y}| > 2}. Since each
π−1{y} is convex, A′ is countable by the ccc, and the left points of
the π−1{y} for y ∈ A\A′ yield an uncountable subset of D of real
type. �

A zero dimensional compact Suslin line formed in the usual way
from a binary Suslin tree will also be a compacted Aronszajn line.

3. Normalizing Aronszajn Compacta

The club C and tree T derived from an Aronszajn compactum X
in Definition 1.2 can depend on the embedding of X into [0, 1]ω1. To
standardize the tree, we choose a nice embedding. For X ⊆ [0, 1]ω1,
C cannot in general be ω1, since C = ω1 implies that dim(X) ≤ 1.
Replacing [0, 1] by the Hilbert cube, however, we can assume C =
ω1, which simplifies our tree notation. In particular, the levels will
be indexed by ω1, so that Lα will be level α of the tree in the usual
sense.

Definition 3.1. Q denotes the Hilbert cube, [0, 1]ω. If X ⊆ Qω1 is
closed and α < ω1, then Lα =Lα(X)={x ∈ Xα : |(σω1

α )−1{x}| >1}.
W(X) = {α < ω1 : |Lα| ≤ ℵ0}.
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So, X is an Aronszajn compactum iff W(X) contains a club;
W(X) itself need not be closed, and W(X) depends on how X is
embedded into Qω1 . Now, using the facts that Q ∼= Qω and that
an Aronszajn tree can have only countably many finite levels:

Lemma 3.2. Every Aronszajn compactum is homeomorphic to some
X ⊆ Qω1 such that W(X) = ω1 and |Lα| = ℵ0 for all α > 0.

Of course, L0 = X0 = {∅} = Q0, and ∅ is the root node of the
tree.

Definition 3.3. If X ⊆ Qω1 is an Aronszajn compactum and
W(X) = ω1, let L̂α = {x ∈ Lα : w((σω1

α )−1{x}) = ℵ1}, and let
T̂ =

⋃
α L̂α.

Since X is not second countable, each L̂α 6= ∅ and T̂ is an
Aronszajn subtree of T . Repeating the above argument, we get:

Lemma 3.4. Every Aronszajn compactum is homeomorphic to
some X ⊆ Qω1 such that W(X) = ω1, and |L̂α| = ℵ0 for all α > 0,
and each x ∈ Lα\L̂α is a leaf, and each x ∈ L̂α has ℵ0 immediate
successors in L̂α+1.

This normalization can also be obtained with elementary sub-
models. Start with a continuous chain of elementary submodels,
Mα ≺ H(θ), for α < ω1, with X ∈ M0 and each Mα ∈ Mα+1.
Let Xα = X/Mα, let πα : X � Xα be the natural map, and let
Lα = {y ∈ Xα : |π−1

α {y}| > 1}. We may view each Xα as embedded
topologically into Qα, in which case Lα has the same meaning as
before. If π−1

α {y} is second countable, then (since Mα ∈Mα+1), all
the points in π−1

α {y} are separated by functions in C(X) ∩Mα+1,
so y ∈ Lα\L̂α is a leaf.

If X is a compacted Aronszajn line, then Xα+1 is formed by
replacing each y ∈ Lα by a compact interval Iy of size at least 2.
If y ∈ Lα\L̂α, then π−1

α {y} is second countable and is isomorphic
to Iy . Note that the tree may have uncountably many leaves; we
do not obtain the conventional normalization of an Aronszajn tree,
where the tree is uncountable above every node.

Next, we consider the ideal of second countable subsets of X :

Definition 3.5. For any space X , IX denotes the family of all S ⊆
X such that S, with the subspace topology, is second countable.
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IX need not be an ideal. It is obviously closed under subsets,
but need not be closed under unions (consider ω ∪ {p} ⊂ βω).

Lemma 3.6. Assume that X ⊆ Qω1 is an HL Aronszajn com-
pactum, as in Lemma 3.2. Then IX is a σ–ideal, and, for all
S ⊆ X, the following are equivalent:

1. S ∈ IX .
2. For some α < ω1, σω1

α (S)∩ Lα = ∅.
3. There is a G ⊇ S such that G ∈ IX and G is a Gδ subset

of X.
4. There is an f ∈ C(S, Q) such that f is 1-1.
5. There is an f ∈ C(S, Q) such that f−1{y} is second count-

able for all y ∈ Q.

Proof. It is easy to verify (2) → (3) → (1) → (4) → (5). In
particular, for (2) → (3): Fix α and let G = (σω1

α )−1(Xα\Lα).
Then G is a Gδ set and σω1

α : G � Xα\Lα is a 1-1 closed map, and
hence a homeomorphism.

For (1)→(2): Fix an open base for S of the form {Vn∩S :n∈ω},
where each Vn is open in X . X is HL, so Vn is an Fσ . We can thus
fix ξ < ω1 such that each Vn = (σω1

ξ )−1(σω1
ξ (Vn)). It follows that

σω1
ξ is 1-1 on S. We may then choose α with ξ < α < ω1 such that

σω1
α (S)∩ Lα = ∅.
Now, IX is a σ–ideal by (1)↔ (2).
To prove (5)→ (2): Fix f as in (5). Let {Un : n ∈ ω} be an open

base for Q; then f−1(Un) = S∩Vn, where Vn is open in X and hence
an Fσ set. We can thus fix α < ω1 such that Vn = (σω1

α )−1(σω1
α (Vn)).

It follows that f is constant on S ∩ (σω1
α )−1{z} for all z ∈ Xα.

Thus, S ∩ (σω1
α )−1{z} is second countable for all z ∈ Xα. But

then S is contained in the union of
⋃
{S ∩ (σω1

α )−1{y} : y ∈ Lα}
and (σω1

α )−1(Xα\Lα) ∼= Xα\Lα, so S ∈ IX because IX is a σ–
ideal. �

This proof shows that every Aronszajn compactum is an ascend-
ing union of ω1 Polish spaces: namely, the (σω1

α )−1(Xα\Lα).
We needed X to be Aronszajn in Lemma 3.6; HS and HL are

not enough to prove the equivalence of (1)(3)(4)(5). If S is the
Sorgenfrey line contained in the double arrow space X , then (4)(5)
are true but (1)(3) are false. Similar remarks hold for similar spaces
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which are both HS and HL. For example, assuming CH, Filippov
[3] constructed a locally connected continuum which is HS and HL
but not second countable. The space was obtained by replacing a
Luzin set of points in [0, 1]2 by circles. If S contains one point from
each of the circles, then S satisfies (4)(5) but fails (1)(3). In both
examples, the space X itself satisfies (5) but not (1)(3)(4).

More generally, any space X that has an f ∈ C(X, Q) as in
(5) cannot be an Aronszajn compactum. Thus, a ZFC example
of an HL Aronszajn compactum would settle in the negative the
following well-known question of Fremlin ([4] 44Qc): is it consistent
that for every HL compactum X , there is an f ∈ C(X, Q) such that
|f−1{y}| < ℵ0 for all y ∈ Q? In [6], Gruenhage gives some of the
history related to this question, and points out some related results
suggesting that the answer might be “yes” under PFA.

4. Closure Properties of Aronszajn Compacta

Closure under subspaces was already mentioned in Lemma 1.5.
For products, Lemma 2.1 implies:

Lemma 4.1. Assume that X is an Aronszajn compactum and Y
is an arbitrary space. Then X × Y is an Aronszajn compactum iff
Y is compact and countable.

Regarding quotients, we first prove:

Lemma 4.2. Assume that X, Y are compact, ϕ : X � Y , and
X, Y, ϕ ∈ M ≺ H(θ). Let ∼ denote the M equivalence relation on
X and on Y . Then

1. If x0, x1 ∈ X and x0 ∼ x1, then ϕ(x0) ∼ ϕ(x1); so, the
inverse image of an equivalence class of Y is a union of
equivalence classes of X.

2. If y0, y1 ∈ Y and x0 6∼ x1 for all x0 ∈ ϕ−1{y0} and all
x1 ∈ ϕ−1{y1}, then y0 6∼ y1.

Proof. For (1): If f ∈ C(Y ) ∩M separates ϕ(x0) from ϕ(x1) then
f ◦ ϕ ∈ C(X) ∩M separates x0 from x1.

For (2): For each x0 ∈ ϕ−1{y0} and x1 ∈ ϕ−1{y1}, there is an
f ∈ C(X, [0, 1])∩M such that f(x0) 6= f(x1). By compactness of
ϕ−1{y0} × ϕ−1{y1}, there are f0, . . . , fn−1 ∈ C(X, [0, 1])∩M for
some n ∈ ω such that: for all x0 ∈ ϕ−1{y0} and x1 ∈ ϕ−1{y1},
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there is some i < n such that fi(x0) 6= fi(x1). These yield an ~f ∈
C(X, [0, 1]n)∩M such that ~f(ϕ−1{y0})∩ ~f(ϕ−1{y1}) = ∅. Since M
contains a base for [0, 1]n, there are open U0, U1 ⊆ [0, 1]n with each
Ui ∈ M such that U0 ∩ U1 = ∅ and each ~f(ϕ−1{yi}) ⊆ Ui, so that
ϕ−1{yi} ⊆ (~f )−1(Ui). Let Vi = {y ∈ Y : ϕ−1{y} ⊆ (~f)−1(Ui)}.
Then the Vi are open in Y , each Vi ∈M , each yi ∈ Vi, and V0∩V1 =
∅. There is thus a g ∈ C(Y ) ∩M such that g(V0) ∩ g(V1) = ∅, so
that g(y0) 6= g(y1). Thus, y0 6∼ y1. �

Theorem 4.3. Assume that X is an Aronszajn compactum, ϕ :
X � Y , w(Y ) = ℵ1, and χ(Y ) = ℵ0. Then Y is an Aronszajn
compactum.

Proof. It is sufficient to check that for a club of elementary sub-
models M , all but countably many M–classes of Y are singletons.
Fix M as in Lemma 4.2; so all but countably many M–classes of
X are singletons. Then for all but countably many classes K = [y]
of Y : all M–classes of X inside of ϕ−1(K) are singletons, so that,
by the lemma, K is a singleton. �

Note that we needed to assume that χ(Y ) = ℵ0. Otherwise,
when X is not HL, we would get a trivial counterexample of the
form X/K, where K is a closed set which is not a Gδ.

Examining whether an Aronszajn compactum may be both HS
and HL reduces to considering zero dimensional spaces and con-
nected spaces, by the following lemma.

Lemma 4.4. Assume that X is an HL Aronszajn compactum,
ϕ : X � Y . Then either Y is an Aronszajn compactum or some
ϕ−1{y} is an Aronszajn compactum.

Proof. Y will be an Aronszajn compactum unless it is second count-
able. But if it is second countable, then some ϕ−1{y} will be
not second countable by Lemma 3.6, and then ϕ−1{y} will be an
Aronszajn compactum. �

Corollary 4.5. Suppose there is an Aronszajn compactum X which
is HS and HL. Then there is an Aronszajn compactum Z which is
HS and HL and which is either connected or zero dimensional.

Proof. Get ϕ : X � Y by collapsing all connected components to
points. Then Z is either Y or some component. �
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Note that the cone over X is also connected, but is not an Aron-
szajn compactum by Lemma 4.1.

5. Constructing Aronszajn Compacta

We begin this section by constructing a space X which proves
Theorem 1.6. We construct X = Xω1 as an inverse limit as a closed
subspace of Qω1 . To make X both HS and HL, we shall apply the
following lemma:

Lemma 5.1. Assume that X is compact and for all closed F ⊆ X,
there is a compact metric Y and a map g : X � Y such that
g � g−1(g(F )) : g−1(g(F )) � g(F ) is irreducible. Then X is both
HS and HL.

Proof. By irreducibility, g−1(g(F )) = F , so that F is a Gδ and F
is separable. Thus, X is a compact HL space in which all closed
subsets are separable, so X is HS. �

In applying the lemma to X = Xω1 , g will be some πω1
α �X .

We shall use ♦ to capture all closed F ⊆ Qω1 so that all closed
F ⊆ X will be considered. This method was also employed in [7],
which constructed some compacta which were HS and HL but not
Aronszajn.

As in standard inverse limit constructions, we inductively con-
struct Xα ⊆ Qα, for α ≤ ω1. To ensure that X will be Aronszajn,
at each stage α < ω1, we carefully select a countable set Eα ⊆ Xα

of “expandable points”, and at each stage β > α, we construct
Xβ ⊆ Qβ so that |(σβ

α)−1{x}| = 1 whenever x /∈ Eα. Then the Lα

of Definition 3.1 will be subsets of Eα and hence countable.
These preliminaries are included in the following conditions:

Conditions 5.2. Xα, for α ≤ ω1, and Pα, Fα, Eα, qα, for 0 < α <
ω1, satisfy:

1. Each Xα is a closed subset of Qα.

2. πβ
α(Xβ) = Xα whenever α ≤ β ≤ ω1.

3. Pα is a countable family of closed subsets of Xα, and Fα ∈
Pα.

4. For all P ∈ Pα:
a. σα+1

α �((σα+1
α )−1(P )) : (σα+1

α )−1(P ) � P is irreducible,
and
b. (σβ

α)−1(P ) ∈ Pβ whenever α ≤ β < ω1.
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5. For all closed F ⊆ X, there is an α with 0 < α < ω1 such
that σω1

α (F ) = Fα.
6. Eα is a countable dense subset of Xα, and qα ∈ Eα.

7. Eβ ⊆ (σβ
α)−1(Eα) whenever 0 < α ≤ β < ω1.

8. |(σα+1
α )−1{x}| = 1 whenever 0 < α < ω1 and x ∈ Xα\{qα}.

9. |(σα+1
α )−1{qα}| > 1.

We discuss below how to satisfy these conditions. Conditions
(1) and (2) simply determine our X = Xω1 ⊆ Qω1 with each
Xα = πω1

α (X). ♦ is used for (5). Constructing an X that sat-
isfies Conditions (1 - 9) is enough to prove Theorem 1.6:

Lemma 5.3. Conditions (1 − 9) imply that X = Xω1 is an
Aronszajn compactum and is both HS and HL.

Proof. By (4) and induction on β, σβ
α�((σβ

α)−1(P )) : (σβ
α)−1(P ) �

P is irreducible whenever α ≤ β ≤ ω1 and P ∈ Pα. Then X is HS
and HL by Lemma 5.1 and (5)(3).

By (6)(7)(8) and induction, |(σβ
α)−1{x}| = 1 whenever 0 < α ≤

β ≤ ω1 and x ∈ Xα\Eα. So, Lα := {x ∈ Xα : |(σω1
α )−1{x}| > 1} ⊆

Eα, which is countable by (6).
Finally, w(X) = ℵ1 by (9), and χ(X) = ℵ0 because X is HL. �

To obtain Conditions (1 − 9), we must add some further
conditions so that the natural construction avoids contradictions.
For example, satisfying Conditions (6) and (7) at stage β requires⋂

α<β(σβ
α)−1(Eα) 6= ∅. So we add Conditions (10 - 12) below making

the Eα into the levels of a tree; the selection of the Eα will resemble
the standard inductive construction of an Aronszajn tree.

The sets Fα may be scattered or even singletons. This cannot
be avoided, because we are using the Fα to ensure that all closed
sets are Gδ sets, so that X is HL; making just the perfect sets
Gδ could produce a Fedorchuk space (as in [8]), which is not even
first countable. If x ∈ P ∈ Pα and x is isolated in P , then the
irreducibility condition in (4) requires that |(σα+1

α )−1{x}| = 1, but
that contradicts (9) if x = qα. Now, if every point of Eα is isolated
in some P ∈ Pα, then we cannot choose qα ∈ Eα, as required by
(6). We shall avoid these problems by requiring that if x ∈ Eα
and P ∈ Pα, then either x /∈ P or x is in the perfect kernel of P .
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This can be ensured by choosing Fα first (as given by ♦), and then
choosing Eα; for limit α, our Aronszajn tree construction will give
us plenty of options for choosing the points of Eα, and we shall make
Fα trivial for successor α. The additional conditions that handle
this will employ the notation in the following:

Definition 5.4. If F is compact and not scattered, let ker(F ) de-
note the perfect kernel of F ; otherwise, ker(F ) = ∅.

To satisfy Condition (8), we construct Xα+1 from Xα by choosing
an appropriate hα ∈ C(Xα\{qα}, Q), and letting Xα+1 = cl(hα).
Identifying Qα+1 with Qα ×Q and hα with its graph, hα(x) is the
y ∈ Q such that x_y ∈ Xα+1. Note that hα is indeed continuous
because its graph is closed.

Thus, to construct X so that Conditions (1 - 9) are met, we add
the following:

Conditions 5.5. hα and rn
α, for 0 < α < ω1 and n < ω, satisfy:

10. (σβ
α)(Eβ) = Eα whenever 0 < α ≤ β < ω1.

11. |Eα+1 ∩ (σα+1
α )−1{qα}| > 1.

12. If x ∈ Eα, then (σα+n
α )(qα+n) = x for some n ∈ ω.

13. Xα has no isolated points whenever α > 0.
14. Fα = ∅ whenever α is a successor ordinal.
15. Pβ = {Fβ} ∪ {(σβ

α)−1(P ) : 0 < α < β & P ∈ Pα}.
16. Eα ∩ (P\ ker(P )) = ∅ whenever P ∈ Pα.
17. rn

α ∈ Xα\{qα} and the sequence 〈rn
α : n ∈ ω〉 converges to

qα.
18. hα ∈ C(Xα\{qα}, Q), and Xα+1 = cl(hα).
19. If qα ∈ P ∈ Pα, then rn

α ∈ ker(P ) for infinitely many n,
and every y ∈ Q with q_

α y ∈ Xα+1 is a limit point of the
sequence 〈hα(rn

α) : n ∈ ω & rn
α ∈ ker(P )〉.

Observe that (10)(11)(12) will give us the following:

Lemma 5.6. Lα = Eα whenever 0 < α < ω1 .

In the tree T (X), although only the node qα ∈ Lα has more than
one successor in Lα+1, (12) ensures that at limit levels γ, there are
2ℵ0 choices for the elements of Eγ , so that we may avoid the points
in Fγ\ ker(Fγ), as required by (16).

By (14)(15), ∅ ∈ Pα for all α > 0, and non-empty sets are added
into the Pα only at limit α.
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The following proof gives the bare-bones construction; refine-
ments of it produce the spaces of Theorem 5.8.

Proof of Theorem 1.6. Before we start, use ♦ to choose a closed
F̃α ⊆ Qα for each α < ω1, so that {α < ω1 : πω1

α (F ) = F̃α} is
stationary for all closed F ⊆ Qω1 . To begin the induction: X0

must be {∅} = Q0, and Pα, Fα, . . . . . . are only defined for α > 0.
Now, fix β with 0 < β < ω1, and assume that all conditions have

been met below β. We define in order Xβ, Fβ, Pβ, Eβ , qβ , rn
β , hβ .

If β is a limit, then Xβ is determined by (1)(2) and the Xα for
α < β. X1 can be any perfect subset of Q1. If β = α + 1 ≥ 2, then
Xβ = cl(hα), as required by (18). Now let Fβ = F̃β if F̃β ⊆ Xβ and
β is a limit; otherwise, let Fβ = ∅. Pβ is now determined by (15).
E1 can be any countable dense subset of X1. If β = α+1 ≥ 2, let

Eβ = (σβ
α)−1(Eα\{qα})∪Dβ, where Dβ is any subset of (σβ

α)−1{qα}
such that 2 ≤ |Dβ| ≤ ℵ0. Observe that Eβ is dense in Xβ (with-
out using Dβ), so (6) is preserved, and Dβ guarantees that (11) is
preserved. To verify (16) at β, note that by (15) at α, every non-
empty set in Pβ is of the form P̂ := (σβ

α)−1(P ) for some P ∈ Pα.
So, if (16) fails at β, fix P ∈ Pα and x ∈ Eβ ∩ (P̂\ ker(P̂ )). Then
x ∈ (σβ

α)−1{qα}, so qα ∈ P , and hence qα ∈ ker(P ); but then
by (19), x is a limit of a sequence of elements of ker(P̂ ), so that
x ∈ ker(P̂ ).

For limit β, let Eβ = {x∗ : x ∈
⋃

α<β Eα}, where, x∗, for x ∈ Eα, is
some y ∈ Xβ such that πβ

α(y) = x and πβ
ξ (y) ∈ Eξ for all ξ < β. Any

such choice of the x∗ will satisfy (10). But in fact, using (11)(12),
for each such x there are 2ℵ0 possible choices of x∗, so we can satisfy
(16) by avoiding the countable sets P\ ker(P ) for P ∈ Pβ.

To facilitate (12), list each Eα as {ej
α : j ∈ ω}; let ej

0 = ∅ ∈ X0.
Then, if β is a successor ordinal of the form γ + 2i3j , where γ is
a limit or 0, choose qβ ∈ Eβ so that σβ

γ+i(qβ) = ej
γ+i. For other β,

qβ ∈ Eβ can be chosen arbitrarily.
Next, we may choose the rn

β to satisfy (19) because if qβ ∈ P ∈
Pβ, then qβ ∈ ker(P ) by (16), so that qβ is also a limit of points in
ker(P ).

Finally, we must choose hβ ∈ C(Xβ\{qβ}, Q). Conditions (18)
(19) only require that hβ have a discontinuity at qβ with the
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property that every limit point of the function at qβ is also
a limit of each of the sequences 〈hβ(rn

β) : n ∈ ω & rn
β ∈ ker(P )〉.

Since Xβ is a compact metric space with no isolated points, we may
accomplish this by making every point of Q a limit point of each
〈hβ(rn

β) : n ∈ ω & rn
β ∈ ker(P )〉. 2

If we choose each hβ as above and also set X1 = Q, then our X
will be connected, and it is fairly easy to choose the hβ so that X
fails to be locally connected. The next theorem shows how to make
X connected and locally connected. We construct X so that each
Xα is homeomorphic to the Menger sponge, MS, and all the maps
σβ

α are monotone. The Menger sponge [11] is a one dimensional
locally connected metric continuum; the properties of MS used in
inductive constructions such as these are summarized in [8], which
contains further references to the literature. A map is monotone iff
all point inverses are connected. Monotonicity of the σβ

α will imply
that X is locally connected.

At successor stages, to construct Xα+1
∼= MS, we assume that

Xα
∼= MS and apply the following special case of Lemmas 2.7 and

2.8 of [8]:

Lemma 5.7. Assume that q ∈ X ∼= MS and that for each j ∈ ω,
the sequence 〈rn

j : n ∈ ω〉 converges to q, with each rn
j 6= q. Let

π : X × [0, 1] � X be the natural projection. Then there is a
Y ⊆ X × [0, 1] such that:

1. Y ∼= MS and π(Y ) = X.
2. |Y ∩ π−1{x}| = 1 for all x 6= q.
3. π−1{q} = {q} × [0, 1].
4. Let Y ∩π−1{rn

j } = {(rn
j , un

j )}. Then, for each j, every point
in [0, 1] is a limit point of 〈un

j : n ∈ ω〉.

Constructing X as such an inverse limit of Menger sponges will
make X one dimensional. The results quoted from [8] about MS
were patterned on an earlier construction of van Mill [12], which
involved an inverse limit of Hilbert cubes; replacing MS by Q here
would yield an infinite dimensional version of this Aronszajn com-
pactum. The following summarizes several possibilities for X and
its associated tree:



122 JOAN E. HART AND KENNETH KUNEN

Theorem 5.8. Assume ♦. For each of the following 2 · 3 = 6
possibilities, there is an Aronszajn compactum X with associated
Aronszajn tree T such that X is HS and HL. Possibilities for T :

a. T is Suslin.
b. T is special.

Possibilities for X:

α. dim(X) = 0.
β. dim(X) = 1 and X is connected and locally connected.
γ. dim(X) =∞ and X is connected and locally connected.

Proof. We refine the proof of Theorem 1.6. To obtain (a) or (b), the
refinement is in the choice of the Eβ for limit β. To obtain (α) or
(β) or (γ), the refinement is in the choice of X1 and the functions
hα. Since these refinements are independent of each other, the
discussion of (a)(b) is unrelated to the discussion of (α)(β)(γ).

For (a): We use ♦ to kill all potential uncountable maximal
antichains A ⊂ T . Fix a sequence 〈Aα : α < ω1〉 such that each
Aα is a countable subset of Q<α and such that for all A ⊆ Q<ω1 :
if each A ∩ Q<α is countable, then {α < ω1 : A ∩ Q<α = Aα} is
stationary.

Let Tβ =
⋃
{Lα : α < β} =

⋃
{Eα : α < β} (see Lemma 5.6),

and use C for the tree order. For each limit β < ω1, modify the
construction of Eβ in the proof of Theorem 1.6 as follows: We still
have Eβ = {x∗ : x ∈ Tβ}, where, x∗, for x ∈ Tβ, is chosen so that
x C x∗ and x∗ defines a path through Tβ. But now, if Aβ ⊆ Tβ

and Aβ is a maximal antichain in Tβ, then make sure that each x∗

is above some element of Aβ. To do this, use maximality of Aβ first
to choose x† ∈ Tβ so that x C x† and x† is above some element
of Aβ , and then choose x∗ so that x C x† C x∗. There are still
2ℵ0 possible choices for x∗, so we can satisfy (16) by avoiding the
countable sets P\ker(P ) as before. Now, the usual argument shows
that T is Suslin.

For (b): Let Lim denote the set of countable limit ordinals, and
let TLim =

⋃
{Lα : α ∈ Lim} =

⋃
{Eα : α ∈ Lim}. To make T

special, inductively define an order preserving map ϕ : TLim → Q.
To make the induction work, we also assume inductively:
∀γ, β ∈ Lim ∀x ∈ Lγ ∀q ∈ Q

[γ < β & q > ϕ(x) → ∃y ∈ Lβ [x C y & ϕ(y) = q]]. (∗)
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To start the induction, ϕ�Lω : Lω → Q can be arbitrary.
For β = α + ω, where α is a limit ordinal: First, determine the

x∗ exactly as in the proof of Theorem 1.6. Then, note that for each
x ∈ Lα, the set Sx := {y ∈ Eβ : x C y} has size ℵ0, so we can let
ϕ�Sx map Sx onto Q ∩ (ϕ(x),∞).

For β < ω1 which is a limit of limit ordinals: Let

Eβ = {x∗
q : x ∈ Tβ & q ∈ Q ∩ (ϕ(x),∞)} ,

where each x∗
q is chosen so that x C x∗

q and x∗
q defines a path

through Tβ and the x∗
q are all different as q varies. We let ϕ(x∗

q) = q,
which will clearly preserve (∗), but we must make sure that ϕ
remains order preserving. For this, choose x∗

q so that q >

sup{ϕ(z) : z ∈ TLim & z C x∗
q}. Such a choice is possible using (∗)

on Tβ. As before, there are 2ℵ0 possible choices of x∗
q , so we can

still avoid the countable sets P \ker(P ).
For (α), just make sure that Xα is homeomorphic to the Cantor

set 2ω whenever 0 < α < ω1. In view of (13), this is equivalent
to making Xα zero dimensional. For α = 1, we simply choose
X1 so that X1

∼= 2ω. Then, for larger α, just make sure that in
(9), we always have |(σα+1

α )−1{qα}| = 1, which will hold if in (18),
we choose hα ∈ C(Xα\{qα}, 2) (identifying 2 = {0, 1} as a subset
of Q). To make this choice, and satisfy (19): First, let Aj , for
j ∈ ω, be disjoint infinite subsets of ω such that for each P ∈ Pα,
if qα ∈ P then for some j, rn

α ∈ ker(P ) for all n ∈ Aj . Next, let
Xα = K0 ⊃ K1 ⊃ K2 ⊃ · · · , where each Ki is clopen,

⋂
i Ki = {qα},

and, for each j, there are infinitely many even i and infinitely many
odd i such that Ki\Ki+1 ∩ {rn

α : n ∈ Aj} 6= ∅. Now, let hα be 0 on
Ki\Ki+1 when i is even and 1 on Ki\Ki+1 when i is odd.

For (β), construct X so that each Xα is homeomorphic to the
Menger sponge, MS, and all the maps σβ

α are monotone. Then
dim(X) = 1 will follow from the fact that X is an inverse limit of
one dimensional spaces.

For monotonicity of the σ
β
α, it suffices to ensure that each

σα+1
α is monotone. By Condition (8), that will follow if we make

(σα+1
α )−1{qα} connected; in fact we shall make (σα+1

α )−1{qα} home-
omorphic to [0, 1], as in the proof of Theorem 1.6. But we also need
to verify inductively that Xα

∼= MS. At limits, this follows from
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Lemma 2.5 of [8]. At successor stages, we assume that Xα
∼= MS

and identify [0, 1] as a subspace of Q, so that Xα+1 may be the Y
of Lemma 5.7.

(γ) is proved analogously to (β). Construct Xα
∼= Q rather than

MS, applying the results about Q in [12]§3. As in [12]§2, all the σβ
α

are cell-like Z∗-maps. �

6. Chains of Clopen Sets

The double arrow space has an uncountable chain (under ⊂)
of clopen sets of real type. This cannot happen in an Aronszajn
compactum:

Lemma 6.1. If X is an Aronszajn compactum and E is an un-
countable chain of clopen subsets of X, then E cannot be of real
type.

Proof. Suppose that E is such a chain. Deleting some elements of
E , we may assume that (E ,⊂) is a dense total order. Let D be a
countable dense subset of E . Since X is an Aronszajn compactum,
there is a map ϕ : X � Z, where Z is a compact metric space, A =
ϕ−1(ϕ(A)) for all A ∈ D, and {y ∈ Z : |ϕ−1{y}| > 1} is countable.
Since D is dense in E , the sets ϕ(B) for B ∈ E are all different.
Each ϕ(B) is closed, and only countably many of the ϕ(B) can be
clopen. Whenever ϕ(B) is not clopen, choose yB ∈ ϕ(B)∩ϕ(X\B).
Since D is dense in E , these yB are all different points, so there are
uncountably many such yB . But ϕ−1{yB} meets both B and X\B,
so each |ϕ−1{yB}| ≥ 2, a contradiction. �

Note that if this argument is applied with a chain of clopen sets
in the double arrow space, then the |ϕ−1{yB}| will be exactly 2.

Lemma 6.2. If X is any separable space, and E is an uncountable
chain of clopen subsets of X, then E must be of real type.

Proof. If D ⊆ X is dense, then (E ,⊂) is isomorphic to a chain in
(P(D),⊂). �
Corollary 6.3. If X is a separable Aronszajn compactum and E is
a chain of clopen subsets of X, then E is countable.

Note that if X is a zero dimensional compacted Aronszajn line
which is also Suslin (see Lemma 2.5), then X has an uncountable
chain of clopen sets, but X is not separable.
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