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CONSTRUCTING WEAKER CONNECTED
HAUSDORFF TOPOLOGIES

OFELIA T. ALAS AND RICHARD G. WILSON

Abstract. We obtain some new conditions under which a
Hausdorff (respectively, Urysohn) space possesses a weaker
connected Hausdorff (respectively, Urysohn) topology.

1. Introduction

We say that a subset A ⊆ X is relatively feebly compact in X
if whenever F is a locally finite family of non-empty open sets in
X , only finitely many elements of F meet A. A Hausdorff space is
feebly compact if it is relatively feebly compact in itself. It is well
known and easy to prove that a T2-space X is feebly compact if and
only if every countable open cover possesses a finite subfamily whose
union is dense in X (a finite dense subsystem). A Hausdorff space
is H-closed (see 3.12.5 of [5]) if it is closed in every Hausdorff space
in which it is embedded or equivalently, if every open cover has a
finite dense subsystem; thus an H-closed space is feebly compact
and a Lindelöf, feebly compact, Hausdorff space is H-closed.
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In the article [1] (and independently in [8]), it was shown that
if X is a disconnected Hausdorff space with a σ-locally finite base,
then X admits a weaker connected Hausdorff topology if and only
if X is not feebly compact. In [6] it was further shown that ev-
ery separable Hausdorff space which is not feebly compact also
admits a weaker connected Hausdorff topology. Our aim in Sec-
tion 2 is to extend these results to Hausdorff spaces which are not
feebly compact, omitting any countability condition, either on the
base for the topology or the density of the space. However, some
extra condition is necessary as many examples of non-feebly com-
pact spaces which possess no weaker connected Hausdorff topology
have been given (among others, we mention Example 2.7 of [15] or
the example after Corollary 2.4 of [7]). Our results generalize the
main theorem of [6], by showing that every non-feebly compact
Hausdorff whose density is “ small” in some sense possesses a weaker
connected Hausdorff topology. In Section 3 we consider the case of
Urysohn spaces.

A set X with topology τ will be denoted by (X, τ); d(X) =
min{|D| : D is dense in X} will denote the density of X and w(X)
will denote the weight of the space X . The closure (respectively,
interior) of a set A in a topological space (X, τ) will be denoted
by clτ(A) (respectively intτ(A)). The symbol ⊕ denotes disjoint
topological union. All spaces considered below are Hausdorff and
undefined topological notation and terminology can be found in [5].

Recall that p is the minimal cardinality of a subset of [ω]ω with
the strong finite intersection property but with no infinite pseudo-
intersection (see [3] for the requisite definitions). It is known that
ω1 ≤ p ≤ c = 2ω and hence CH (or even MA) implies that p = c.

2. Weaker Hausdorff topologies

Recall that a space has countable pseudocharacter if each point
of the space is a Gδ. Our main theorem generalizes the result of
[6].

Theorem 2.1. If (X, τ) is a Hausdorff space which is not fee-
bly compact and d(X) < p, then there is a connected, separable
Hausdorff topology ρ ⊆ τ on X. Furthermore, if (X, τ) has count-
able pseudocharacter, then ρ may be found with the same property.
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Proof. Suppose that U = {Un : n ∈ ω} is an infinite locally finite
family of open sets in (X, τ); by Lemma 1.2 of [1], we may assume
that the elements of U are mutually disjoint. For each n ∈ ω,
choose dn ∈ Un and let D = {dn : n ∈ ω}; D is an infinite closed
discrete subset of (X, τ).

Let σ be a connected Hausdorff topology on the countably infinite
set D and define a new topology µ on X by

µ = {U ∈ τ : U ∩ D ∈ σ} ⊆ τ.

We note that D is a closed subset of (X, µ) and since µ|D = σ,
it follows that D is a connected subset of (X, µ). We proceed to
show that (X, µ) is a Hausdorff space. To this end let x, y ∈ X be
distinct; we consider three cases.
(ı) If x, y 6∈ D, then there are disjoint sets U, V ∈ τ such that
x ∈ U , y ∈ V and U ∩ D = V ∩ D = ∅. Clearly U and V are open
sets in (X, µ) which separate x and y.
(ıı) If x ∈ D and y ∈ X \ D, then let V ∈ τ be a neighbourhood
of y such that I = {n ∈ ω : V ∩ Un 6= ∅} is finite and V ∩ D = ∅.
For each  ∈ I , choose a τ -open set W such that y 6∈ clτ (W) and
d ∈ W. Then

⋃
{Un : n 6∈ I}∪

⋃
{W :  ∈ I} is a µ-neighbourhood

of x which is disjoint from V ∩
⋂
{X \ clτ(W) :  ∈ I}.

(ııı) If x, y ∈ D, then we can choose disjoint sets J, K ∈ σ such
that x ∈ J and y ∈ K. Let G =

⋃
{Uj : dj ∈ J} ∈ τ and

H =
⋃
{Uk : dk ∈ K} ∈ τ ; clearly the sets G and H are disjoint.

Furthermore, G, H ∈ µ since G∩D = J and H∩D = K and x ∈ G,
y ∈ H .

Furthermore, if d ∈ D, then there are σ-open sets {Sn : n ∈ ω}
such that {d} =

⋂
{Sn : n ∈ ω}. Hence if {Um

k : m ∈ ω} ⊆ τ is
such that

⋂
{Um

k : m ∈ ω} = {dk} and Um
k ⊆ Uk for each k ∈ ω,

then {d} =
⋂
{
⋃
{Um

k : dk ∈ Sn} : m, n ∈ ω}. Hence if each point
of (X, τ) is a Gδ, then each point of X is a Gδ in (X, µ) also.

Since D has no isolated points in the topology σ it follows that
(D, σ|D) is not feebly compact (for instance, see [10]). Thus there
is a locally finite family G = {Gn : n ∈ ω} of non-empty σ-open
subsets of D, which we again assume to be mutually disjoint. Let
Vn =

⋃
{Um : dm ∈ Gn}. To see that V = {Vn : n ∈ ω} is a

locally finite family of non-empty, mutually disjoint µ-open sets,
note that if x ∈ X \ D, then there is a τ -open neighbourhood of
x disjoint from D - hence µ-open - and which meets only finitely
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many elements of V . If on the other hand, x ∈ D, then there is
some σ-open set U ⊆ D which meets only finitely many elements
of G and then

⋃
{Um : dm ∈ U} is a µ-open neighbourhood of x

meeting only finitely many elements of V . That D is not relatively
feebly compact now follows since each element of V meets D.

Our aim now is to show that there is a connected Hausdorff
topology ρ ⊆ µ. Suppose that d(X, τ) = κ < p and let B ⊆ X be
a τ -dense, hence µ-dense, subset of X \ D of cardinality κ. Let T
denote the Cantor tree, that is to say the complete binary tree of
height ω +1 and for each α ∈ ω +1, let Tα denote its αth level (for
a detailed description we refer the reader to Chapter 3 of [11]). If
|K ∩ Tω| = κ < p, where T \ Tω ⊆ K ⊆ T then it is a consequence
of Theorem 25A of [9] that K, with the tree topology γ inherited
from T , is normal. The subspace K of T was called a κ-Cantor tree
in Chapter 4 of [11]. (We note that the normality of the κ-Cantor
tree implies, via Jones’ Lemma, that 2κ = 2ω.) Fix bijections
Ψ : B → Kω = K ∩ Tω and Φ : V → K \ Kω = ∪{Tn : n ∈ ω} and
let Θ = Ψ ∪ Φ. We define ρ on X as follows:

ρ = {U ∈ µ : whenever x ∈ B ∩ U there exists
W ∈ γ such that Ψ(x) ∈ W and U ⊇

⋃
Θ←[W ]}.

It is a straightforward exercise to check that ρ is a topology and
clearly ρ ⊆ µ. Since each element of V meets D, we have that
B ⊆ clρ(D) and since B is τ -dense in X \ D, it follows that D is
ρ-dense in X ; thus (X, ρ) is connected. We will show that (X, ρ) is
a Hausdorff space.

To this end, suppose that x1, x2 ∈ X and let Ω1, Ω2 be dis-
joint open µ-neighbourhoods of x1, x2 respectively such that W =
{V ∈ V : (V ∩ Ω1) ∪ (V ∩ Ω2) 6= ∅} is finite and let Bı = B ∩ Ωı

for ı ∈ {1, 2}. The sets Θ(B1) and Θ(B2) are disjoint closed sub-
sets of K and since K is normal we can find disjoint γ-open sets
W1, W2 such that Θ(Bı) ⊆ Wı and Wı ∩ Kω = Θ(Bı) ∩ Kω and
Wı ∩ Θ(W) = ∅ for ı ∈ {1, 2}. It is then clear that Ω1 ∪

⋃
Θ←[W1]

and Ω2 ∪
⋃

Θ←[W2] are disjoint ρ-neighbourhoods of x1 and x2

respectively.
Finally, if there exist µ-open sets {Mn : n ∈ ω} such that {x} =⋂
{Mn : n ∈ ω}, then let B ∩ Mn = Hn and let Wn be a γ-

neighbourhood of Θ(Hn) in K such that Wn ∩ Tm = ∅ whenever
m < n and Wn ∩ Kω = Θ(Hn) ∩ Kω. It is easy to see that {x} =⋂
{Mn ∪

⋃
Θ←(Wn) : n ∈ ω} and hence the point x is a Gδ in

(X, ρ). �
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Since p = c is consistent with ZFC + ¬CH (for instance if MA
holds), we have the following corollary which should be compared
with Theorem 2.3 of [8] and which generalizes Corollary 3.5 of [13]
and the (unique) theorem of [6]. We note however that the con-
dition used (in the case of separable Hausdorff X) in Theorem 2.3
of [8] and which implies that X possess an infinite discrete family
of non-empty open sets, is stronger than that of being non-feebly
compact: Bing’s countable connected Hausdorff space (see [2]) is
not feebly compact, but possesses no discrete family of non-empty
open sets with more than one element.

Corollary 2.2. It is independent of ZFC whether every Hausdorff
space which has density less than c and is not feebly compact con-
tains a weaker connected Hausdorff topology.

Proof. It remains only to show that it is consistent that there exists
a Hausdorff space of density less than c which is not feebly compact
and which cannot be condensed onto a weaker connected Hausdorff
topology. To this end we assume that ω1 < c < 2ω1 ; and let
X = βD ⊕ ω denote the disjoint topological union of a countable
discrete space ω and the Stone-Čech compactification of a discrete
space D of cardinality ω1. Clearly d(X) = d(βD) = ω1 and X is
not feebly compact as it contains an open and closed copy of ω.
However, w(X) = w(βD) > c and it follows from Corollary 2.3 of
[7] that X possesses no weaker connected Hausdorff topology. �

A very similar example to that constructed in the previous corol-
lary shows that these results are the best possible.

Example 2.3. There is (in ZFC) a Tychonoff space of density c
which is not feebly compact but which possesses no weaker con-
nected Hausdorff topology.

Proof. Let C denote the discrete space of cardinality c and denote
by X the disjoint topological union of βC with the countably infi-
nite discrete space ω. Clearly d(X) = d(βC) = c and as before, X
is not feebly compact. However, w(X) = w(βC) > c and again it
follows from Corollary 2.3 of [7] that X possesses no weaker con-
nected Hausdorff topology. For future reference, we note also that
since |X | > 2c, the space X does not possess any weaker separable
Hausdorff topology either. �
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Example 2.4. There is a separable Tychonoff space which is not
compact (hence not H-closed) but which possesses no weaker con-
nected Hausdorff topology.

Proof. Let p be a remote point of βR \ R. It is known (see for
example [14]) that Y = βR \ {p} is almost H-closed, that is to say
there is precisely one free open ultrafilter on Y . Let a, b 6∈ βR;
the proof that the space Y ⊕ {a, b} has the required properties can
essentially be found in [14] or in more detail in [6]. �

If the topology τ in Theorem 2.1 is first countable, then it is
not hard to show that the topology µ can be constructed with the
same property. However, the topology ρ as constructed, will not in
general, be first countable. (This can be accomplished however, if
(X, τ) is separable - we leave the details to the reader.) Thus we
ask:

Question 2.5. Does every first countable Hausdorff space of weight
less than p and which is not feebly compact have a weaker first
countable connected Hausdorff topology?

In the proof of Theorem 2.1 we have shown that every non-feebly
compact Hausdorff topology which has density less than p possesses
a weaker separable Hausdorff topology. That this result does not
extend to spaces of density c is shown by the space of Example 2.3,
but it is then natural to ask the following:

Question 2.6. Does every Hausdorff topology of weight at most c
which is not feebly compact, possess a weaker separable Hausdorff
topology?

The condition of being non-feebly compact cannot be weakened
to being non-H-closed. It is a simple exercise to show that the
first uncountable ordinal ω1 with the order topology, has no weaker
separable Hausdorff topology.

If X is metrizable, it is well-known that there is a positive answer
to the last question (see for example, Corollary 3.7 of [13]). More
results concerning weaker connected metric topologies are in [4], [8]
and most recently [16].

3. Weaker connected Urysohn topologies

Recall that a space is Urysohn if distinct points have dis-
joint closed neighbourhoods. The same technique as that used in
Theorem 2.1 can be used to generalize Theorem 2.3 of [8] and
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Theorem 2.11 of [15], concerning weaker connected Urysohn topolo-
gies. First we recall some terminology.

A Urysohn filter F on a Urysohn space (X, τ) is an open filter
with the property that if x ∈ X is not a cluster point of F , then
there is a τ -closed neighbourhood U of x and an element F ∈ F
such that U ∩ clτ (F ) = ∅. A Urysohn space is said to be Urysohn-
closed if it is closed in every Urysohn space in which it is embedded
or equivalently, if every Urysohn filter has a cluster point. For an
infinite cardinal κ, a Urysohn family of size κ in X is a family U
of κ mutually disjoint regular closed sets with the property that
if x ∈ X , there is a closed neighbourhood of x which meets only
finitely many elements of U (see [15]). A Urysohn family of size ω
will be called simply a Urysohn family. The existence of a Urysohn
family clearly implies that a space is not Urysohn-closed, but the
converse is false. We note that the existence of a Urysohn family in
a Urysohn space X is equivalent to the following condition used in
[8]: There exists a countably infinite closed discrete set D which has
the property that for all x, y ∈ X , the closed discrete set D∪{x, y}
is strongly separated, that is to say, the points of D∪{x, y} can be
separated by a discrete family of open sets.

Theorem 3.1. If (X, τ) is a Urysohn space which has a Urysohn
family and d(X) < p, then there is a connected Urysohn topology
ρ ⊆ τ on X.

Proof. Suppose that {Cn : n ∈ ω} is a Urysohn family in (X, τ);
we put Un = intτ(Cn) and let U = {Un : n ∈ ω}. The topology
σ is chosen to be a connected Urysohn topology on the countably
infinite subset D and it is straightforward to show that if µ is defined
as in Theorem 2.1, then (X, µ) is Urysohn. The space (D, σ) which
is homeomorphic to (D, µ|D), is connected and thus by a result of
[12], (D, σ) is not Urysohn-closed. It then follows from Lemma 2.1
of [15] that (D, σ) possesses a Urysohn family G = {Gn : n ∈ ω}.
Let Vn =

⋃
{Um : dm ∈ intµ(Gn)} and V = {Vn : n ∈ ω} as in

Theorem 2.1. It is easy to see that {clµ(Vn) : n ∈ ω} is a Urysohn
family. The proof that (X, ρ) is the required Urysohn topology now
proceeds as in Theorem 2.1. �
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