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MINIMALITY IN TOPOLOGICAL GROUPS AND
HEISENBERG TYPE GROUPS

MENACHEM SHLOSSBERG

Abstract. We study relatively minimal subgroups in topo-
logical groups. We find, in particular, some natural relatively
minimal subgroups in unipotent groups which are defined over
“good” rings. By “good” rings we mean archimedean abso-
lute valued (not necessarily associative) division rings. Some
of the classical rings which we consider besides the field of
reals are the ring of quaternions and the ring of octonions
(also known as Cayley numbers). This way we generalize in
part a previous result which was obtained by Dikranjan and
Megrelishvili [2] and involved the Heisenberg group.

1. Introduction

A Hausdorff topological group G is minimal if G does not
admit a strictly coarser Hausdorff group topology or equivalently
if every injective continuous group homomorphism G → P into a
Hausdorff topological group is a topological embedding. The con-
cept of minimal topological groups was introduced by Stephenson
[10] and Döıchinov [3] in 1971 as a natural generalization of com-
pact groups.
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A Heisenberg group and more precisely its generalization, which
we present in section 2 (see also [5, 8]), provides many exam-
ples of minimal groups. Recently Dikranjan and Megrelishvili [2]
introduced the concept of co-minimality (see Definition 2.5) of
subgroups in topological groups after the latter author had intro-
duced the concept of relative minimality (see Definition 2.3 and also
[4]) of subgroups in topological groups and found such subgroups
in generalized Heisenberg groups (see [4]).

In [2, Proposition 2.4.2] Megrelishvili and Dikranjan proved that
the canonical bilinear mapping V × V ∗ → R, < v, f >= f(v) is
strongly minimal (see Definition 2.8) for all normed spaces V.

The following result is obtained as a particular case: The inner
product map

Rn × Rn → R
is strongly minimal. The latter result leads in [2] and [4] to the
conclusion that for every n ∈ N the subgroups

{


1 a 0
0 In 0
0 0 1




∣∣∣∣ a ∈ Rn

}
,

{ 


1 0 0
0 In b
0 0 1




∣∣∣∣ b ∈ Rn

}

are relatively minimal in the group
{ 


1 a c
0 In b
0 0 1




∣∣∣∣ a, b ∈ Rn, c ∈ R
}

which is known as the classical 2n+1-dimensional Heisenberg group
(where In denotes the identity matrix of size n). Theorem 3.4
and Corollary 3.6 generalize these results and allow us to replace
the field of reals by an arbitrary archimedean absolute valued (not
necessarily associative) division ring, for example, they can be ap-
plied for the ring of quaternions and the ring of octonions. Theo-
rem 3.8 provides a different generalization. It generalizes the case
of the classical real 3-dimensional Heisenberg group. We consider
for every n ∈ N the group of upper unitriangular matrices over
an archimedean absolute valued field of size (n + 2)× (n + 2) and
we find relatively minimal subgroups of this group. This result is
a generalization since the classical real 3-dimensional Heisenberg
group is a unitriangular group. This theorem is not new when we
take n = 1 and consider the field of reals. However, we obtain a
new result even for R when we take n > 1. This theorem can also
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be applied for the fields Q and C and for the ring of quaternions.
It does not apply for the ring of octonions since the multiplication
in the set of upper unitriangular matrices is associative only when
the scalars are taken from an associative ring.

2. Minimality in Generalized Heisenberg groups

The group

H =
{


1 x a
0 1 y
0 0 1




∣∣∣∣ x, y, a ∈ R
}
∼= (R× R) h R

is known as the classical real 3-dimensional Heisenberg Group.

We need a far reaching generalization [5, 8, 4], the generalized
Heisenberg group, which is based on biadditive mappings.

Definition 2.1. Let E,F, A be abelian groups. A map

w : E × F → A

is said to be biadditive if the induced mappings

wx : F → A, wf : E → A, wx(f) := w(x, f) =: wf (x)

are homomorphisms for all x ∈ E and f ∈ F .

Definition 2.2. [4, Definition 1.1] Let E, F and A be Hausdorff
abelian topological groups and w : E × F → A be a continuous
biadditive mapping. Denote by H(w) = (A×E)hF the topological
semidirect product (called, generalized Heisenberg group induced by
w) of F and the group A × E. The group operation is defined as
follows: for a pair

u1 = (a1, x1, f1), u2 = (a2, x2, f2)

we define

u1u2 = (a1 + a2 + f1(x2), x1 + x2, f1 + f2)

where, f1(x2) = w(x2, f1). Then H(w) becomes a Hausdorff topo-
logical group. In the case of a normed space X and the canonical
biadditive function w : X × X∗ → R (x, f) 7→ f(x) (where X∗ is
the Banach space of all continuous functionals from X to R, known
as the dual space of X) we write H(X) instead of H(w).
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Definition 2.3. [2, Definition 1.1.1] Let X be a subset of a
Hausdorff topological group (G, τ). We say that X is relatively min-
imal in G if every coarser Hausdorff group topology σ ⊂ τ of G
induces on X the original topology. That is, σ

∣∣
X

= τ
∣∣
X

.

Theorem 2.4. [4, Theorem 2.2] The subgroups X and X∗ are
relatively minimal in the generalized Heisenberg group H(X) =
(R×X) h X∗ for every normed space X.

The concept of co-minimality which is presented below played a
major role in generalizing and strengthening Theorem 2.4. Let H
be a subgroup of a topological group (G, γ). The quotient topology
on the left coset space G/H := {gH}g∈G will be denoted by γ/H.

Definition 2.5. [2, Definition 1.1.2] Let X be a topological sub-
group of a Hausdorff topological group (G, τ). We say that X is
co-minimal in G if every coarser Hausdorff group topology σ ⊂ τ
of G induces on the coset space G/X the original topology. That
is, σ/X = τ/X.

Lemma 2.6. (1) If H is a subgroup of a topological group (G, τ)
and X is a relatively minimal subset in H, then X is also
relatively minimal in G.

(2) Let (G1, τ1), (G2, τ2) be topological groups and H1,H2 be
their subgroups (respectively). If H1 is relatively minimal in
G1 and there exists a topological isomorphism f : (G1, τ1) →
(G2, τ2) such that the restriction to H1 is a topological iso-
morphism onto H2, then H2 is relatively minimal in G2.

(3) Let (G, τ) be a topological group and let X be a subset of G.
If X is relatively minimal in (G, τ), then every subset of X
is also relatively minimal in (G, τ).

(4) Every group having a dense relatively minimal subgroup is
minimal.

(5) A dense subgroup K of G is always co-minimal in G.

Proof. (1): Let σ ⊂ τ be a coarser Hausdorff group topology of G,
then σ

∣∣
H
⊂ τ

∣∣
H

is a coarser Hausdorff group topology of H. Since
X is a relatively minimal subset in H, we get that

σ
∣∣
X

= (σ
∣∣
H

)
∣∣
X

= (τ
∣∣
H

)
∣∣
X

= τ
∣∣
X

.

Hence, X is relatively minimal in G.
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(2): Observe that if σ2 ⊂ τ2 is a coarser Hausdorff group topology
of G2, then

f−1(σ2) = {f−1(U)| U ∈ σ2} ⊂ τ1

is a coarser group topology of G1. Since H1 is relatively minimal
in (G1, τ1) we obtain that τ1

∣∣
H1

= f−1(σ2)
∣∣
H1

. This implies that
τ2

∣∣
H2

= σ2

∣∣
H2

. This completes our proof.
(3): Let Y be a subset of X and σ ⊂ τ a coarser Hausdorff group
topology. Then, by the fact that X is relatively minimal in (G, τ)
and since Y is a subset of X we obtain that

σ
∣∣
Y

= (σ
∣∣
X

)
∣∣
Y

= (τ
∣∣
X

)
∣∣
Y

= τ
∣∣
Y

.

Hence, Y is relatively minimal in G.
(4) and (5): See [2]. ¤
Definition 2.7. Let E,F, A be abelian Hausdorff groups. A bi-
additive mapping w : E × F → A will be called separated if for
every pair (x0, f0) of nonzero elements there exists a pair (x, f)
such that f(x0) 6= 0A and f0(x) 6= 0A, where f(x) = w(x, f).

Definition 2.8. [2, Definition 2.2] Let (E, σ), (F, τ), (A, ν) be
abelian Hausdorff topological groups. A continuous separated bi-
additive mapping

w : (E, σ)× (F, τ) → (A, ν)

will be called strongly minimal if for every coarser triple (σ1, τ1, ν1)
of Hausdorff group topologies σ1 ⊂ σ, τ1 ⊂ τ, ν1 ⊂ ν such that

w : (E, σ1)× (F, τ1) → (A, ν1)

is continuous (in such cases we say that the triple (σ1, τ1, ν1) is
compatible with (σ, τ, ν)), it follows that σ1 = σ, τ1 = τ . We say
that the biadditive mapping is minimal if σ1 = σ, τ1 = τ holds for
every compatible triple (σ1, τ1, ν) (here ν1 := ν).

Remark 2.9. The multiplication map A×A → A is minimal for ev-
ery Hausdorff topological unital ring A (see Lemma 3.13). However
note that the multiplication map Z×Z→ Z (being minimal) is not
strongly minimal (where Z is equipped with the discrete topology).

The following theorem which uses the concept of co-minimality
and strongly biadditive mappings generalizes Theorem 2.4.
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Theorem 2.10. [2, Theorem 4.1] Let w : (E, σ)× (F, τ) → (A, ν)
be a strongly minimal biadditive mapping. Then:
1. A, A×E and A×F are co-minimal subgroups of the Heisenberg
group H(w).
2. E × F is a relatively minimal subset in H(w).
3. The subgroups E and F are relatively minimal in H(w).

Remark 2.11. The mapping w : X × X∗ → R (x, f) 7→ f(x) is
strongly minimal for every normed space X. Therefore, Theo-
rem 2.10 is indeed a generalization of Theorem 2.4.

Corollary 2.12. [2, Corollary 4.2] The following conditions are
equivalent:

(1) H(w) is a minimal group.
(2) w is a minimal biadditive mapping and A is a minimal

group.

Since Z with the p-adic topology τp is a minimal group for every
prime p [7] the following corollary is obtained by Remark 2.9:

Corollary 2.13. [2, Corollary 4.6.2] The Heisenberg group H(w) =
(Z×Z) hZ of the mapping (Z, τp)× (Z, τp) → (Z, τp) is a minimal
two step nilpotent precompact group for every p-adic topology τp.

3. Topological rings and absolute values

In this paper rings are not assumed to be associative. However,
when we consider division rings we assume they are associative
unless otherwise stated.

Definition 3.1. An absolute value A on a (not necessarily asso-
ciative) division ring K is archimedean if there exists n ∈ N such
that A(n) > 1 (where, for any n ∈ N, n := n.1 = 1 + · · · + 1 (n
terms)).

From now on we use the following notations for a commutative
group G which is denoted additively: the zero element is denoted
by 0G. If G is also a ring with multiplicative unit we denote this
element by 1G. In the case of a group G which is a direct product of
groups we shall use slightly different notation and denote the zero
element by 0̄G.
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Lemma 3.2. Let X be a (not necessarily associative) division ring
with an archimedean absolute value A and denote by τ the ring
topology induced by the absolute value. Let σ ⊂ τ be a strictly
coarser group topology with respect to the additive structure of X.
Then, every σ-neighborhood of 0X is unbounded with respect to the
absolute value.

Proof. Since σ is strictly coarser than τ , there exists an open ball
B(0, r) with r > 0 not containing any σ-neighborhood of 0X . Then,
for every σ-neighborhood U of 0X there exists x in U such that
A(x) ≥ r. Fix a σ-neighborhood V of 0X . We show that V is
unbounded with respect to the absolute value A. Since A is an
archimedean absolute value there exists n0 ∈ N such that A(n0) =
c > 1. Clearly, for every m ∈ N there exists a σ-neighborhood W
of 0X such that

W + W + · · ·+ W︸ ︷︷ ︸
nm

0

⊂ V.

By our assumption there exists x ∈ W such that A(x) ≥ r. Now
for the element

nm
0 x := x + x + · · ·+ x︸ ︷︷ ︸

nm
0

∈ V

we obtain that A(nm
0 x) = A(n0)mA(x) ≥ cmr. This clearly means

that V is unbounded. ¤
Recall that if f : X → Y is a surjective homomorphism, X is

a topological group and Y is equipped with the quotient topology,
then the neighborhood base of the identity element of Y is f(B),
where B is the neighborhood base of the identity element of X.

Lemma 3.3. Let (Gi)i∈I be a family of topological groups. For
each i ∈ I denote by τi the topology of Gi and by pi the projection
of G :=

∏
i∈I Gi to Gi. Suppose that σ is a group topology on G

which is strictly coarser than the product topology on G denoted by
τ . Then there exist j ∈ I such that the quotient topology σj of σ
with respect to the projection pj is strictly coarser than τj.

Proof. Since the topology σ is strictly coarser than τ which is the
product topology on G, there exists j ∈ I for which the projection
pj : (G, σ) → (Gj , τj) is not continuous at 0̄G. Therefore, the
quotient topology σj is strictly coarser than τj . ¤
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Theorem 3.4. Let F be a (not necessarily associative) division
ring furnished with an archimedean absolute value A. For each
n ∈ N,

wn : Fn × Fn 7→ F, wn(x̄, ȳ) =
n∑

1=1

xiyi

(where (x̄, ȳ) = ((x1, . . . xn), (y1, . . . yn)) is a strongly minimal bi-
additive mapping.

Proof. Clearly, for each n ∈ N, wn is a continuous separated bi-
additive mapping. Denote by τ the topology of F induced by A and
by τn the product topology on Fn. Consider the max-metric d on
Fn. Then its topology is exactly τn. Let (σ, σ′, ν) be a compatible
triple with respect to wn. We prove that σ = σ′ = τn. Assuming
the contrary we get that at least one of the group topologies σ, σ′ is
strictly coarser than τn. We first assume that σ is strictly coarser
than τn. Since ν is Hausdorff and (σ, σ′, ν) is compatible there exist
a ν-neighborhood Y of 0 := 0F and V,W which are respectively
σ, σ′-neighborhoods of 0̄F n such that wn(V, W ) ⊂ Y and in addition
1F /∈ Y . Since W ∈ σ′ ⊂ τn, then there exists ε0 > 0 such that the
corresponding d-ball B(0, ε0) is a subset of W . Since σ is strictly
coarser than τn (by Lemmas 3.2 and 3.3) there exists i ∈ I :=
{1, 2, · · · , n} such that pi(V ) is norm unbounded. Therefore, there
exists x̄ ∈ V such that A(pi(x̄)) > 1

ε0
. Hence, A((pi(x̄))−1) < ε0.

Now, let us consider a vector ā ∈ Fn such that for every j 6= i, aj =
0 and ai = (pi(x̄))−1. Clearly, ā ∈ B(0, ε0) ⊂ W . We then get that
wn(x̄, ā) = 1F ∈ V W ⊂ Y . This contradicts our assumption. Using
the same technique we can show that σ′ can’t be strictly coarser
than τn. ¤
Example 3.5. (1) Let F ∈ {Q,R,C} with the usual absolute

value. Then for each n ∈ N the map
wn : Fn × Fn 7→ F

is strongly minimal. The case of F equals to R follows also
from [2, Proposition 2.42].

(2) For each n ∈ N the map
wn : Hn ×Hn 7→ H

is strongly minimal, whereH is the quaternions ring equipped
with the archimedean absolute value defined by:

‖q‖ = (a2 + b2 + c2 + d2)
1
2

for each q = a + bi + cj + dk ∈ H.
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(3) Consider the non-associative ring of octonions denoted by
O. The octonions are formal expressions (see [1])

x∞ + x0i0 + x1i1 + x2i2 + x3i3 + x4i4 + x5i5 + x6i6, xt ∈ R
which constitute the algebra over the reals generated by
units i0, . . . , i6 that satisfy i2n = −1 and

in+1in+2 = in+4 = −in+2in+1

in+2in+4 = in+1 = −in+4in+2

in+4in+1 = in+2 = −in+1in+4

(where the subscripts run modulo 7).
We define a norm on O as follows: ‖x∞ + x0i0 + x1i1 +

x2i2 + x3i3 + x4i4 + x5i5 + x6i6‖ = (x2∞ + x2
0 + x2

1 + x2
2 +

x2
3 + x2

4 + x2
5 + x2

6)
1
2 . This norm agrees with the standard

Euclidean norm on R8. It can be proved that for each x, y ∈
O, ‖xy‖ = ‖x‖ · ‖y‖ hence ‖ ‖ is an absolute value and
clearly it is archimedean. Again by Theorem 3.4 the map

wn : On ×On 7→ O

is strongly minimal for each n ∈ N.

Corollary 3.6. Under the conditions of Theorem 3.4 the following
holds true:

(1) (F×{0̄F n})h{0̄F n}, (F×Fn)h{0̄F n} and (F×{0̄F n})hFn

are co-minimal subgroups of the Heisenberg group H(wn).
(2) ({0F }×Fn)hFn is a relatively minimal subset in H(wn) .
(3) The subgroups ({0F }×Fn)h{0̄F n} and ({0F }×{0̄F n})hFn

are relatively minimal in H(wn).

Proof. Apply Theorem 2.10 to the strongly minimal biadditive map-
ping wn. ¤

Remark 3.7. We replace H(wn) by H(Fn) for convenience (wn is
the strongly minimal biadditive mapping from 3.4). In terms of
matrices: H(Fn) is the 2n + 1-dimensional Heisenberg group with
coefficients from F which consists of square matrices of size n + 2:
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A =




1F x1 x2 . . . xn−1 xn r
0F 1F 0F 0F 0F 0F y1

0F 0F
. . . . . . . . .

... y2
...

...
. . . . . . . . . 0F

...
...

...
. . . . . . 1F 0F yn−1

0F 0F
. . . . . . 0F 1F yn

0F 0F 0F . . . . . . 0F 1F




and by the result (2) of Corollary 3.6 we obtain that the set of
matrices

B =




1F x1 x2 . . . xn−1 xn 0F

0F 1F 0F 0F 0F 0F y1

0F 0F
. . . . . . . . .

... y2
...

...
. . . . . . . . . 0F

...
...

...
. . . . . . 1F 0F yn−1

0F 0F
. . . . . . 0F 1F yn

0F 0F 0F . . . . . . 0F 1F




is a relatively minimal subset of H(Fn).

The following is new even for the case of F = R (for n > 1).

Theorem 3.8. Let F be a division ring furnished with an
archimedean absolute value A. For all n ∈ N denote by Un+2(F )
the topological group of all (n + 2) × (n + 2) upper unitriangular
matrices with entries from F. Then ∀n ∈ N and for each i, j such
that i < j, (i, j) 6= (1, n + 2) each of the subgroups

Gn+2
ij (F ) :=

{



1F 0F 0F 0F 0F

0F 1F 0F 0F 0F
...

. . . . . . aij
...

0F 0F 0F 1F 0F

0F . . . . . . 0F 1F



∈ Un+2(F )

}

(where aij is in the ij entry) is relatively minimal in Un+2(F ).
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Proof. We prove the assertion for two cases: First case: i = 1 or
j = n + 2 (that is the indexes from the first row or from the last
column) and the second case: i > 1, j < n+2. Let us consider the
first case: we know by Remark 3.7 that the set S of square matrices
of size n + 2:

B =




1F x1 x2 . . . xn−1 xn 0F

0F 1F 0F 0F 0F 0F y1

0F 0F
. . . . . . . . .

... y2
...

...
. . . . . . . . . 0F

...
...

...
. . . . . . 1F 0F yn−1

0F 0F
. . . . . . 0F 1F yn

0F 0F 0F . . . . . . 0F 1F




is relatively minimal in H(Fn). Since H(Fn) is a subgroup of
Un+2(F ) we get by Lemma 2.6 that S is relatively minimal in
Un+2(F ). Now, Gn+2

1j (F )⊂ S for every 1 < j < n+2 and Gn+2
in+2(F ) ⊂

S for every 1 < i < n + 2. By Lemma 2.6 we obtain that Gn+2
ij (F )

is relatively minimal in Un+2(F ) for every pair of indexes (i, j)
such that i = 1 or j = n + 2 (in addition to the demands: i < j
and(i, j) 6= (1, n + 2)).

Case 2: i > 1, j < n + 2. Fix n ∈ N and a pair (i, j) such
that 1 < i < j < n + 2. We shall show that Gn+2

ij (F ) is relatively
minimal in Un+2(F ). We define the following subgroup of Un+2(F ):

Ũn+2(F ) := {A ∈ Un+2(F )| akl = 0F if l 6= k < i}
(it means that the first i− 1 rows of every matrix contain only 0F

at each entry (besides the diagonal)). Clearly, this group is isomor-
phic to the group U(n+2−(i−1))(F ) = Un+3−i(F ). Indeed, for every
matrix A ∈ Ũn+2(F ) if we delete the first i − 1 rows and the first
i− 1 columns we obtain a matrix which belongs to Un+3−i(F ) and
it also clear that this way we obtain an isomorphism. Denote this
isomorphism by f. Now, Gn+2

ij (F ) is a subgroup of Ũn+2(F ) and
f(Gn+2

ij (F )) = Gn+3−i
1j+1−i(F ). Since 1 < i < j < n + 2 we obtain that

i ≤ n and hence n + 3 − i ≥ 3. Therefore, we can use the reduc-
tion to case (1) to obtain that Gn+3−i

1j+1−i(F ) is relatively minimal in
Un+3−i(F ). By applying Lemma 2.6 (with G1 := Un+3−i(F ), G2 :=
Ũn+2(F ), H1 := Gn+3−i

1j+1−i(F ) and H2 := Gn+2
ij (F )) we can conclude
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that Gn+2
ij (F ) is relatively minimal in Ũn+2(F ) and hence also in

Un+2(F ) which contains Ũn+2(F ) as a subgroup. This completes
our proof. ¤
Remark 3.9. In the particular case of F = R we obtain by the pre-
vious results that for every n ∈ N each of the subgroups Gn+2

ij (R)
is relatively minimal in SLn+2(R). It is derived from the fact that
SLm(R) is minimal for every m ∈ N (see [9, 2]). These groups are
also relatively minimal in GLn+2(R) which contains SLn+2(R) as a
subgroup (see Lemma 2.6). Nevertheless, the fact that these groups
are relatively minimal in Un+2(R) cannot be derived from the min-
imality of SLn+2(R) since SLn+2(R) is not a subset of Un+2(R).

Definition 3.10. Let K be a Hausdorff topological division ring.
A topological K-vector space E is straight if E is Hausdorff and
for every nonzero c ∈ E, λ → λc is a homeomorphism from K to
the one-dimensional subspace Kc of E. The Hausdorff topological
division ring is straight if every Hausdorff K-vector space is straight.

Definition 3.11. [11, Definition 13.5] Let K be a division ring
furnished with a ring topology τ. A subset V of K that contains zero
is retrobounded if (K\V )−1 is bounded. The topology τ is locally
retrobounded if τ is Hausdorff and the retrobounded neighborhoods
of zero form a fundamental system of neighborhoods of zero. A
locally retrobounded division ring is a division ring furnished with
a locally retrobounded topology.

Theorem 3.12. [11, Theorem 13.8] A nondiscrete locally retro-
bounded division ring is straight. In particular, a division ring
topologized by a proper absolute value is straight.

Lemma 3.13. Let (F, τ) be a unital Hausdorff topological ring.
Consider the following cases:

(1) (F, τ) is a minimal topological group.
(2) The multiplication map w : (F, τ) × (F, τ) → (F, τ) is

strongly minimal.
(3) (F, τ) is minimal as a topological module over (F, τ) (i.e.

there is no strictly coarser Hausdorff topology σ on F for
which (F, σ) is a topological module over (F, τ)).

(4) (F, τ) is minimal as a topological ring (i.e. there is no
strictly coarser Hausdorff ring topology on F ).
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Then:
(1) ⇒ (2) ⇒ (3) ⇒ (4).

Proof. (1) ⇒ (2): If F is a unital topological ring then w is minimal
(see also Remark 2.9).

Indeed, let (σ1, τ1, ν1) be a compatible triple then the identity
maps (F, σ1) → (F, τ) and (F, τ1) → (F, τ) are continuous since the
multiplication map w : (F, σ1) × (F, τ1) → (F, τ) is continuous at
(λ, 1F ), (1F , λ) for every λ ∈ F and from the fact that

∀λ ∈ F w(λ, 1F ) = w(1F , λ) = λ.

Clearly, in the case of a minimal topological Hausdorff group the
definition of a minimal biadditive mapping and a strongly mini-
mal biadditive mapping coincide. The rest of the implications are
trivial. ¤
Remark 3.14. Although (1) ⇒ (2), the converse implication in gen-
eral is not true. For instance, the multiplication map w : R×R→ R
is strongly minimal but R is not minimal as a topological Hausdorff
group (see Corollary 2.12).

Lemma 3.15. Let (R, τ) be a straight division ring. Let τ0 be
a strictly coarser Hausdorff topology on τ . Then (R, τ0) is not a
topological vector space over (R, τ).

Proof. Let τ0 ⊂ τ . We shall show that if (R, τ0) is a topological
vector space then τ0 = τ . In the definition of straight division ring
let K = (R, τ) and E = (R, τ0) also let c = 1. Then it is clear
that the identity mapping (R, τ) → (R, τ0) is a homeomorphism.
Hence, τ = τ0. ¤
Remark 3.16. By our new results it follows that in the case of
archimedean absolute value, conditions (2)-(4) of Lemma 3.13 hold
true. Since a proper non-archimedean absolute valued division
ring is a straight division ring (see [11, Theorem 13.8]) we get
by Lemma 3.15 that conditions (3)-(4) of Lemma 3.13 hold true
in this situation. The question that remains open is whether the
multiplication map

w : (F, τ)× (F, τ) → (F, τ)

is strongly minimal where F is a division ring and the top-
ology τ is induced by a proper non-archimedean absolute value.
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We ask even more concretely: is the multiplication map

w : Q×Q→ Q
strongly minimal when Q is equipped with the p-adic topology?

I would like to thank D. Dikranjan and M. Megrelishvili for their
suggestions and remarks.
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