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Dedicated to Tom Ingram on the occasion of his 70th birthday

Abstract. This paper examines the structure of the lifts of
crooked circular chains to connected covering spaces. In par-
ticular, if {𝐷𝑖} is a sequence of circular chains satisfying minor
conditions and 𝑝 is a 2𝑘-fold covering map of the annulus onto
itself, then 𝑝−1(𝐷3𝑘+𝑖) must be crooked inside of 𝑝−1(𝐷𝑖).

1. Preliminary Information

A continuum is a compact connected nondegenerate metric space.
All sets will be considered as subsets of a compact metric space.
A continuum is indecomposable if it is not the union of two proper
subcontinua. A continuum is hereditarily indecomposable if every
subcontinuum is indecomposable.

A chain is a finite collection of open sets 𝑈 = {𝑢0, 𝑢1, ⋅ ⋅ ⋅𝑢𝑚}
such that 𝑢𝑗 ∩ 𝑢𝑘 ∕= ∅ if and only if ∣𝑗 − 𝑘∣ ≤ 1. The open sets
contained in 𝑈 are links of the chain 𝑈 . The integer 𝑚 is the length
of 𝑈 . An 𝜖-chain is a chain in which each link has diameter less
than 𝜖. A continuum 𝑋 is chainable if, given any 𝜖 > 0, there exists
an 𝜖-chain covering 𝑋. If 𝑈 is a chain, then the subchain of 𝑈
consisting of the links {𝑢𝑖, ⋅ ⋅ ⋅ , 𝑢𝑘} will be denoted by 𝑈(𝑖, 𝑘). The
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2 K. GAMMON

chain 𝑈 is contained inside of the chain 𝐹 if every link of 𝑈 is a
subset of a link in 𝐹 .

A chain 𝐸 = {𝑒0, 𝑒1, ⋅ ⋅ ⋅ , 𝑒𝑚} is crooked inside of the chain 𝐷 =
{𝑑0, 𝑑1, ⋅ ⋅ ⋅ , 𝑑𝑚} if

(1) every link of 𝐸 is contained inside of a link of 𝐷 and
(2) if 𝑒𝑗 and 𝑒𝑘 are links of 𝐸 which intersect 𝑑𝐽 and 𝑑𝐾 , respec-

tively, where ∣𝐽 −𝐾∣ ≥ 3, then the subchain 𝐸(𝑗, 𝑘) can be
written as the union of three proper subchains 𝐸(𝑗, 𝑟), 𝐸(𝑟, 𝑠),
and 𝐸(𝑠, 𝑘) where (𝑠− 𝑟)(𝑘− 𝑗) > 0 and 𝑒𝑟 is a subset of the
link of 𝐷(𝐽,𝐾) adjacent to 𝑑𝐾 , and 𝑒𝑠 is a subset of the
link of 𝐷(𝐽,𝐾) adjacent to 𝑑𝐽 .

The above definition is due to R. H. Bing [2].

Throughout the paper, let ℤ denote the set of integers. For any
integers 𝑖 and 𝑛, the non-standard notation 𝑖 mod 𝑛 will denote the
unique integer 𝑗 such that 0 ≤ 𝑗 ≤ 𝑛− 1 and 𝑖 ≡ 𝑗 mod 𝑛.

A circular chain 𝑈 = {𝑢𝑖}𝑖∈ℤ is a collection of open sets so that
for some positive 𝑛 ∈ ℤ, 𝑢𝑖 = 𝑢𝑗 if and only if 𝑖 mod 𝑛 = 𝑗 mod 𝑛
and 𝑢𝑖 ∩ 𝑢𝑗 ∕= ∅ if and only if there exists a 𝑘 ∈ ℤ so that 𝑢𝑖 = 𝑢𝑘
and ∣𝑘 − 𝑗∣ ≤ 1. The integer 𝑛 is called the length of the circular
chain 𝑈 . The circular chain 𝑈 is contained inside of the circular
chain 𝐹 if every link of 𝑈 is a subset of a link of 𝐹 .

Let 𝐹 be a circular chain contained inside of the circular chain 𝑈
where 𝑈 has length 𝑛. Suppose that 𝐹1 is a proper subchain of 𝐹 so
that for a fixed integer 𝑗, 𝐹1 contains a link that intersects 𝑢𝑗 and if
𝐹1 has a link which intersects 𝑢𝑚 then 𝑗 mod 𝑛 ≤ 𝑚 mod 𝑛. Next,
suppose that 𝐹1 intersects a link 𝑢𝑘 such that if 𝐹1 has a link which
intersects 𝑢𝑙 for some 𝑙 this implies 𝑗 mod 𝑛 ≤ 𝑙 mod 𝑛 ≤ 𝑘 mod 𝑛.
If 𝑘 is the least such integer greater than 𝑗 which satisfies these
conditions, then 𝐹1 is said to have span ∣𝑘 − 𝑗∣ inside of 𝑈 .

The circular chain 𝐸 is crooked inside the circular chain 𝐷 if 𝐷
contains 𝐸 and for every proper subchain 𝐹 of 𝐷, each subchain
of 𝐸 contained inside of 𝐹 is crooked inside of 𝐹 . This definition
is also due to Bing [3].

A pseudo-arc is a hereditarily indecomposable, chainable contin-
uum. A pseudo-arc was originally described by Bronisl̷aw Knaster
[8] in 1922. At that time, it was not known that pseudo-arcs
were topologically equivalent. Edwin E. Moise [9] constructed the
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pseudo-arc as a continuum which is homeomorphic to each of its
nondegenerate subcontinua. In [3], Bing proved that all pseudo-
arcs, including the examples of Knaster and Moise, were topolog-
ically equivalent. In terms of chains contained in a metric space,
Bing [2] described the pseudo-arc as the intersection of a sequence
of sets {𝑈𝑖} where 𝑈𝑖 is the union of the chain 𝐷𝑖 and the sequence
{𝐷𝑖} satisfies the following conditions:

(1) 𝐷𝑖+1 is crooked inside of 𝐷𝑖;
(2) the closure of each element of 𝐷𝑖+1 is contained in an ele-

ment of 𝐷𝑖;
(3) the first link of 𝐷𝑖+1 is contained in the first link of 𝐷𝑖 and

the last link of 𝐷𝑖+1 is contained in the last link of 𝐷𝑖;
(4) 𝐷𝑖 is an 𝜖𝑖-chain;
(5) lim

𝑖→∞
𝜖𝑖 = 0.

𝑃 will be used to denote the pseudo-arc.
A pseudo-circle is a hereditarily indecomposable, circularly chain-

able, non-chainable continuum which is embeddable in the plane.
The pseudo-circle was described by Bing [3] as a hereditarily in-
decomposable continuum which separates the plane. In terms of
circular chains, Bing described this space as the intersection of a se-
quence of sets {𝑈𝑖}, where 𝑈𝑖 is the union of all links of the circular
chain 𝐷𝑖 and the sequence {𝐷𝑖} satisfies the following conditions:

(1) 𝐷𝑖+1 is crooked inside of 𝐷𝑖;
(2) the closure of each element of 𝐷𝑖+1 is contained in an ele-

ment of 𝐷𝑖;
(3) 𝐷𝑖+1 has winding number ±1 in 𝐷𝑖;
(4) 𝐷𝑖 is an 𝜖𝑖-chain;
(5) lim

𝑖→∞
𝜖𝑖 = 0.

In this paper, it will be assumed that the circular chain 𝐷𝑖+1 has
winding number 1 inside of the circular chain 𝐷𝑖. The collection
of circular chains {𝐷𝑖} which satisfies the above conditions will be
said to define a pseudo-circle. Lawrence Fearnley proved that all
pseudo-circles are topologically equivalent ([4] and [6]). It has also
been shown by Fearnley [5] and by James T. Rogers, Jr., [10] that
the pseudo-circle is not homogeneous. 𝐶 will be used to denote the
pseudo-circle.
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Covering spaces have provided a useful tool to prove results re-
lated to hereditarily indecomposable continua such as the result due
to Rogers in [11] which states that a homogeneous continuum which
separates the plane must be decomposable. It has been shown by
Jo W. Heath [7] that for any integer 𝑘, the pseudo-circle is a 𝑘-fold
covering space of itself. However, this proof focused on properties
of confluent mappings and did not use the structure of crooked
circular chains. This paper will examine the structure of crooked
circular chains. This can be used to provide an alternative proof of
Heath’s result.

2. The connected 𝑘-fold covering space
of a pseudo-circle

Throughout this paper, {𝐷𝑖}𝑖≥0 will be a collection of circular
chains 𝐷𝑖 = {𝑑𝑖𝑗}𝑗∈ℤ, contained in a planar annulus, which consists
of connected open sets satisfying the following conditions:

(1) 𝐷0 contains at least 6 links;
(2) 𝐷𝑖+1 is crooked inside of 𝐷𝑖;
(3) the closure of each element of 𝐷𝑖+1 is contained in an ele-

ment of 𝐷𝑖;
(4) 𝐷𝑖+1 has winding number 1 inside of 𝐷𝑖;

(5) 𝑑
(𝑖+1)
0 is contained in 𝑑𝑖0.

The first condition is used to avoid trivialities. The second and
third conditions are typical when describing a pseudo-circle. The
fourth condition is used to ease notation in the following proofs.
The length of 𝐷𝑖 will be denoted by 𝑛(𝑖).

The annulus 𝐴 is a connected 2-fold covering space of itself. Let
𝑝 denote the covering map. Denote 𝑝−1(𝐷𝑖) by 𝐹𝑖 = {𝑓 𝑖

𝑗}𝑗∈ℤ and

assume that 𝐹𝑖 is enumerated so that 𝑝(𝑓 𝑖
𝑗) = 𝑑𝑖𝑗 . Then 𝐹𝑖 is a

circular chain of length 2𝑛(𝑖) where 𝑝(𝑓 𝑖
𝑗) = 𝑝(𝑓 𝑖

𝑘) if and only if

𝑗 mod 𝑛(𝑖) = 𝑘 mod 𝑛(𝑖). It will be shown that in the sequence
{𝐷𝑖}𝑖≥0, as 𝑛 grows without bound, the span of proper subchains
of 𝐷𝑖+𝑛 becomes so large inside of 𝐷𝑖 that for some 𝑁 , the inverse
image of 𝐷𝑖+𝑁 must be crooked inside of the inverse image of 𝐷𝑖.

When considering the inverse image of 𝐷𝑖+1 inside of the inverse
image of 𝐷𝑖, there is a minimum number of links in 𝑝−1(𝐷𝑖) that
one subchain 𝑈 ⊂ 𝑝−1(𝐷𝑖+1) of length 𝑛(𝑖+1) must intersect. The
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following two lemmas find this number by constructing a specific
proper subchain of 𝐷𝑖+1 which has a large span inside of 𝐷𝑖.

Lemma 2.1. There is a subchain 𝑉 = {𝑣1, 𝑣2, ⋅ ⋅ ⋅ , 𝑣𝑚} of 𝐹𝑖+1

such that

(1) 𝑉 contains the link 𝑓 𝑖+1
0 ,

(2) 𝑝(𝑉 ) = {𝑝(𝑣1), 𝑝(𝑣2), ⋅ ⋅ ⋅ , 𝑝(𝑣𝑚)} is a proper subchain of
𝐷𝑖+1,

(3) 𝑝(𝑣𝑖) = 𝑝(𝑣𝑗) if and only if 𝑖 = 𝑗, and
(4) 𝑉 has span at least 2𝑛(𝑖) − 3 inside of 𝐹𝑖.

Proof: Since 𝐷𝑖+1 has winding number 1 inside of 𝐷𝑖, there
exists a subchain 𝐹𝑖+1(𝑗,𝑚) so that 0 < 𝑗 < 𝑚 < 𝑛(𝑖+ 1)− 1, 𝑓 𝑖+1

𝑚

intersects 𝑓 𝑖
𝑛(𝑖)−1, 𝑓 𝑖+1

𝑗 intersects 𝑓 𝑖
1, and 𝐹𝑖+1(𝑗,𝑚) is contained

inside of 𝐹𝑖(1, 𝑛(𝑖)−1). Since the chain 𝑝(𝐹𝑖(1, 𝑛(𝑖)−1) is a proper
subchain of 𝐷𝑖 and 𝐹𝑖+1(𝑗,𝑚) is contained inside of 𝐹𝑖(1, 𝑛(𝑖) −
1), the chain 𝐹𝑖+1(𝑗,𝑚) must be crooked inside of 𝐹𝑖(1, 𝑛(𝑖) − 1).
This implies that 𝐹𝑖+1(𝑗,𝑚) can be written as the union of three
subchains:

(1) 𝐹𝑖+1(𝑗, 𝑘) where 𝑓 𝑖+1
𝑗 ∩ 𝑓 𝑖

1 ∕= ∅ and 𝑓 𝑖+1
𝑘 ⊂ 𝑓 𝑖

𝑛(𝑖)−2,

(2) 𝐹𝑖+1(𝑘, 𝑙) where 𝑓 𝑖+1
𝑘 is as above and 𝑓 𝑖+1

𝑙 ⊂ 𝑓 𝑖
2, and

(3) 𝐹𝑖+1(𝑙,𝑚) where 𝑓 𝑖+1
𝑙 is as above and 𝑓 𝑖+1

𝑚 ∩ 𝑓 𝑖
𝑛(𝑖)−1 ∕= ∅

where 0 < 𝑗 < 𝑘 < 𝑙 < 𝑚. Let 𝑟 be an integer such that −𝑛(𝑖+1) <
𝑟 < 0 and 𝑟 mod 𝑛(𝑖 + 1) = 𝑙 mod 𝑛(𝑖 + 1) = 𝑙.

The chain 𝑉 consists of the links 𝐹𝑖+1(𝑟, 𝑘). The chain 𝑝(𝑉 ) is
proper because it does not contain each link of 𝑝(𝐹𝑖+1(𝑘, 𝑙)).

A chain of 𝐹𝑖 which contains 𝐹𝑖+1(𝑟,−1) must contain at least
𝑛(𝑖) − 2 links. Likewise, a chain of 𝐹𝑖 which contains 𝐹𝑖+1(0, 𝑘)
must contain at least 𝑛(𝑖) − 1 links. Therefore, 𝑉 intersects every
link of a subchain of 𝐹𝑖 which contains at least 2𝑛(𝑖)− 3 links. □

The chain 𝑉 mentioned in the above proof has an additional
property that will be used in subsequent proofs. As mentioned
previously, the lift of 𝑝(𝑉 ) consists of two distinct, disjoint chains,
each of which intersects all but at most three links of 𝐹𝑖. Since 𝐹𝑖

contains at least 12 distinct links, there must be at least 6 links
which both of these chains intersect. In particular, the following
lemma is true.
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Lemma 2.2. Let 𝑉 be the chain described in Lemma 2.1. Then
there exists a subchain 𝐺 of 𝐷𝑖 consisting of three adjacent links
so that, for each link 𝑔 of 𝑝−1(𝐺), both chains of 𝑝−1(𝑝(𝑉 )) have a
link contained inside of 𝑔.

Lemma 2.3. For any 𝑙 ∈ ℤ, there is a proper subchain 𝑉 =
{𝑣1, 𝑣2, ⋅ ⋅ ⋅ , 𝑣𝑚} of 𝐹𝑖+1 such that

(1) 𝑉 contains the link 𝑓 𝑖+1
𝑙 ,

(2) 𝑝(𝑉 ) = {𝑝(𝑣1), 𝑝(𝑣2), ⋅ ⋅ ⋅ , 𝑝(𝑣𝑚)} is a proper subchain of
𝐷𝑖+1,

(3) 𝑝(𝑣𝑗) = 𝑝(𝑣𝑘) if and only if 𝑗 = 𝑘, and
(4) 𝑉 has span at least 2𝑛(𝑖) − 3 inside of 𝐹𝑖.

Proof: The chains 𝐷𝑖, 𝐷𝑖+1, 𝐹𝑖, and 𝐹𝑖+1 can be renumbered so
that Lemma 2.1 can be applied. □

The next two lemmas show that one proper subchain of length
𝑛(𝑖+2) in the inverse image of 𝐷𝑖+2 must intersect every link in the
inverse image of 𝐷𝑖. This is done by applying the previous lemma
to the circular chains 𝐷𝑖+1 and 𝐷𝑖+2.

Lemma 2.4. There is a subchain 𝑉 of 𝐹𝑖+2 containing the link
𝑓 𝑖+2
0 such that

(1) 𝑉 intersects each element of 𝐹𝑖,
(2) 𝑝(𝑉 ) = {𝑝(𝑣1), 𝑝(𝑣2), ⋅ ⋅ ⋅ , 𝑝(𝑣𝑚)} is a proper subchain of

𝐷𝑖+2, and
(3) 𝑝(𝑣𝑗) = 𝑝(𝑣𝑘) if and only if 𝑗 = 𝑘.

Proof: Let 𝑉1 be a subchain of 𝐹𝑖+1 as described in Lemma 2.3
chosen in such a way that 𝑑𝑖0 is the middle link of a chain 𝐺 as

described in Lemma 2.2. Next, apply Lemma 2.1 to the link 𝑓 𝑖+2
0

and the circular chain 𝐹𝑖+1 to obtain a chain 𝑉 which intersects all
but at most three elements of 𝐹𝑖+1.

Notice that since 𝑑𝑖+2
0 ⊂ 𝑑𝑖0 and 𝑑𝑖0 is the middle link of the

chain 𝐺, the three links which 𝑉 may not intersect in 𝐹𝑖+1 must
be contained inside of 𝑝−1(𝐺). However, since 𝑉 must intersect the
other links of both chains of 𝑝−1(𝑝(𝑉1)), it follows that 𝑉 must still
intersect every element of 𝐹𝑖. □
Lemma 2.5. For 𝑙 ∈ ℤ, there is a subchain 𝑉 of 𝐹𝑖+2 containing
the link 𝑓 𝑖+2

𝑙 such that

(1) 𝑉 intersects each element of 𝐹𝑖,
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(2) 𝑝(𝑉 ) = {𝑝(𝑣1), 𝑝(𝑣2), ⋅ ⋅ ⋅ , 𝑝(𝑣𝑚)} is a proper subchain of
𝐷𝑖+2, and

(3) 𝑝(𝑣𝑗) = 𝑝(𝑣𝑘) if and only if 𝑗 = 𝑘.

Proof: The circular chains 𝐷𝑖+1, 𝐷𝑖+2, 𝐹𝑖+1, and 𝐹𝑖+2 can be
renumbered so that Lemma 2.4 can be applied. □

The following theorem uses the large span of proper subchains
in 𝐷𝑖+2 to show that the inverse image of 𝐷𝑖+3 must be crooked
inside of the inverse image of 𝐷𝑖.

Theorem 2.6. 𝐹𝑖+3 is crooked inside of the circular chain 𝐹𝑖.

Proof: Let 𝐸 be a proper subchain of 𝐹𝑖 and let 𝐺 be a subchain
of 𝐹𝑖+3 which is contained inside of 𝐸. Let 𝐻 be a subchain of
𝐹𝑖+2 which contains 𝐺. From Lemma 2.5, 𝐻 is contained inside
of a chain in the lift of a proper subchain of 𝐷𝑖+2 which intersects
each element of 𝐹𝑖. Hence, 𝐺 must be crooked inside of 𝐻 and
therefore also crooked inside of 𝐸. □
Theorem 2.7. The sequence of circular chains {𝐹3(𝑖)}𝑖≥0 defines
a pseudo-circle. In particular, the connected 2-fold cover of the
pseudo-circle is a pseudo-circle.

Proof: This is a consequence of Theorem 2.6. □
The remaining theorems in this section are used to extend the

previous result to 𝑛-fold covering spaces for 𝑛 > 2.

Theorem 2.8. If 𝑝 : 𝐴 → 𝐴 denotes the 2𝑘-fold covering of the
annulus onto itself, then the sequence of circular chains {𝐹3𝑘(𝑖)} de-

fines a pseudo-circle. In particular, the connected 2𝑘-fold covering
of the pseudo-circle is a pseudo-circle.

Proof: This follows from the fact that the 2𝑘-fold covering space
is a 2-fold covering space of the 2(𝑘−1)-fold covering space. □

This leads to the following alternative proof of Heath’s result
originally presented in [7].

Corollary 2.9. Let 𝑝 be a 𝑗-fold covering map of the annulus to
itself, where 2𝑘 < 𝑗 ≤ 2𝑘+1 for some 𝑘. Then for each 𝑖, there exists
an 𝑛 such that 3𝑘(𝑖) < 𝑛 ≤ 3𝑘+1(𝑖) and 𝐹𝑛 is crooked inside of 𝐹𝑖.
In particular, the 𝑗-fold connected covering space of the pseudo-
circle is a pseudo-circle.



8 K. GAMMON

3. The infinite, connected covering space
of a pseudo-circle

The methods of this proof can also be used to provide more in-
sight into a result due to David P. Bellamy and Wayne Lewis [1],
which states that the Hausdorff two point compactification of the
infinite, connected covering space of the pseudo-circle is a pseudo-
arc. The proof provided by Bellamy and Lewis uses a specific con-
struction of the pseudo-circle which controls the span of the proper
subchains of 𝐷𝑖+1 inside of 𝐷𝑖. While the underlying idea of the
following proof is similar to that in [1], the author utilizes the meth-
ods developed in section 2 to avoid a specific construction of the
pseudo-circle and to provide more detail to the proof introduced by
Bellamy and Lewis.

In the following, let 𝐴 denote the universal covering space of the
annulus with covering map 𝑝 and 𝐴 denote the two point compacti-

fication of 𝐴 obtained by adding points 𝑎 and 𝑏. Then 𝐴 contains an
infinite, connected covering space of the pseudo-circle. Let {𝐷𝑖}𝑖≥0

be a sequence of circular chains defining a pseudo-circle satisfying
the four conditions listed in section 2.

Theorem 3.1. The two point compactification of the infinite, con-
nected covering space of the pseudo-circle is a pseudo-arc.

Proof: For each 𝑖, 𝑝−1(𝐷𝑖) is an infinite chain consisting of infin-
itely many copies of 𝐷𝑖. Assume, without loss of generality, that
proceeding through the links of 𝑝−1(𝐷𝑖) in the direction of 𝑎 corre-
sponds to traveling through 𝐷(𝑖) with a negative orientation.

Arbitrarily select a point 𝑥 ∈ 𝑝−1(𝐶) such that 𝑑01 contains 𝑝(𝑥)
and select a copy of 𝐷0 in 𝑝−1(𝐷0) which contains 𝑥 in the first
link. Denote this copy by 𝐸0

0 . Then 𝐸0−1 will consist of the copy

of 𝐷0 that intersects 𝐸0
0 and travels towards 𝑎, and 𝐸0

1 will consist
of the copy of 𝐷0 that intersects 𝐸0

0 and travels towards 𝑏. In
general, number the copies of 𝐷0 inductively by subtracting one
while moving toward point 𝑎 and adding one while moving toward
point 𝑏.

Let 𝐹0 be the chain from 𝑎 to 𝑏 whose links consist of the links of
𝐸0

0 except the first link and the links of 𝐸0
1 except the last two links

(see Figure 1.) The neighborhood of 𝑎 will consist of the union of
the elements of those chains 𝐸0

𝑖 where 𝑖 < 0 and the first link of
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𝐸0
0 . The neighborhood of 𝑏 will consist of the union of those copies

of 𝐸0
𝑖 where 𝑖 > 1 and the last two links of 𝐸0

1 . Then this chain
has length 2𝑛(0)− 1, which is one less than the length of the 2-fold
cover of 𝐷0.

a b
x

Figure 1. Two copies of 𝐷0 provide the middle
links of 𝐹0. The rest of the lift of 𝐷0 is a neighbor-
hood either of 𝑎 or of 𝑏.

In a similar fashion, let 𝐸1
0 be a copy of 𝐷3 contained inside of

𝑝−1(𝐷3) whose first link is contained inside of the first link of 𝐸0
0 .

The copies of 𝐷3 will be enumerated inductively in a fashion similar
to the copies of 𝐷0. As illustrated in Figure 2, let 𝐹1 be a chain
from 𝑎 to 𝑏 whose links consist of the links of 𝐸1−1 except the first

link, the links of 𝐸1
0 , the links of 𝐸1

1 , and the links of 𝐸1
2 except the

last two links. The links containing 𝑎 and 𝑏 are defined in a similar
fashion to those in 𝐹0. Applying the proof of Theorem 2.6, 𝐹1 is
crooked inside of the chain 𝐹0. Notice that 𝐹1 has length 4𝑛(3)− 1
which is one less than the length of the 4-fold covering of 𝐷3.

a b
x

Figure 2. Four copies of 𝐷3 provide the middle
links of 𝐹1. The rest of the lift of 𝐷4 is a neighbor-
hood either of 𝑎 or of 𝑏.

In general, if 𝐹𝑖 has already been constructed using 𝑝−1(𝐷𝑗) for
some 𝑗, then 𝐹𝑖+1 consists of 2𝑖+1 copies of 𝐷(3𝑖+𝑗) selected in a
similar fashion to those in 𝐹1. Neighborhoods of 𝑎 and 𝑏 are also
constructed similarly. Again, by the proof of Theorem 2.6, 𝐹𝑖+1 is
crooked inside of the chain 𝐹𝑖. Notice that 𝐹𝑖+1 will have length
2(𝑖+1)𝑛(3𝑖+𝑗)−1 which is one less than the length of the 2(𝑖+1)-fold
cover of 𝐷(3𝑖+𝑗).
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Since the mesh of the links of 𝐹𝑖 goes to zero as 𝑖 increases
without bound, if follows that ∩𝐹𝑖 is a pseudo-arc. □
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