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CALIBERS AND THE DISCRETE COUNTABLE

CHAIN CONDITION

YIN-ZHU GAO AND WEI-XUE SHI

Abstract. This paper introduces and studies 𝑐𝑐-caliber 𝜔1

and 𝑐𝑐-caliber (𝜔1, 𝜔). The two conditions are weaker than
countable-compactness or separability and are stronger than
the discrete countable chain condition. Related chain condi-
tions are also investigated.

1. Preliminaries

A space𝑋 is said to satisfy the discrete countable chain condition
(DCCC) if any discrete family of non-empty open subsets of 𝑋 is
countable. Separability implies DCCC. Chain conditions between
separability and DCCC are widely studied: for instance, caliber 𝜔1

(i.e., each point-countable family of non-empty open subsets of a
space is countable) or caliber (𝜔1, 𝜔) (i.e., each point-finite family
of non-empty open subsets of a space is countable) (see [3], [4], [9],
[10], or [12]).

In this paper, we introduce and study 𝑐𝑐-caliber 𝜔1 and 𝑐𝑐-
caliber (𝜔1, 𝜔), which are weaker than separability or countable-
compactness, but stronger than DCCC. We show that the implica-
tions “countable-compactness ⇒ 𝑐𝑐-caliber 𝜔1 ⇒ 𝑐𝑐-caliber (𝜔1, 𝜔)
⇒ DCCC” are not reversible; the usual ordinal space [0, 𝜔1) and
its Alexandroff duplicate space 𝐴([0, 𝜔1)) have 𝑐-caliber (𝜔1, 𝜔),
but not 𝑐-caliber 𝜔1; if a space has a 𝛿𝜃-base (a quasi-𝐺𝛿-diagonal,
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52 Y.-Z. GAO AND W.-X. SHI

respectively), then caliber 𝜔1, 𝑐-caliber 𝜔1, and 𝑐𝑐-caliber 𝜔1 are
equivalent; in a locally separable meta-Lindelöf space, DCCC im-
plies separability. Related chain conditions are also investigated.

Throughout the paper, spaces are 𝑇2. Mappings are continu-
ous and surjective. A space satisfies the countable chain condition
(CCC) if any disjoint family of non-empty open subsets is count-
able. A space 𝑋 has a quasi-𝐺𝛿-diagonal if there is a sequence
{G𝑛 : 𝑛 < 𝜔} of families of open subsets such that for given distinct
points 𝑥, 𝑦 ∈ 𝑋, there is some 𝑛 with 𝑥 ∈ 𝑠𝑡(𝑥,G𝑛) ⊂ 𝑋 ∖ {𝑦}. We
reserve the symbol ℤ for the sets of integers. By the space [0, 𝜔1),
we mean the usual ordinal space, where 𝜔1 is the first uncountable
ordinal. Other terms and symbols will be found in [5].

2. Definitions of 𝑐𝑐-caliber 𝜔1 and 𝑐𝑐-caliber (𝜔1, 𝜔)

Definition 2.1. A space 𝑋 has 𝑐𝑐-caliber 𝜔1 if for each uncount-
able family U of non-empty open subsets there is a closed count-
ably compact subset 𝐸 of 𝑋 such that {𝑈 ∈ U : 𝑈 ∩ 𝐸 ∕= ∅} is
uncountable.

Definition 2.2. A space 𝑋 has 𝑐𝑐-caliber (𝜔1, 𝜔) if for each un-
countable family U of non-empty open subsets there is a closed
countably compact subset 𝐸 of 𝑋 such that {𝑈 ∈ U : 𝑈 ∩𝐸 ∕= ∅}
is infinite.

Proposition 2.3. If a space 𝑋 has 𝑐𝑐-caliber (𝜔1, 𝜔), then 𝑋 sat-
isfies DCCC.

Proof: Assume that 𝑋 does not satisfy DCCC. Then 𝑋 has a
discrete uncountable family U of non-empty open subsets. Hence,
there is a closed countably compact 𝐸 ⊂ 𝑋 which meets infinite
members of U . Thus, {𝐸 ∩ 𝑈 : 𝑈 ∈ U 𝑎𝑛𝑑 𝐸 ∩ 𝑈 ∕= ∅} is a
discrete infinite family of subsets of 𝐸. This contradicts countable-
compactness of 𝐸. □

By definitions and Proposition 2.3 the following hold:
countable-compactness ⇒ 𝑐𝑐-caliber 𝜔1 ⇒ 𝑐𝑐-caliber (𝜔1, 𝜔) ⇒

DCCC.

In section 4, Example 4.1, Example 4.2, and Example 4.4 demon-
strate that none of the implications is reversible.

Recall that a space 𝑋 has 𝑐-caliber 𝜔1 if for each uncountable
family U of non-empty open subsets, there is a compact subset 𝐾
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of 𝑋 such that {𝑈 ∈ U : 𝑈 ∩ 𝐾 ∕= ∅} is uncountable; a space
𝑋 has 𝑐-caliber (𝜔1, 𝜔) if for each uncountable family U of non-
empty open subsets, there is a compact subset 𝐾 of 𝑋 such that
{𝑈 ∈ U : 𝑈 ∩𝐾 ∕= ∅} is infinite (see [8], [7]).

From the definitions, we see that
(1) 𝑐-caliber 𝜔1 ⇒ 𝑐-caliber (𝜔1, 𝜔);
(2) 𝑐-caliber 𝜔1 ⇒ 𝑐𝑐-caliber 𝜔1;
(3) 𝑐-caliber (𝜔1, 𝜔) ⇒ 𝑐𝑐-caliber (𝜔1, 𝜔).
The above three implications are not converse: Example 4.5

shows that (1) is not reversible; the spaces in Proposition 2.7 are
countably compact (so 𝑐𝑐-caliber 𝜔1) but without 𝑐-caliber 𝜔1, and
thus, (2) is not reversible; by Example 4.7, (3) is not reversible
either.

Proposition 2.4. (𝛼) For a first-countable 𝑇3-space 𝑋, the follow-
ing are equivalent: (1) 𝑋 has 𝑐-caliber (𝜔1, 𝜔); (2) 𝑋 has 𝑐𝑐-caliber
(𝜔1, 𝜔); (3) 𝑋 satisfies DCCC.

(𝛽) If 𝑋 is weakly [𝜔1,∞)𝑟-refinable, then 𝑐-caliber 𝜔1 and 𝑐𝑐-
caliber 𝜔1 are equivalent; 𝑐-caliber (𝜔1, 𝜔) and 𝑐𝑐-caliber (𝜔1, 𝜔) are
equivalent.

Proof: (𝛼): (1) ⇒ (2) is obvious. By Proposition 2.3, (2)⇒ (3).
(3)⇒ (1) is by [8, Proposition 2.2 ].

(𝛽): If a closed 𝐹 ⊂ 𝑋 is countably compact, then 𝐹 is weakly
[𝜔1,∞)𝑟-refinable. By [2, Theorem 9.2 ], 𝐹 is compact. □

Recall that the Alexandroff duplicate space 𝐴(𝑋) for a space
𝑋 is the set 𝑋 × {0, 1} with the topology as follows: points in
𝑋 ×{1} are isolated and each point ⟨𝑥, 0⟩ in 𝑋 ×{0} has the basic
neighborhoods of the form (𝑈×{0, 1})∖{⟨𝑥, 1⟩}, where 𝑈 is an open
neighborhood of 𝑥 in 𝑋; the long line 𝐿𝜔1 is the set [0, 𝜔1)× [0, 1)
with the linearly ordered topology of the lexicographical order.

Proposition 2.5. Let 𝑋 be a space such that all compact subsets
of 𝑋 have cardinality < 𝜅, where 𝜅 is an infinite cardinal. Then
𝐴(𝑋) also has all its compact subsets of cardinality < 𝜅.

Proof: Note that the projection mapping 𝜋: 𝐴(𝑋) → 𝑋, 𝜋(𝑥, 𝑖) =
𝑥, is continuous. So if 𝐾 is a compact subset of 𝐴(𝑋), then 𝜋(𝐾)
is a compact subset of 𝑋. By hypothesis, 𝜋(𝐾) has cardinality <
𝜅; hence, as 𝜋 is a 2-to-1 mapping, 𝐾 has cardinality < 𝜅. □
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Corollary 2.6. Let 𝑋 be a space with ∣𝑋∣ > 𝜔, then the following
hold.

(1) If any compact subset of 𝑋 is finite, 𝐴(𝑋) does not have
𝑐-caliber (𝜔1, 𝜔).

(2) If any compact subset of 𝑋 is countable, 𝐴(𝑋) does not
have 𝑐-caliber 𝜔1.

Proof: Put U = {{⟨𝑥, 1⟩} : 𝑥 ∈ 𝑋}. Then U is an uncountable
family of open subsets of 𝐴(𝑋).

(1) By Proposition 2.5, any compact subset of 𝐴(𝑋) is finite and
thus meets only finite members of U . Hence, 𝐴(𝑋) does not have
𝑐-caliber (𝜔1, 𝜔).

(2) By Proposition 2.5, any compact subset of 𝐴(𝑋) is countable.
For the uncountable family U of open subsets of 𝐴(𝑋) and any
compact subset 𝐶 of 𝐴(𝑋), 𝐶 meets only countable members of
U . Hence, 𝐴(𝑋) does not have 𝑐-caliber 𝜔1. □

In general, 𝑐-caliber (𝜔1, 𝜔) and 𝑐𝑐-caliber (𝜔1, 𝜔) cannot be pre-
served by the Alexandroff duplicate space 𝐴(𝑋) of a space 𝑋 (see
Example 4.6); however, we have the following proposition.

Proposition 2.7. Let 𝑋 be any of the following spaces:

(1) the space [0, 𝜔1);
(2) the long line 𝐿𝜔1;
(3) the space 𝐴([0, 𝜔1));
(4) the space 𝐴(𝐿𝜔1).

Then 𝑋 is with 𝑐-caliber (𝜔1, 𝜔) but without 𝑐-caliber 𝜔1.

Proof: Note that if a space 𝑋 is countably compact, then so
is 𝐴(𝑋). In fact, let 𝑆 be a countably infinite subset of 𝐴(𝑋).
If 𝑆 ∩ (𝑋 × {0}) is infinite, then 𝑆 has an accumulation point in
𝑋 × {0}, and hence in 𝐴(𝑋). Otherwise, we can suppose 𝑆 =
{⟨𝑥𝑛, 1⟩ : 𝑛 < 𝜔}. Then the 𝑥𝑛’s have an accumulation point in 𝑋,
say 𝑥. And now it is clear that ⟨𝑥, 0⟩ is an accumulation point of
𝑆 in 𝐴(𝑋).

Now since [0, 𝜔1) and 𝐿𝜔1 are countably compact, so are𝐴([0, 𝜔1))
and 𝐴(𝐿𝜔1). Thus, the four spaces satisfy DCCC. Clearly, they
are 𝑇3 and first countable, and so by Proposition 2.4, they have
𝑐-caliber (𝜔1, 𝜔).
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For [0, 𝜔1), U = {{𝑥} : 𝑥 < 𝜔1 is an isolated ordinal} is un-
countable. If 𝐾 ⊂ [0, 𝜔1) is compact, then 𝐾 meets at most count-
able members of U . Thus, [0, 𝜔1) is without 𝑐-caliber 𝜔1.

For 𝐿𝜔1 , each 𝑉𝛼 = {𝛼} × (0, 1) (𝛼 < 𝜔1) is open in 𝐿𝜔1 . For
𝐾 ⊂ 𝐿𝜔1 , if 𝐾 meets uncountable members of V = {𝑉𝛼 : 𝛼 < 𝜔1},
then 𝐾 is not compact. Thus, 𝐿𝜔1 is without 𝑐-caliber 𝜔1.

By Corollary 2.6(2), 𝐴([0, 𝜔1)) is without 𝑐-caliber 𝜔1.
To show that 𝐴(𝐿𝜔1) is without 𝑐-caliber 𝜔1, put 𝑊𝛼 = ({𝛼} ×

(0, 1))×{0, 1} for each 𝛼 < 𝜔1. Then each 𝑊𝛼 is open in 𝐴(𝐿𝜔1). If
𝐾 ⊂ 𝐴(𝐿𝜔1) meets uncountable members of W = {𝑊𝛼 : 𝛼 < 𝜔1},
then 𝐾 is not compact. □
Proposition 2.8. For any compact space 𝐸, the product spaces
[0, 𝜔1)× 𝐸 and 𝐿𝜔1 × 𝐸 do not have 𝑐-caliber 𝜔1.

Proof: For [0, 𝜔1)×𝐸, note that U = {{𝛼}×𝐸 : 𝛼 < 𝜔1 is an iso-
lated ordinal} is an uncountable family of non-empty open subsets
of countably compact space [0, 𝜔1) × 𝐸. For any compact 𝐾 ⊂
[0, 𝜔1)×𝐸, p(𝐾) is compact in [0, 𝜔1), where p is the projection of
[0, 𝜔1)×𝐸 onto [0, 𝜔1). Thus, p(𝐾) is countable. Put 𝛼𝐾 = 𝑠𝑢𝑝{𝛼 :
𝛼 ∈ p(𝐾)}; then 𝛼𝐾 < 𝜔1 and 𝐾 ⊂ [0, 𝛼𝐾 ]× 𝐸. Since [0, 𝛼𝐾 ]× 𝐸
meets only countable members of U , 𝐾 cannot meet uncountable
members of U . Hence, [0, 𝜔1)× 𝐸 does not have 𝑐-caliber 𝜔1.

For 𝐿𝜔1 ×𝐸, put 𝑉𝛼 = {𝛼}× (0, 1), 𝛼 < 𝜔1. Then V = {𝑉𝛼×𝐸 :
𝛼 < 𝜔1} is an uncountable family of non-empty open subsets of
𝐿𝜔1 × 𝐸. For any compact 𝐶 ⊂ 𝐿𝜔1 × 𝐸, p(𝐶) is compact in 𝐿𝜔1 ,
where p is the projection of 𝐿𝜔1 × 𝐸 onto 𝐿𝜔1 . Thus, 𝐻 = {𝛼 <
𝜔1 : p(𝐶) ∩ 𝑉𝛼 ∕= ∅} is countable. Put 𝛼0 = 𝑠𝑢𝑝{𝛼 : 𝛼 ∈ 𝐻} + 1;
then 𝛼0 < 𝜔1 and 𝐶 ⊂ 𝑇 = [⟨0, 0⟩, ⟨𝛼0, 0⟩]×𝐸. Since 𝑇 meets only
countable members of V , 𝐶 cannot meet uncountable members of
V . Hence, 𝐿𝜔1 × 𝐸 does not have 𝑐-caliber 𝜔1. □
Corollary 2.9. For a first-countable compact space 𝐸, the products
[0, 𝜔1)× 𝐸 and 𝐿𝜔1 × 𝐸 have 𝑐-caliber (𝜔1, 𝜔).

Proof: Since the countably compact spaces [0, 𝜔1)×𝐸 and 𝐿𝜔1 ×
𝐸 have 𝑐𝑐-caliber (𝜔1, 𝜔) and are first-countable, by Proposition
2.4, they have 𝑐-caliber (𝜔1, 𝜔). □
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3. Related chain conditions and
relationships among them

Recall that a space has Property 𝐾 (see [9]) if each uncountable
family U of non-empty open subsets has an uncountable linked
subfamily V (i.e., if 𝑈, 𝑉 ∈ V , then 𝑈 ∩ 𝑉 ∕= ∅).
Proposition 3.1. Let 𝑋 be a space and

(a) = separability; (f) = 𝑐-caliber 𝜔1;
(b) = caliber 𝜔1; (g) = 𝑐-caliber (𝜔1, 𝜔);
(c) = caliber (𝜔1, 𝜔); (h) = 𝑐𝑐-caliber 𝜔1;
(d) = Property K; (i) = 𝑐𝑐-caliber (𝜔1, 𝜔);
(e) = 𝐶𝐶𝐶; (j) = 𝐷𝐶𝐶𝐶.

Then the following hold:

(1) (a) to (e) are hereditary with respect to open subspaces,
but (f) to (j) are not;

(2) none of the ten properties is hereditary with respect to
closed subspaces;

(3) the ten properties are invariants under continuous map-
pings;

(4) (a) to (e) are inverse invariants under irreducible closed
mappings;

(5) (f) to (j) (with 𝑇3) are inverse invariants under irreducible
perfect mappings;

(6) the ten properties are not inverse invariants under perfect
mappings.

Proof: The proofs of (1) to (5) are without difficulty, so we omit
them. To show (6), note that the mapping 𝜋 : 𝐴(𝑋) → 𝑋, 𝜋(𝑥, 𝑖) =
𝑥, is perfect. Let 𝑋 = 𝑆 × 𝑆, where 𝑆 is the Sorgenfrey line. Then
𝑋 is separable and thus, 𝑋 satisfies (a) to (j). By Example 4.6,
𝐴(𝑋) does not satisfy DCCC, and thus, 𝐴(𝑋) does not satisfy any
of (a) to (j). □

Proposition 3.2. If the space 𝑋 is hereditarily DCCC, then 𝑋
has caliber (𝜔1, 𝜔).

Proof: Let U be a point-finite family of non-empty open subsets
of 𝑋. For 𝑛 < 𝜔, put 𝐷𝑛 = {𝑥 ∈ 𝑋 : 𝑜𝑟𝑑(𝑥,U ) = 𝑛 + 1} and
D𝑛 = {(∩𝒰 ′) ∩ 𝐷𝑛 : 𝒰 ′ ⊂ U , ∣𝒰 ′∣ = 𝑛 + 1}. Since 𝐷𝑛 is DCCC,
the discrete open cover D𝑛 of it is countable. Since each set in U
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contains some non-empty set in D𝑛 for some 𝑛 < 𝜔 and each non-
empty set in D𝑛 is a subset of exactly 𝑛 + 1 sets in U , it follows
that U is countable. Thus, 𝑋 has caliber (𝜔1, 𝜔). □
Remark 3.3. (1) Proposition 3.2 is due to Lemma [7] (i.e., hered-
itarily Lindelöf spaces have caliber (𝜔1, 𝜔)). We only note that
“hereditarily Lindelöf” can be weakened to “hereditarily DCCC.”

(2) Let P be any of (d) to (i) in Proposition 3.1. Since P implies
DCCC (see Figure (*)), if 𝑋 is hereditarily P, then 𝑋 has caliber
(𝜔1, 𝜔).

(3) Proposition 3.2 is not reversible. In fact, the product 𝑋 =
𝑆×𝑆 of the Sorgenfrey line 𝑆 is separable, so it has caliber (𝜔1, 𝜔).
However, 𝑋 has a discrete closed subspace 𝑌 = {⟨𝑥,−𝑥⟩ : 𝑥 ∈ 𝑆}
which is not DCCC.

Recall that an open cover U of a space 𝑋 is 𝑇1-point-separating
if 𝑥 ∕= 𝑦 are points of 𝑋, then some member of U contains 𝑥 but
not 𝑦.

Proposition 3.4. If 𝑋 has a 𝛿𝜃-base (a quasi-𝐺𝛿-diagonal, a point-
countable, 𝑇1-point-separating open cover, respectively), then “cal-
iber 𝜔1 ⇔ 𝑐-caliber 𝜔1 ⇔ 𝑐𝑐-caliber 𝜔1.”

Proof: “caliber 𝜔1 ⇒ 𝑐-caliber 𝜔1 ⇒ 𝑐𝑐-caliber 𝜔1” is obvious.
Let us show that 𝑐𝑐-caliber 𝜔1 ⇒ caliber 𝜔1. For an uncountable
family U = {𝑈𝛼 : 𝛼 < 𝜔1} of non-empty open subsets of 𝑋, let 𝐶
be a closed countably compact subset of 𝑋 with 𝐶 ∩ 𝑈𝛼 ∕= ∅ for
each 𝛼 ∈ 𝑃 , where 𝑃 is an uncountable subset of [0, 𝜔1).

If 𝑋 has a 𝛿𝜃-base, then so does the countably compact 𝐶. By
[1, Proposition 2.1], 𝐶 is compact and metrizable and thus, it is
separable. Hence, the family {𝐶 ∩ 𝑈𝛼 : 𝛼 ∈ 𝑃} of non-empty
open subsets of 𝐶 is not point-countable and thus, U is not point-
countable. Therefore, 𝑋 has caliber 𝜔1.

If 𝑋 has a point-countable, 𝑇1-point-separating open cover (a
quasi-𝐺𝛿-diagonal, respectively), then so does the countably com-
pact subset 𝐶. By [1, Proposition 2.2] ([1, Proposition 2.3 ], re-
spectively), 𝐶 is compact and metrizable and thus, it is also sepa-
rable. □

To be clear at a glance, we give Figure (*) which combines the
results of the paper with figures of [7], Figure 1.1 of [8], and Figure
1 of [9].
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separability

��

compactness

��

// countable-compactness

��
�

��

caliber 𝜔1
_

��

// c-caliber 𝜔1

��

// cc-caliber 𝜔1

��
caliber (𝜔1, 𝜔)

��

// c-caliber (𝜔1, 𝜔) // cc-caliber (𝜔1, 𝜔)

��
Property 𝐾 // 𝐶𝐶𝐶 // 𝐷𝐶𝐶𝐶

Figure (*)

Recall that a space 𝑋 is meta-Lindelöf if every open cover U of
𝑋 has a point-countable open refinement V .

Proposition 3.5. If 𝑋 is locally separable and meta-Lindelöf, then
DCCC implies separability. Omitting compactness and countable-
compactness, the other ten properties in Figure (*) are equivalent.

Proof: Let 𝑋 be locally separable, meta-Lindelöf, and with
DCCC. Then for each 𝑥 ∈ 𝑋, there is an open separable neigh-
borhood 𝑈𝑥 of 𝑥. By meta-Lindelöfness of 𝑋, the open cover
U = {𝑈𝑥 : 𝑥 ∈ 𝑋} of 𝑋 has a point-countable open refinement V .
Note that each member of V is separable and meets only countable
others. Define 𝑉 ∼ 𝑉 ′ if there is a sequence 𝑉0, 𝑉1, 𝑉2, ... , 𝑉𝑛 of
members of V such that 𝑉 = 𝑉0, 𝑉𝑛 = 𝑉 ′ and 𝑉𝑖∩𝑉𝑖+1 ∕= ∅ for each
𝑖 < 𝑛. Then “ ∼ ” is an equivalence relation and for 𝑉 ∈ V the
equivalence class [𝑉 ] is countable. Thus, V𝑃 = {∪[𝑉 ] : 𝑉 ∈ V } is
a partition of 𝑋 and each member ∪[𝑉 ] of V𝑃 is a separable, open
and closed subspace of 𝑋. Since 𝑋 satisfies DCCC, the discrete
family V𝑃 of non-empty open subsets of 𝑋 is countable and thus,
𝑋 is separable. □

4. Examples

Example 4.1. There is a DCCC space which has neither 𝑐𝑐-caliber
(𝜔1, 𝜔) nor first-countability.

Proof: Let 𝑋 = ([0, 𝜔1) × ℤ) ∪ {⟨𝜔1, 0⟩} be with the linearly
ordered topology of the lexicographical order. Then the space 𝑋 is
Lindelöf and thus is DCCC. For the family V = {{𝛼}×ℤ : 𝛼 < 𝜔1}
of open subsets of 𝑋, if a subset 𝐸 of 𝑋 meets infinite members
of V , then we can take 𝛼𝑖 < 𝜔1, 𝑧𝑖 ∈ ℤ, 𝑖 < 𝜔 such that each
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⟨𝛼𝑖, 𝑧𝑖⟩ ∈ 𝐸 and 𝛼𝑖 ∕= 𝛼𝑗 for 𝑖 ∕= 𝑗. Thus, 𝐸 has an infinite discrete
closed subset {⟨𝛼𝑖, 𝑧𝑖⟩ : 𝑖 < 𝜔}. This shows that 𝐸 cannot be
countably compact. Thus, 𝑋 does not have 𝑐𝑐-caliber (𝜔1, 𝜔). Since
the point ⟨𝜔1, 0⟩ does not have a countable neighborhood base, 𝑋
is not first countable. □

Let ∣𝐴∣ = 𝜆(≥ 𝜔) and N = {𝑁𝑠 ⊂ 𝐴 : ∣𝑁𝑠∣ = 𝜔, 𝑠 ∈ 𝑆},
where 𝑆 ∩ 𝐴 = ∅, be infinite such that ∣𝑁𝑠 ∩ 𝑁𝑠′ ∣ < 𝜔 whenever
𝑠 ∕= 𝑠′ and that N is maximal with respect to the last property.
Define a topology 𝜏 on 𝑋 = 𝐴 ∪ 𝑆 by the neighborhood system
{B(𝑥) : 𝑥 ∈ 𝑋}, where B(𝑥) = {{𝑥}} if 𝑥 ∈ 𝐴 and B(𝑥) =
{{𝑠} ∪ (𝑁𝑠 ∖ 𝐹 ) : 𝐹 ⊂ 𝐴 and ∣𝐹 ∣ < 𝜔} if 𝑥 = 𝑠 ∈ 𝑆. The space
(𝑋, 𝜏) is denoted by Ψ(𝐴).

Example 4.2. If ∣𝐴∣ = 𝜔, Ψ(𝐴) has 𝑐𝑐-caliber 𝜔1 (not countably
compact).

Proof: Since ∣𝐴∣ = 𝜔 is dense in Ψ(𝐴), for any uncountable
family U of non-empty open sets, there is an 𝑥0 ∈ 𝐴 such that the
closed countably compact 𝐸 = {𝑥0} ⊂ Ψ(𝐴) meets uncountable
members of U . Thus, Ψ(𝐴) has 𝑐𝑐-caliber 𝜔1. □
Lemma 4.3. For 𝐸 ⊂ Ψ(𝐴), the following are equivalent.

(1) 𝐸 is compact.
(2) 𝐸 is countably compact.
(3) 𝐸 ∩ 𝑆 is finite and 𝐸 is closed.
(4) Both 𝐸 ∩ 𝑆 and 𝐸 ∖ (∪{𝑁𝑠 : 𝑠 ∈ 𝐸 ∩ 𝑆}) are finite.

Proof: (1) ⇒ (2) ⇒ (3) is obvious.

To show (3) ⇒ (4), assume that 𝐸 ∖ (∪{𝑁𝑠 : 𝑠 ∈ 𝐸 ∩ 𝑆}) is
infinite, then it contains a subset 𝑍 with ∣𝑍∣ = 𝜔. By maximality
of N , there is an 𝑠′ ∈ 𝑆 ∖ (𝐸 ∩ 𝑆) such that 𝑁𝑠′ ∩ 𝑍 is infinite.
Thus, 𝑠′ is an accumulation point of 𝐸 and 𝑠′ /∈ 𝐸; this contradicts
the closedness of 𝐸.

To show (4) ⇒ (1), let U be an open cover of 𝐸. For each
𝑠 ∈ 𝐸∩𝑆, take a 𝑈𝑠 ∈ U containing 𝑠. Since 𝐸∖(∪{𝑁𝑠 : 𝑠 ∈ 𝐸∩𝑆})
is finite 𝐻 = 𝐸 ∖ (∪{𝑈𝑠 : 𝑠 ∈ 𝐸∩𝑆}) is finite. For each ℎ ∈ 𝐻, take
a 𝑈ℎ ∈ U containing ℎ. Then U ′ = {𝑈𝑠 : 𝑠 ∈ 𝐸∩𝑆}∪{𝑈ℎ : ℎ ∈ 𝐻}
is a finite subcover of 𝐸. Hence, 𝐸 is compact. □
Example 4.4. (1) If ∣𝐴∣ = 𝜔, Ψ(𝐴) has 𝑐-caliber 𝜔1 (𝑐𝑐-caliber 𝜔1)
(not countably compact);
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(2) If ∣𝐴∣ > 𝜔, Ψ(𝐴) has 𝑐𝑐-caliber (𝜔1, 𝜔) (𝑐-caliber (𝜔1, 𝜔)) but
not 𝑐𝑐-caliber 𝜔1 (not 𝑐-caliber 𝜔1).

Proof: (1) Since ∣𝐴∣ = 𝜔 is dense in Ψ(𝐴), for any uncountable
family U of non-empty open sets, there is an 𝑥0 ∈ 𝐴 such that the
closed countably compact 𝐸 = {𝑥0} ⊂ Ψ(𝐴) meets uncountable
members of U . Thus, Ψ(𝐴) has 𝑐𝑐-caliber 𝜔1.

(2) To show that Ψ(𝐴) has 𝑐𝑐-caliber (𝜔1, 𝜔), let U = {𝑈𝛼 :
𝛼 < 𝜔1} be a family of non-empty open subsets of Ψ(𝐴). Take
𝑥0 ∈ 𝐴 ∩ 𝑈0 and put 𝐻0 = {𝛼 < 𝜔1 : 𝑥0 ∈ 𝑈𝛼}. If ∣𝐻0∣ ≥ 𝜔,
the proof ends since {𝑥0} is countably compact. If ∣𝐻0∣ < 𝜔, put
𝛼0 = 𝑚𝑎𝑥{𝛼 : 𝛼 ∈ 𝐻0} and take 𝑥1 ∈ 𝐴 ∩ 𝑈𝛼0+1. Let 𝐻1 =
{𝛼 ∈ [𝛼0 + 1, 𝜔1) : 𝑥1 ∈ 𝑈𝛼}. If ∣𝐻1∣ ≥ 𝜔, the proof ends. If
∣𝐻1∣ < 𝜔, put 𝛼1 = 𝑚𝑎𝑥{𝛼 : 𝛼 ∈ 𝐻1} and take an 𝑥2 ∈ 𝐴 ∩ 𝑈𝛼1+1.
Thus, by induction, we can choose 𝑃 = {𝑥𝑖 : 𝑖 < 𝜔} with ∣𝑃 ∣ = 𝜔.
Since {𝑁𝑠 : 𝑠 ∈ 𝑆} is maximal, there is a closed countably compact
𝑇 = {𝑠′} ∪ {𝑁𝑠′} (𝑠′ ∈ 𝑆) such that 𝑇 ∩ 𝑃 = 𝜔 and thus, 𝑇 meets
infinite members of U .

Finally, we show that Ψ(𝐴) does not have 𝑐𝑐-caliber 𝜔1. Since
∣𝐴∣ > 𝜔, U = {{𝑥} : 𝑥 ∈ 𝐴} is an uncountable family U of non-
empty open subsets. If 𝐸 ⊂ Ψ(𝐴) is countably compact, by Lemma
4.3, 𝐸 is countable and thus, 𝐸 meets at most countable members
of U . □
Example 4.5. (1) If ∣𝐴∣ = 𝜔, Ψ(𝐴) has 𝑐-caliber 𝜔1 (not countably
compact); (2) if ∣𝐴∣ > 𝜔, Ψ(𝐴) has 𝑐-caliber (𝜔1, 𝜔) but not 𝑐-caliber
𝜔1.

Proof: It is from Lemma 4.3, Example 4.2, and Example 4.4. □
Example 4.6. The space 𝐴(𝑆 × 𝑆) does not satisfy DCCC, where
𝑆 × 𝑆 is the product of the Sorgenfrey line 𝑆.

Proof: Let 𝑌 = {⟨𝑥,−𝑥⟩ : 𝑥 ∈ 𝑆} and U = {{⟨𝑦, 1⟩} : 𝑦 ∈
𝑌 }. Then U is an uncountable discrete family of non-empty open
subsets of 𝐴(𝑆 × 𝑆). □

Example 4.6 shows that the ten properties in Proposition 3.1
cannot be preserved by the Alexandroff duplicate space 𝐴(𝑋) of
the space 𝑋 since 𝑆 × 𝑆 is separable.

Example 4.7. There is a countably compact space 𝑌 (hence with
𝑐𝑐-caliber (𝜔1, 𝜔)), but without 𝑐-caliber (𝜔1, 𝜔).
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Proof: Let 𝑋 be the space in [11, Example 2.12 ]. Then 𝑋
is countably compact and any compact subset of it is finite. For
each infinite 𝐸 ⊂ 𝑋0 = 𝜔, take a cluster point 𝑥𝐸 of 𝐸 and put
𝐹0 = {𝑥𝐸 : 𝐸 ⊂ 𝑋0, ∣𝐸∣ = 𝜔}. Then from the proof of Example
2.13 of [11], we can see that 𝑋1 = 𝑋0 ∪ 𝐹0. Let V be an almost
disjoint family of infinite subsets of 𝑋0. Then ∣V ∣ = 𝔠. For 𝑉 ∈ V ,
put 𝑉 ∗ = 𝑉 ∖ 𝜔, then by 2.9(iv) of [11] {𝑉 ∗ : 𝑉 ∈ V } is a disjoint
uncountable family of open sets in 𝛽𝜔 ∖ 𝜔 and for each 𝑉 ∈ V
𝑋1 ∩ 𝑉 ∗ ∕= ∅. Since 𝑋1 ⊂ 𝑋, (𝑋 ∖ 𝜔) ∩ 𝑉 ∗ ∕= ∅ for 𝑉 ∈ V . Thus,
𝑋 ∖𝜔 is not CCC. Since 𝑋 is countably compact, 𝑋 ∖𝜔 is countably
compact. Put 𝑌 = 𝑋 ∖ 𝜔. Then 𝑌 is not CCC and any compact
subset of 𝑌 is finite. Hence, 𝑌 is without 𝑐-caliber (𝜔1, 𝜔). □
Remark 4.8. Let 𝑋 be the countably compact space 𝑌 in Ex-
ample 4.7, then 𝐴(𝑋) is countably compact (hence with 𝑐𝑐-caliber
(𝜔1, 𝜔)). By Corollary 2.6, 𝐴(𝑋) does not have 𝑐-caliber (𝜔1, 𝜔).
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