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A NON-METRIC SEPARABLE CONTINUUM

WHOSE HYPERSPACE OF SUBCONTINUA

IS NOT SEPARABLE

MICHEL SMITH

Abstract. We present a technique for producing separable
non-metric continua whose hyperspace of subcontinua is not
separable. Two specific examples are constructed: 1. a sin( 1

𝑥
)

type of continuum with a metric ray limiting on a nonmetric
portion; 2. a metric Cantor tree limiting on a non-metric
space. In examining the non-metrizability of the construc-
tion, the following theorem was proven: If 𝑋 is a connected,
locally compact, second countable metric space and 𝛾(𝑋) is
a compactification of 𝑋 so that the remainder 𝛾(𝑋) − 𝑋 is
totally disconnected, then 𝛾(𝑋) is metric.

1. Introduction

This work is an offshoot of the consideration of non-metric con-
tinua whose hyperspace of subcontinua support a Whitney map.
In [1], Janusz J. Charatonik and Wlodzimierz J. Charatonik give
an example of such a continuum based on an example of Andrzej
Gutek and Charles L. Hagopian [4]. Jennifer Stone in her disser-
tation [6] (also [7]) developed a technique using inverse limits to
produce “hereditarily nonmetric” continua that support Whitney
maps. These are continua every proper subcontinuum of which is
non-metric. This author was interested in finding a different class of
non-metric continua that support Whitney maps. It was observed
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132 M. SMITH

that a potential technique that could be used to produce such a
continua would be to build a metric Cantor tree that limits to a
compact non-metric space in such a way that the Whitney map on
the metric tree can be extended to its compactification. In par-
ticular, if the remainder happens to be totally disconnected, such
as the double arrow space, and does not have any “loops,” then
the Whitney map on the metric portion should be easily extend-
able. One of the results of this paper argues that such a plan is
impossible, since such a continuum turns out to be metric. One
of the planned examples, which does not support a Whitney map
(this follows from results in [6]), had the interesting property of
being a separable continuum whose hyperspace of subcontinua is
not separable.

2. Main results

Let 𝐼 denote the unit interval [0, 1]. Let 𝐼𝑡 = [0, 1] for 𝑡 ∈ 𝐼.
Let 𝑋 = Π𝑡∈𝐼𝐼𝑡. Then 𝑋 is a compact non-metric Hausdorff

continuum. Furthermore, 𝑋 may be thought of as the set of all
functions from [0, 1] into [0, 1]. It is known that 𝑋 is separable.
Let 𝑋+ denote 𝑋 × 𝐼. For 𝑃 ∈ 𝑋 and 𝑥 ∈ 𝐼, let 𝑃 (𝑥) denote the
𝑥𝑡ℎ coordinate of 𝑃 .

Suppose that 𝑡1, 𝑡2, ..., 𝑡𝑛 is a sequence of elements of 𝐼 and
𝑂1, 𝑂2, ..., 𝑂𝑛 is a sequence of open sets in 𝐼. We define the basic
open sets corresponding to these choices: 𝑅[𝑡1, ...𝑡𝑛](𝑂1, 𝑂2, ..., 𝑂𝑛)
denotes the basic open set {𝑃 ∈ 𝑋∣𝑃 (𝑡𝑖) ∈ 𝑂𝑖∀𝑖}.

For each 𝑥, 𝑦 ∈ [0, 1], let 𝐽𝑥(𝑦) denote the point of 𝑋 defined as
follows:

let 𝐽𝑥(𝑦)(𝑡) =

⎧⎨⎩ 0 if 𝑡 < 𝑥
𝑦 if 𝑡 = 𝑥
1 if 𝑡 > 𝑥.

Let 𝐿 = {𝐽𝑥(𝑦)∣𝑥, 𝑦 ∈ [0, 1]}.
Observation. 𝐿 is homeomorphic to the standard lexicographi-
cally ordered square.

Example 1. A metric ray limiting to the lexicographic arc whose
hyperspace of subcontinua is not separable.
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Construction of Example 1. For 0 < 𝑖 ≤ 2𝑛, let 𝛼𝑖,𝑛 be defined as
follows: for 𝑡 ∈ [0, 1], 𝛼𝑖,𝑛[𝑡] is the following point in 𝑋,

let𝛼𝑖,𝑛[𝑡](𝑥) =

⎧⎨⎩
0 if 𝑥 < 𝑖−1

2𝑛

𝑡 if 𝑖−1
2𝑛 ≤ 𝑥 < 𝑖

2𝑛

1 if 𝑖
2𝑛 ≤ 𝑥.

For 𝑖 = 2𝑛,

let𝛼𝑖,𝑛[𝑡](𝑥) =

{
0 if 𝑥 < 2𝑛−1

2𝑛

𝑡 if 2𝑛−1
2𝑛 ≤ 𝑥 ≤ 1 .

We note that 𝛼𝑖,𝑛 : [0, 1] → 𝑋 is a continuous map, so we have
the following claim.

Claim 1. The set 𝛼𝑖,𝑛 = {𝛼𝑖,𝑛[𝑡] 𝑡 ∈ [0, 1]} is a metric arc.

By construction it is easy to verify the following claim.

Claim 2. If ℎ ∈ 𝛼𝑖,𝑛, then ℎ is a nondecreasing function.
If 𝑥1 ∕= 𝑥2 are such that ℎ(𝑥1) /∈ {0, 1} and ℎ(𝑥2) /∈ {0, 1}, then

∣𝑥1 − 𝑥2∣ ≤ 1
2𝑛 .

Claim 3. The arc 𝛼𝑖,𝑛 connects two points of 𝐿: the point
𝐽 𝑖−1

2𝑛
(1) = 𝛼𝑖,𝑛[1] to the point 𝐽 𝑖−1

2𝑛
(0) = 𝛼𝑖,𝑛[0].

Define the following 𝛾 arcs in 𝑋 × 𝐼:
𝛾𝑛 = (∪2𝑛

𝑖=1𝛼𝑖,𝑛)× { 1
𝑛}.

Claim 4. The arc 𝛾𝑛 connects the point {𝐽0(0)} × { 1
𝑛} to the

point {𝐽1(1)} × { 1
𝑛}.

Define the following 𝛽 arcs in 𝑋 × 𝐼:
For 𝑛 even 𝛽𝑛 = {𝐽0(0)} × [ 1𝑛 ,

1
𝑛+1 ];

For 𝑛 odd 𝛽𝑛 = {𝐽1(1)} × [ 1𝑛 ,
1

𝑛+1 ].

Note that 𝛽𝑛 connects an endpoint of 𝛾𝑛 to an endpoint of 𝛾𝑛+1.

Claim 5.
(∪∞

𝑛=1 𝛽𝑛 ∪ 𝛾𝑛
)
=

(∪∞
𝑛=1 𝛽𝑛 ∪ 𝛾𝑛

)∪ (
𝐿× {0}).

Proof of Claim 5: Let 𝑌 denote the left side of the equation and
𝑌 ′ the right side.

For 𝜖 > 0, note that 𝑌 ′ ∩ (𝑋 × [𝜖, 1]) is a finite union of metric
arcs and so the only limit points of 𝑌 ′ not in 𝑌 ′ must lie in 𝑋×{0}.
So what remains to be shown is (i) that every point of 𝐿×{0} is a
limit point of

(∪∞
𝑛=1 𝛽𝑛 ∪ 𝛾𝑛

)
, and (ii) that there are no additional

limit points.
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Let 𝐽𝑥(𝑦) ∈ 𝐿 and suppose that 𝑡1 < 𝑡2 < ... < 𝑡𝑗 , ... < 𝑡𝑁
is a sequence of elements of 𝐼 and 𝑂1, 𝑂2, ..., 𝑂𝑁 is a sequence of
basic open sets in 𝐼 so that if 𝑅 = 𝑅[𝑡1, ...𝑡𝑁 ](𝑂1, 𝑂2, ..., 𝑂𝑁 ), then
𝑅 × [0, 𝜖) is a basic open set containing 𝐽𝑥(𝑦) × {0}; and assume
that 𝑡𝑗 = 𝑥. Since 𝐽𝑥(𝑦) ∈ 𝑅, we must have

0 ∈ 𝑂𝑖 for 𝑖 < 𝑗, 𝑦 ∈ 𝑂𝑗 , 1 ∈ 𝑂𝑖 for 𝑗 < 𝑖.

Select 𝑛 large enough so that
1
2𝑛 < max{∣𝑡𝑖 − 𝑡𝑘∣}𝑖∕=𝑘 and 1

𝑛 < 𝜖.

Then there exists an integer 𝑚 so that 𝑚−1
2𝑛 ≤ 𝑡𝑗 < 𝑚

2𝑛 . Then

the arc 𝛼𝑚,𝑛 intersects 𝑅 and since 1
𝑛 < 𝜖, the arc 𝛾𝑛 intersects

𝑅× [0, 𝜖). This proves (i).

Suppose now that there is a limit point 𝑃 of 𝑌 ′ not in 𝐿× {0}.
Then 𝑃 must lie in 𝑋 × {0}. So let 𝑃 = (ℎ, 0) and assume ℎ /∈ 𝐿.

Case 1: There exist two indices 𝑥1 and 𝑥2 so that ℎ(𝑥1) /∈ {0, 1}
and ℎ(𝑥2) /∈ {0, 1}. Then select 𝑛 so that 1

2𝑛 < ∣𝑥1 − 𝑥2∣ and

𝜖 < 1
𝑛+1 . Let 𝑅 = 𝑅[𝑥1, 𝑥2]((

ℎ(𝑥1)
2 , ℎ(𝑥1)+1

2 ), (ℎ(𝑥2)
2 , ℎ(𝑥2)+1

2 )). Then
by Claim 2, for 𝑘 > 𝑛, no 𝛼𝑖,𝑘 intersects 𝑅. Also for 𝑘 ≤ 𝑛, the arcs
𝛽𝑘 and 𝛾𝑘 lie in 𝑋 × (𝜖, 1]. Thus, 𝑅 × [0, 𝜖) misses all the 𝛽 and 𝛾
arcs and so 𝑃 is not a limit point of 𝑌 ′.

Case 2: There is only one 𝑥1 ∈ [0, 1] so that ℎ(𝑥1) /∈ {0, 1} and
there is an 𝑥2 so that either 𝑥1 < 𝑥2 and ℎ(𝑥2) = 0 or 𝑥2 < 𝑥1
and ℎ(𝑥2) = 1. The argument for Case 1 applies here except for
the slight modification of the open sets 𝑅 to address the fact that
when ℎ(𝑥2) = 0 or ℎ(𝑥2) = 1 the open sets contain their endpoints.

Case 3: There exist three points 𝑥1 < 𝑥2 < 𝑥3 so that either
ℎ(𝑥1) = 1, ℎ(𝑥2) = 0, ℎ(𝑥3) = 1 or ℎ(𝑥1) = 0, ℎ(𝑥2) = 1, ℎ(𝑥3) = 0.
In this case it is easy to find an open set in 𝑅 containing ℎ so that
no non-decreasing element of 𝑋 lies in 𝑅.

The proof of Claim 5 is complete. □
For ease of notation, identify the subset 𝐿× {0} of 𝑌 with 𝐿.

Claim 6. The space 𝑌 is separable.

Proof of Claim 6: The subspace 𝑌 is the closure of the union of
countably many metric arcs and so must be separable. □

Let 𝑍 be the decomposition space obtained from 𝑌 as follows.
For each 𝑥, 𝐽𝑥 = {𝐽𝑥(𝑦)∣𝑦 ∈ [0, 1]} is one of the maximal metric
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intervals of 𝐿. For each 𝑥 and 𝑟 ∈ [0, 14 ], identify 𝐽𝑥(
1
4 + 𝑟) with

𝐽𝑥(
3
4−𝑟). Then if 𝒢 is the collection of all pairs {𝐽𝑥(14+𝑟), 𝐽𝑥(

3
4−𝑟)}

of points of 𝐿 for 𝑥 ∈ [0, 1], 𝑟 ∈ [0, 14 ] and singletons for the remain-
der of points of 𝑌 . Then 𝒢 is an upper semi-continuous decompo-
sition of 𝑌 . The decomposition space 𝑍 = 𝑌/𝒢 is a continuum.

In the following, for ease of discussion, the author may blur the
distinction between points and sets in the space 𝑌 and the decom-
position space 𝑍 = 𝑌/𝒢 especially where the elements of 𝒢 under
consideration are singletons or when no confusion should arise.

Notation. If 𝐽 ⊂ 𝑌 , then let 𝐽/𝒢 denote the subset of 𝑍 consist-
ing of all the elements of 𝒢 that lie in 𝐽 .

Claim 7. The hyperspace 𝐶(𝑍) of subcontinua of 𝑍 is not sep-
arable.

Proof of Claim 7: Suppose that 𝑅1, 𝑅2, ..., 𝑅𝑛 is a sequence of
open sets in 𝑍. Then a basis element in 𝐶(𝑍) is 𝑂(𝑅1, 𝑅2, ..., 𝑅𝑛) =
{𝑀 ∈ 𝐶(𝑍)∣𝑀 ⊂ ∪𝑛

𝑖=1𝑅𝑖,𝑀 ∩𝑅𝑖 ∕= ∅∀𝑖}.
Note that for each 𝑥 in 𝐼, 𝐽𝑥/𝒢 is a topological T. Let 𝑀𝑥 =

{𝐽𝑥(𝑦)∣ 1
16 ≤ 𝑦 < 1

4} ∪ {𝐽𝑥(𝑦)∣34 < 𝑦 < 15
16} ∪ {𝐽𝑥(14), 𝐽𝑥(34)}, then

𝑀𝑥 is an arc lying in the “horizontal bar” of the T. Let 𝜖 > 0. For
each 𝑥 we define three open sets in the decomposition space. Let

𝑅𝑥
1 = 𝑅[𝑥]( 1

32 ,
4
32)× [0, 𝜖) = {(ℎ, 𝑡) ∈ 𝑍∣ 1

32 < ℎ(𝑥) < 4
32 , 𝑡 < 𝜖},

𝑅𝑥
2 = {(ℎ, 𝑡) ∈ 𝑍∣ 332 < ℎ(𝑥) < 9

32 , 𝑡 < 𝜖} ∪ {({𝐽𝑥(14 + 𝑟),

𝐽𝑥(
3
4 − 𝑟)}, 𝑡)∣𝑟 < 1

32 , 𝑡 < 𝜖} ∪ {(ℎ, 𝑡) ∈ 𝑍∣2332 < ℎ(𝑥) < 29
32 , 𝑡 < 𝜖},

𝑅𝑥
3 = 𝑅[𝑥](2832 ,

31
32)× [0, 𝜖) = {(ℎ, 𝑡) ∈ 𝑍∣2832 < ℎ(𝑥) < 31

32 , 𝑡 < 𝜖}.

Then let 𝑂𝑥 = 𝑂(𝑅𝑥
1 , 𝑅

𝑥
2 , 𝑅

𝑥
3) be the indicated open set in 𝐶(𝑍).

Subclaim 7.1. 𝑂𝑥 contains the point 𝑀𝑥 of 𝐶(𝑍).

Proof of Subclaim 7.1: This follows from the construction
of 𝑂𝑥.

Subclaim 7.2. No subcontinuum of 𝛽𝑛/𝒢 lies in 𝑂𝑝 and no
subcontinuum of 𝛾𝑛/𝒢 lies in 𝑂𝑝 for all 𝑝 ∈ [0, 1].

Proof of Subclaim 7.2: Such a continuum would be an arc 𝐴.
Note that all the points of 𝐴 except the endpoints are
singletons in 𝒢. In order for 𝐴 to lie in 𝑂𝑝 it must be the case



136 M. SMITH

that 𝜋𝑝(𝐴) intersect both open segments ( 1
32 ,

4
32) and (2832 ,

31
32)

but not contain any points of the interval [ 932 ,
23
32 ] which is

impossible by the connectedness of 𝐴.

Subclaim 7.3. 𝑂𝑝 ∩𝑂𝑞 = ∅ if 𝑝 ∕= 𝑞.

Proof of Subclaim 7.3: In order for a continuum 𝐾 to be in
𝑂𝑝 it must be a subset of 𝐿/𝒢 so that 𝜋𝑝(𝐾) is a subset of the
open segment ( 1

32 ,
31
32). Furthermore, 𝜋𝑥(𝐾) = 0 for 𝑥 < 𝑝

and 𝜋𝑥(𝐾) = 1 for 𝑝 < 𝑥.

Therefore, 𝐶(𝑍) has an uncountable collection of disjoint open
sets and so cannot be separable. This demonstrates that the exam-
ple is not separable, and the proof of Claim 7 is complete. □

𝑋 × [0, 1]

(𝛼2,1, 1)(𝛼1,1, 1)

𝛾1

𝛾2

𝛾3

𝛽3 𝛽4

𝛽1

𝛽2

(𝛼1,2,
1
2)

(𝛼2,2,
1
2) (𝛼3,2,

1
2) (𝛼4,2,

1
2)

Figure 1. Example 1
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Example 2. The metric Cantor tree limiting to the lexicographic
arc whose hyperspace of subcontinua is not separable.

Note that modification to the interval can produce different ex-
amples. In the above and following examples, we used “T’s” but
there are a wealth of different continua that can be used to serve the
purpose. (The referee indicated that different techniques can also
be used, and he called our attention to [2], a paper by D. Daniel,
J. Nikiel, L. B. Treybig, H. M. Tuncali, and E. D. Tymchatyn where
they use an inverse limit construction to “explode” each point in
the limit bar of the metric 𝑠𝑖𝑛( 1𝑥) continuum.)

Construction of Example 2. The construction is similar to the
one for Example 1 and so some of the arguments will be abbrevi-
ated.

Let {[𝑟𝑖,𝑛, 𝑠𝑖,𝑛]}2𝑛𝑖=1 be the 2𝑛 intervals in [0, 1] that remain after

removal of the open middle thirds intervals at the n𝑡ℎ step of the
construction of the Cantor set 𝐶. Thus, 𝐶 = ∩∞

𝑛=1(∪2𝑛
𝑖=1[𝑟𝑖,𝑛, 𝑠𝑖,𝑛]).

Thus, the middle third (𝑠2𝑖−1,𝑛+1, 𝑟2𝑖,𝑛+1) has been removed from
[𝑟𝑖,𝑛, 𝑠𝑖,𝑛]. Note that 𝑟𝑖,𝑛 = 𝑟2𝑖−1,𝑛+1 and 𝑠𝑖,𝑛 = 𝑠2𝑖,𝑛+1.

For 0 < 𝑖 ≤ 2𝑛, let 𝛼𝑖,𝑛 be defined as follows:
for 𝑡 ∈ [0, 1] and 0 < 𝑖 < 2𝑛−1, 𝛼𝑖,𝑛[𝑡] is the following point in 𝑋,

let𝛼𝑖,𝑛[𝑡](𝑥) =

⎧⎨⎩ 0 if 𝑥 < 𝑟𝑖,𝑛
𝑡 if 𝑟𝑖,𝑛 ≤ 𝑥 < 𝑠𝑖,𝑛
1 if 𝑠𝑖,𝑛 ≤ 𝑥.

For 𝑖 = 2𝑛,

let𝛼𝑖,𝑛[𝑡](𝑥) =

{
0 if 𝑥 < 𝑟2𝑛,𝑛
𝑡 if 𝑟2𝑛,𝑛 ≤ 𝑥 ≤ 1 .

As above, we have the following claims.

Claim 1. The set 𝛼𝑖,𝑛 = {𝛼𝑖,𝑛[𝑡] 𝑡 ∈ [0, 1]} is a metric arc.

Claim 2. If ℎ ∈ 𝛼𝑖,𝑛, then ℎ is a nondecreasing function. If
𝑥1 ∕= 𝑥2 are such that ℎ(𝑥1) /∈ {0, 1} and ℎ(𝑥2) /∈ {0, 1}, then
∣𝑥1 − 𝑥2∣ ≤ 1

3𝑛 .

By construction we have the following claim.

Claim 3. The 𝛼𝑖,𝑛[1] = 𝛼2𝑖−1,𝑛+1[1] and 𝛼𝑖,𝑛[0] = 𝛼2𝑖,𝑛+1[0].
Furthermore, for a fixed 𝑛, the arcs {𝛼𝑖,𝑛}2𝑛𝑖=1 are disjoint.
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Define the following 𝛽 arcs in 𝑋 × 𝐼.

𝛽2𝑖−1,𝑛+1[𝑢] = (𝛼𝑖,𝑛[1], 𝑢) with 𝑢 ∈ [ 1𝑛 ,
1

𝑛+1 ]. Note that 𝛽[ 1
𝑛+1 ] =

(𝛼2𝑖−1,𝑛+1[1],
1

𝑛+1).

𝛽2𝑖,𝑛+1[𝑢] = (ℎ(𝑛(𝑛+ 1)(𝑢− 1
𝑛+1)), 𝑢) where

ℎ[𝑡] =

⎧⎨⎩ 0 if 𝑡 < 𝑟2𝑖−1,𝑛+1

𝑡 if 𝑟2𝑖−1,𝑛+1 ≤ 𝑡 < 𝑟2𝑖,𝑛+1

1 if 𝑟2𝑖,𝑛+1 ≤ 𝑡.

This is set up so that ℎ( 1𝑛) = 𝛼𝑖,𝑛[1] and ℎ( 1
𝑛+1) = 𝛼2𝑖,𝑛+1[1].

Thus, 𝛽2𝑖−1,𝑛+1 connects 𝛽𝑖,𝑛[
1
𝑛 ] to 𝛽2𝑖−1,𝑛+1[

1
𝑛+1 ] and 𝛽2𝑖,𝑛+1

connects 𝛽𝑖,𝑛[
1
𝑛 ] to 𝛽2𝑖,𝑛+1[

1
𝑛+1 ]. So the union of all the 𝛽 arcs is a

Cantor tree with ramification points {𝛽𝑖,𝑛[1]}2
𝑛,∞

𝑖=1,𝑛=1.

Claim 4.
(∪2𝑛,∞

𝑖=1,𝑛=1 𝛽𝑖,𝑛
)−∪2𝑛,∞

𝑖=1,𝑛=1 𝛽𝑖,𝑛 ⊂ 𝐿× {0}.
Claim 5. The space 𝑌 is separable.

The proofs of claims 4 and 5 are sufficiently similar to the proofs
of claims 5 and 6 in Example 1 that they are omitted.

As above, let 𝑍 be the decomposition space obtained from 𝑌
as follows. As above for each 𝑥, 𝐽𝑥 is one of the maximal metric
intervals of 𝐿. For each 𝑥 and 𝑟 ∈ [0, 14 ], identify 𝐽𝑥(

1
4 + 𝑟) with

𝐽𝑥(
3
4−𝑟). Let 𝒢 be the collection of all pairs {𝐽𝑥(14+𝑟), 𝐽𝑥(

3
4−𝑟)} of

points of 𝐿 for 𝑥 ∈ [0, 1], 𝑟 ∈ [0, 14 ] and singletons for the remainder
of points of 𝑌 . Then 𝒢 is an upper semi-continuous decomposition
of 𝑌 . The decomposition space 𝑍 = 𝑌/𝒢 is a continuum.

Claim 6. The hyperspace 𝐶(𝑍) of a subcontinua of 𝑍 is not
separable.

If each of the components of

( 2𝑛,∞∪
𝑖=1,𝑛=1

𝛽𝑖,𝑛
)− 2𝑛,∞∪

𝑖=1,𝑛=1

𝛽𝑖,𝑛

from Claim 4 of Example 2 is shrunk to a point, then we have
a compactification of the Cantor tree whose remainder is totally
disconnected. What can be said about this remainder? Since the
double arrow space is a totally disconnected non-metric subset of
the lexicographic arc, is there any hope that the Cantor tree can
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limit down to this set? We now show that our plan to have the
Cantor tree limit down to the double arrow space is impossible.

Theorem 3. Suppose that 𝑋 is a connected, locally compact, sec-
ond countable metric space and that 𝛾(𝑋) is a compactification of
𝑋 so that the remainder 𝛾(𝑋) − 𝑋 is totally disconnected. Then
𝛾(𝑋) is metric.

Proof: Let 𝑊 = 𝛾(𝑋)−𝑋. We show that 𝛾(𝑋) has a countable
basis. Let ℬ be a countable basis for 𝑋. Let 𝒢 be the set of all pairs
(𝑔, ℎ) of finite subcollections of ℬ. Then 𝒢 is countable. For each
element (𝑔, ℎ) of 𝒢, let 𝑈(𝑔, ℎ) denote the set to which 𝑝 belongs if
and only if there is a component of 𝛾(𝑋)−∪𝑔 intersecting ∪ℎ that
contains 𝑝. Let ℋ = {𝐼𝑛𝑡(𝑈(𝑔, ℎ))∣(𝑔, ℎ) ∈ 𝒢}.

Note that since 𝑋 is connected, 𝛾(𝑋) is a continuum. We claim
that ℋ forms a basis for 𝑊 . Let 𝑤 ∈ 𝑊 and let 𝑂 be an open set
in 𝛾(𝑋) containing 𝑤. Then there is an open set 𝑂′ containing 𝑤
so that 𝑂′ ⊂ 𝑂 and 𝐵𝑑(𝑂′)∩𝑊 = ∅. Let 𝐾 = 𝐵𝑑(𝑂′). Then 𝐾 is
a compact subset of 𝑋 and 𝐾 ⊂ 𝑂. So there is finite subcollection
𝑔 of ℬ covering 𝐾, the closure of each element of which is a subset
of 𝑂 that misses 𝑊 . Thus, ∪𝑔 ⊂ 𝑂. Then 𝑂′ − ∪𝑔 is an open
set containing 𝑤 so there is an open set 𝑂′′ containing 𝑤 so that
𝑂′′ ⊂ 𝑂′ − ∪𝑔 and 𝐵𝑑(𝑂′′) ∩ 𝑊 = ∅. Let 𝐿 = 𝐵𝑑(𝑂′′); then 𝐿
is compact. So there is finite subcollection ℎ of ℬ covering 𝐿, the
closure of each element of which is a subset of 𝑂′ that misses 𝑤.

For each point 𝑥 ∈ 𝑂′′, let 𝐶𝑥 be the component of 𝑂′′ that
contains 𝑥. Then, since 𝛾(𝑋) is a continuum, 𝐶𝑥 ∩ 𝐵𝑑(𝑂′′) ∕= ∅;
thus, 𝐶𝑥 ∩ 𝐿 ∕= ∅ and hence, 𝐶𝑥 ∩ ∪ℎ ∕= ∅. For each 𝑥 ∈ 𝑂′′,
let 𝐷𝑥 be the component of 𝛾(𝑋) − ∪𝑔 that contains 𝑥. Since
𝑂′′ ⊂ 𝑂′ − ∪𝑔, we have 𝐶𝑥 ⊂ 𝐷𝑥, and so 𝐷𝑥 is a component of
𝛾(𝑋)−∪𝑔 that intersects ∪ℎ. Thus, for each 𝑥 ∈ 𝑂′′, 𝐶𝑥 ⊂ 𝑈(𝑔, ℎ).
Since 𝐷𝑥 intersects 𝑂′ and no point of the boundary of 𝑂′, it is a
subset of 𝑂′. Therefore, 𝑂′′ ⊂ 𝐼𝑛𝑡(𝑈(𝑔, ℎ)). Now, ∪ℎ ⊂ 𝑂′ and
𝑔 covers 𝐵𝑑(𝑂′) so every component of 𝛾(𝑋) − ∪𝑔 that intersects
∪ℎ must be a subset of 𝑂′. Thus, 𝐼𝑛𝑡(𝑈(𝑔, ℎ)) ⊂ 𝑂′ ⊂ 𝑂. Clearly,
𝑤 ∈ 𝐼𝑛𝑡(𝑔, ℎ), so this is an open set containing 𝑤 and lying in 𝑂.
Therefore, ℋ is a basis for 𝑊 . Then ℬ ∪ℋ is a countable basis for
𝛾(𝑋) and hence, 𝛾(𝑋) is metric. □

Since a locally compact connected metric space is completely
separable we have the following corollary.
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Corollary 4. Suppose that 𝑋 is a connected, locally compact, sec-
ond countable metric space and that 𝛾(𝑋) is a compactification of
𝑋 so that the remainder 𝛾(𝑋) − 𝑋 is totally disconnected. Then
𝛾(𝑋) is metric.

The compactification of the space𝑋 described in the theorem is a
Freudenthal compactification. It should be noted that J. R. Isbell’s
development of Freudenthal compactifications in Uniform Spaces
includes results with similar conclusions and techniques. (See, in
particular, [5, VII #42, p. 116].) 1
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