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ON SIMILARITY OF FUNCTIONS

IVAN KUPKA

Abstract. The paper introduces new topological notions
that allow us to compare topological behavior of functions.
We show that some relations between functions, that oc-
cur naturally, allow this kind of comparison. Generalized
continuity-preserving theorems are proved and some optimiza-
tion applications are shown.

1. Introduction

In this paper we define several topological notions that enable
us to compare the behavior of functions. Relations of continuity
and relations of constancy are introduced. We give examples that
these relations between functions occur naturally. This approach
allows us not only to compare functions, but also to generalize some
“continuity-preserving” theorems and to generate new ones. Some-
times it allows us to replace differentiation by a simpler procedure
– manipulation with inequalities – that can be used to examine
nondifferentiable functions too. Optimization applications of this
new approach are shown as well.

New notions mentioned above are defined in the next section.
After having defined them, we want the reader to know that these
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174 I. KUPKA

notions did not come just out of blue. Therefore, we think it is im-
portant to show some preliminary examples of behavior of functions
known by everybody and relevant to our case.

Let us consider the following simple situation. We have two
continuous real functions of real variable – 𝑓 and 𝑔 – and we are
counting a limit of their quotient applying the L’Hospital’s rule.
Suppose 𝑎 ∈ ℝ and 𝑓 and 𝑔 have a finite derivative on open intervals
(𝑎− 𝜀, 𝑎) and (𝑎, 𝑎+ 𝜀), and 𝑙𝑖𝑚𝑥→𝑎𝑓(𝑥) = 𝑙𝑖𝑚𝑥→𝑎𝑔(𝑥) = 0 is true.
Suppose we obtain

𝑙𝑖𝑚𝑥→𝑎
𝑓(𝑥)

𝑔(𝑥)
= 𝑙𝑖𝑚𝑡→𝑎

𝑓
′
(𝑡)

𝑔′(𝑡)
= 3.

The equalities above imply that there exists an interval 𝐼 =

(𝑎 − 𝛿, 𝑎 + 𝛿) such that 1<𝑓
′
(𝑡)

𝑔′ (𝑡)
<4 for all 𝑡 from 𝐼 − {𝑎}. Now

we can observe that 𝑓 and 𝑔 behave “similarly” on the interval
𝐼. Indeed, since none of the derivatives equal zero for a 𝑡 from
𝐼 − {𝑎}, they are both positive or both negative on (𝑎− 𝛿, 𝑎) (and
on (𝑎, 𝑎+ 𝛿)). There are four possibilities for 𝑓 and 𝑔:

1. 𝑓 and 𝑔 are increasing on 𝐼;
2. 𝑓 and 𝑔 are decreasing on 𝐼;
3. 𝑓 and 𝑔 are both increasing on (𝑎− 𝛿, 𝑎) and decreasing on

(𝑎, 𝑎+ 𝛿) so they both have a local maximum at 𝑎;
4. 𝑓 and 𝑔 are both decreasing on (𝑎− 𝛿, 𝑎) and increasing on

(𝑎, 𝑎+ 𝛿) so they both have a local minimum at 𝑎.

Could we obtain information like this without using derivatives?
Well, we could argue that 𝑓 and 𝑔 behave similarly because we
know that for every 𝑏 from 𝐼 − {𝑎}, the following is true

(∗)1<𝑓(𝑏)− 𝑓(𝑎)

𝑔(𝑏)− 𝑔(𝑎)
<4.

Of course, in this particular case we know this is true because we
have used the Cauchy mean value theorem

(
𝑓(𝑏)− 𝑓(𝑎)

𝑔(𝑏)− 𝑔(𝑎)
=

𝑓
′
(𝑐)

𝑔′(𝑐)
for a 𝑐 from 𝐼 − {𝑎}).

But we can see that if for all 𝑏 from 𝐼−{𝑎} the inequalities from (*)
are satisfied, we do not need 𝑓 and 𝑔 to be differentiable to realize
that if 𝑓 has a local extremum at 𝑎, then 𝑔 has a local extremum
at 𝑎, too, and vice versa.
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Let us briefly consider two more contexts and two other types of
inequalities that can assure that two functions behave “similarly.”

(I) 𝑓 and 𝑔 are real valued functions defined on an arbitrary set
𝑋. Suppose there exist two positive constants 𝐾 and 𝐿 such that,
for all points 𝑥 and 𝑦 from a set 𝐴 ⊂ 𝑋, if 𝑥 ∕= 𝑦, then

𝐾<
∣𝑓(𝑥)− 𝑓(𝑦)∣
∣𝑔(𝑥)− 𝑔(𝑦)∣<𝐿.

(II) 𝑓 and 𝑔 are defined on a set 𝑋. The function 𝑓 has values
in a metric space (𝑌, 𝑑) and the function 𝑔 has values in a metric
space (𝑍, 𝜌). Suppose there exist two positive constants 𝐾 and 𝐿
such that for all points 𝑥 and 𝑦 from a set 𝐴 ⊂ 𝑋

𝑑(𝑓(𝑥), 𝑓(𝑦))<𝐾⋅ 𝜌(𝑔(𝑥), 𝑔(𝑦))<𝐿⋅ 𝑑(𝑓(𝑥), 𝑓(𝑦)).
In case one of the situations described above takes place, we can

conclude, for example, that if 𝑓 is bounded on 𝐴, so is 𝑔. If the set
𝑋 was endowed with a topology and we would have had 𝑋 = 𝐴, we
could do some predictions about the continuity of 𝑓 just observing
whether 𝑔 is continuous at a certain point.

The examples mentioned above serve only as a motivation for
us. In this paper we examine more general relations between func-
tions. These relations will be described in a purely topological way.
But the reader will be able to see that relations and inequalities
shown above represent special cases of a more general topological
phenomenon.

2. Relations of continuity and relations of constancy

In what follows we will use these notions concerning topological
spaces and functions: a net of points, a limit of a net, a net of
functions, uniform convergence, pointwise convergence (see e. g.,
[2] or [3]).

Definition 2.1. Let 𝑋, 𝑌, and 𝑍 be topological spaces and let
𝑓 : 𝑋 → 𝑌 and 𝑔 : 𝑋 → 𝑍 be functions.

(i) Let 𝑥 be from 𝑋. We say that the degree of continuity of 𝑔
at 𝑥 is greater than or equal to the degree of continuity of 𝑓 at 𝑥
if for every net {𝑥𝛾}𝛾∈Γ of elements from 𝑋 converging to 𝑥 the
following holds.
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If the net {𝑓(𝑥𝛾)}𝛾∈Γ converges in 𝑌 , then the net
{𝑔(𝑥𝛾)}𝛾∈Γ converges in 𝑍. We denote this by 𝑐𝑥𝑡 (𝑔) ≥ 𝑐𝑥𝑡 (𝑓).

Let 𝐴 be a subset of 𝑋. We say that the degree of continuity
of 𝑔 on 𝐴 is greater than or equal to the degree of continuity of 𝑓
on 𝐴 if, for every 𝑥 from 𝐴, 𝑐𝑥𝑡 (𝑔) ≥ 𝑐𝑥𝑡 (𝑓) is true. We denote this
by 𝑐𝐴𝑡 (𝑔) ≥ 𝑐𝐴𝑡 (𝑓). Of course, for a particular 𝑥, the expressions

𝑐𝑥𝑡 (𝑔) ≥ 𝑐𝑥𝑡 (𝑓) and 𝑐
{𝑥}
𝑡 (𝑔) ≥ 𝑐

{𝑥}
𝑡 (𝑓) describe the same situation.

When 𝑐𝑋𝑡 (𝑔) ≥ 𝑐𝑋𝑡 (𝑓) is true, we write simply 𝑐𝑡(𝑔) ≥ 𝑐𝑡(𝑓).

(ii) Let 𝐴 be a subset of 𝑋. We say that the degree of constancy
of 𝑔 on 𝐴 is greater than or equal to the degree of constancy of 𝑓
on 𝐴 if, for every net {𝑥𝛾}𝛾∈Γ of elements from 𝐴, the following
holds.

If the net {𝑓(𝑥𝛾)}𝛾∈Γ converges in 𝑌 , then the net

{𝑔(𝑥𝛾)}𝛾∈Γ converges in 𝑍. We denote this by 𝑐𝐴𝑠 (𝑔) ≥ 𝑐𝐴𝑠 (𝑓).
If 𝐴 = 𝑋, we write also 𝑐𝑠(𝑔) ≥ 𝑐𝑠(𝑓).

Remark 2.2. In particular, we can see that if 𝑋 is a topological
space and if the function 𝑓 has values in a metric space (𝑌, 𝑑) and
the function 𝑔 has values in a metric space (𝑍, 𝜌) and if there exist
two positive constants 𝐾 and 𝐿 such that for all points 𝑦 from an
open neighborhood of 𝑥 (for all points 𝑥 and 𝑦 from a set 𝐴)

𝑑(𝑓(𝑥), 𝑓(𝑦))<𝐾⋅ 𝜌(𝑔(𝑥), 𝑔(𝑦))<𝐿⋅ 𝑑(𝑓(𝑥), 𝑓(𝑦))
is true, then 𝑓 and 𝑔 have the same degree of continuity at 𝑥 (𝑓
and 𝑔 have the same degree of constancy on 𝐴).

In general, we can see immediately that if 𝑓 is continuous on
a subset 𝐴 of 𝑋 and 𝑐𝐴𝑡 (𝑔) ≥ 𝑐𝐴𝑡 (𝑓) is true, then 𝑔 is continuous
on 𝐴 too. And if 𝑔 is not continuous at a point 𝑥 from 𝑋 and
𝑐𝑥𝑡 (𝑔) ≥ 𝑐𝑥𝑡 (𝑓) is true, then 𝑓 is not continuous at 𝑥. Later we
will show that if two functions 𝑓 and 𝑔 have the same degree of
constancy, their “level curve” multifunctions 𝑓−1(𝑓) and 𝑔−1(𝑔)
are equal – this explains the name of our “degree of constancy.”
The interesting case occurs when, for example, both inequalities
𝑐𝑥𝑡 (𝑔) ≥ 𝑐𝑥𝑡 (𝑓) and 𝑐𝑥𝑡 (𝑔) ≥ 𝑐𝑥𝑡 (𝑓) hold. We are going to work with
such phenomena so it is convenient to give them names.

Definition 2.3. Let 𝑋, 𝑌, and 𝑍 be topological spaces, and let
𝑓 : 𝑋 → 𝑌 and 𝑔 : 𝑋 → 𝑍 be functions.

(i) Let 𝐴 be a subset of 𝑋. We say that 𝑓 and 𝑔 are continuously
similar on 𝐴 if 𝑐𝐴𝑡 (𝑔) ≥ 𝑐𝐴𝑡 (𝑓) and 𝑐𝐴𝑡 (𝑓) ≥ 𝑐𝐴𝑡 (𝑔) are true at the
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same time. We denote this situation by writing 𝑐𝐴𝑡 (𝑔) = 𝑐𝐴𝑡 (𝑓). If
𝐴 = 𝑋, we write also 𝑐𝑡(𝑔) = 𝑐𝑡(𝑓) or, for the sake of simplicity,
𝑓 ∼ 𝑔, and we say that 𝑓 and 𝑔 are continuously similar.

To sum up, 𝑓 ∼ 𝑔 means that for every convergent net {𝑥𝛾}𝛾∈Γ
from 𝑋, the net {𝑓(𝑥𝛾)}𝛾∈Γ converges in 𝑌 if and only if the net
{𝑔(𝑥𝛾)}𝛾∈Γ converges in 𝑍.

(ii) Let 𝐴 be a subset of 𝑋. We say that 𝑓 and 𝑔 are strongly
similar on 𝐴 if 𝑐𝐴𝑠 (𝑔) ≥ 𝑐𝐴𝑠 (𝑓) and 𝑐𝐴𝑠 (𝑓) ≥ 𝑐𝐴𝑠 (𝑔) are true at the
same time. We denote this situation by writing 𝑐𝐴𝑠 (𝑔) = 𝑐𝐴𝑠 (𝑓). If
𝐴 = 𝑋, we write also 𝑐𝑠(𝑔) = 𝑐𝑠(𝑓) or, for the sake of simplicity,
𝑓 ≈ 𝑔, and we say that 𝑓 and 𝑔 are strongly similar.

To sum up, 𝑓 ≈ 𝑔 means that for every net {𝑥𝛾}𝛾∈Γ from 𝑋,
{𝑓(𝑥𝛾)}𝛾∈Γ converges in 𝑌 if and only if the net {𝑔(𝑥𝛾)}𝛾∈Γ con-
verges in 𝑍.

The following example should help the reader get a first insight
into the new notions.

Example 2.4. a) Let 𝑌 = <0, 1> and 𝑋 = 𝑍 = (0, 1). Define
𝑓 : 𝑋 → 𝑌 and 𝑔 : 𝑋 → 𝑍 by

for all 𝑥 from 𝑋, 𝑓(𝑥) = 𝑥 and 𝑔(𝑥) = 𝑥.

Although 𝑓 and 𝑔 are very similar (only 𝑌 and 𝑍 differ a little
bit), we can see that they are not strongly similar. Indeed, the
net {𝑓( 1𝑛)}𝑛∈ℕ converges but the net {𝑔( 1𝑛)}𝑛∈ℕ does not converge.
Only the relation 𝑐𝑠(𝑓) ≥ 𝑐𝑠(𝑔) is true. It is easy to check that
𝑓 ∼ 𝑔 – i. e., that 𝑓 and 𝑔 are continuously similar.

b) When 𝑋, 𝑌 , and 𝑍 are arbitrary topological spaces and 𝑓 :
𝑋 → 𝑌 and 𝑔 : 𝑋 → 𝑍 are functions, if 𝑔 is continuous at a point 𝑥
from 𝑋, then 𝑐𝑥𝑡 (𝑔) ≥ 𝑐𝑥𝑡 (𝑓) is true. If both 𝑓 and 𝑔 are continuous
on 𝑋, then we can see that 𝑓 ∼ 𝑔 is true.

c) When 𝑋, 𝑌 , and 𝑍 are arbitrary topological spaces and 𝑓 :
𝑋 → 𝑌 and 𝑔 : 𝑋 → 𝑍 are functions, if 𝑓 is constant on 𝑋, then
𝑐𝑠(𝑓) ≥ 𝑐𝑠(𝑔) holds. If both 𝑓 and 𝑔 are constant, then 𝑓 ≈ 𝑔 is
true.

In our definitions we defined some “relations of continuity” and
“relations of constancy” between functions. We were using sym-
bols “≥” and “=.” Of course, the use of these symbols does not
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automatically turn these relations into relations of order or equal-
ity. However, it is easy to see that these relations would be able to
create some kind of preorder or some kind of equivalence relations
on concrete sets of functions. The following lemma describes the
situation.

Lemma 2.5. Let 𝑋, 𝑌 , 𝑍, and 𝑆 be topological spaces, and let
𝑓 : 𝑋 → 𝑌, 𝑔 : 𝑋 → 𝑍 and ℎ : 𝑋 → 𝑆 be functions. Let 𝐴 be a
subset of 𝑋. Then the following implications are true.

(1) If 𝑐𝐴𝑡 (𝑓) ≥ 𝑐𝐴𝑡 (𝑔) and 𝑐𝐴𝑡 (𝑔) ≥ 𝑐𝐴𝑡 (ℎ), then 𝑐𝐴𝑡 (𝑓) ≥ 𝑐𝐴𝑡 (ℎ).
(2) If 𝑐𝐴𝑠 (𝑓) ≥ 𝑐𝐴𝑠 (𝑔) and 𝑐𝐴𝑠 (𝑔) ≥ 𝑐𝐴𝑠 (ℎ), then 𝑐𝐴𝑠 (𝑓) ≥ 𝑐𝐴𝑠 (ℎ).
(3) If 𝑐𝐴𝑡 (𝑓) = 𝑐𝐴𝑡 (𝑔) and 𝑐𝐴𝑡 (𝑔) = 𝑐𝐴𝑡 (ℎ), then 𝑐𝐴𝑡 (𝑓) = 𝑐𝐴𝑡 (ℎ).
(4) If 𝑐𝐴𝑠 (𝑓) = 𝑐𝐴𝑠 (𝑔) and 𝑐𝐴𝑠 (𝑔) = 𝑐𝐴𝑠 (ℎ), then 𝑐𝐴𝑠 (𝑓) = 𝑐𝐴𝑠 (ℎ).
(5) If 𝑓 ∼ 𝑔 and 𝑔 ∼ ℎ, then 𝑓 ∼ ℎ.
(6) If 𝑓 ≈ 𝑔 and 𝑔 ≈ ℎ, then 𝑓 ≈ ℎ.

Proof: (1) and (2) follow from the definition, and (3)–(6) follow
from (1) and (2). □

The following two lemmas will be useful when proving some op-
timization results.

Lemma 2.6. Let 𝑋 be a topological space and let 𝑌 and 𝑍 be
Hausdorff topological spaces. Let 𝑓 : 𝑋 → 𝑌 and 𝑔 : 𝑋 → 𝑍 be
functions. Let 𝑓 ≈ 𝑔. Let 𝑥 be from 𝑋. Then the sets 𝑓−1(𝑓(𝑥))
and 𝑔−1(𝑔(𝑥)) are equal.

Proof: Since the relation between 𝑓 and 𝑔 is “symmetrical,”
it suffices to show that if a point 𝑧 is from 𝑓−1(𝑓(𝑥)), then it is
from 𝑔−1(𝑔(𝑥)). Suppose 𝑧 ∈ 𝑓−1(𝑓(𝑥)) is true. Define a sequence
{𝑎𝑛}𝑛∈ℕ by 𝑎𝑛 = 𝑥 if 𝑛 is even and 𝑎𝑛 = 𝑧 if 𝑛 is odd.

Since 𝑓(𝑥) = 𝑓(𝑧), we can see that the sequence {𝑓(𝑎𝑛)}𝑛∈ℕ con-
verges. This means the sequence {𝑔(𝑎𝑛)}𝑛∈ℕ converges too. Since
one of its subsequences converges to 𝑔(𝑥) and another one converges
to 𝑔(𝑧), we obtain 𝑔(𝑥) = 𝑔(𝑧). The point 𝑧 is proven to be from
𝑔−1(𝑔(𝑥)). □

The above results imply that the relation “≈” preserves period-
icity.

Corollary 2.7. Let 𝑌 and 𝑍 be Hausdorff topological spaces, and
let 𝑓 : ℝ → 𝑌 and 𝑔 : ℝ → 𝑍 be functions. If 𝑓 ≈ 𝑔 and 𝑓 is
periodic with a period 𝑝, then 𝑔 is periodic with the same period 𝑝.
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The following lemma illustrates the properties of the relations
“≈” and “∼” and it will be used in our optimization section.

Lemma 2.8. Let 𝑋, 𝑌 , 𝑍1, and 𝑍2 be topological spaces, and let
ℎ : 𝑋 → 𝑌 , 𝑓 : 𝑌 → 𝑍1, and 𝑔 : 𝑌 → 𝑍2 be functions. Define
𝑓 : 𝑋 → 𝑍1 and 𝑔 : 𝑋 → 𝑍2 by

∀𝑥 ∈ 𝑋 𝑓(𝑥) = 𝑓(ℎ(𝑥)), 𝑔(𝑥) = 𝑔(ℎ(𝑥)).

If 𝑓 ≈ 𝑔 , then 𝑓 ≈ 𝑔.
If ℎ is continuous and (𝑓 ∼ 𝑔), then (𝑓 ∼ 𝑔).
If 𝑝 : 𝑍1 → 𝑍1 is a homeomorphism, then 𝑓 ≈ 𝑝(𝑓).

Proof: Trivial. □
The following assertion has a very standard proof and it will help

us to stop repeating this kind of proof again and again – as it has
been done in many classical theorems.

Lemma 2.9. Let 𝑋 be a topological space and (𝑍, 𝜚) be a metric
space. Let 𝑓 : 𝑋 → 𝑍 be a function. Let {𝑓𝛾}𝛾∈Γ be a net of
functions from 𝑋 to 𝑍. Let {𝑓𝛾}𝛾∈Γ converge uniformly to 𝑓 . Let
𝑠 = {𝑥𝛿}𝛿∈Δ be a net in 𝑋. Let for each 𝛾 ∈ Γ, {𝑓𝛾(𝑥𝛿)}𝛿∈Δ be
Cauchy in 𝑍. Then the net {𝑓(𝑥𝛿)}𝛿∈Δ is Cauchy in 𝑍.

Proof: Let 𝜀 be a positive real number. Denote 𝑡 = 𝜀
3 . Since

{𝑓𝛾}𝛾∈Γ converges uniformly to 𝑓 , there exists 𝛾 from Γ such that
for all 𝑥 from 𝑋, we have 𝜚(𝑓(𝑥), 𝑓𝛾(𝑥))<𝑡. The net {𝑓𝛾(𝑥𝛿)}𝛿∈Δ is
Cauchy in 𝑍 so there exists an index 𝛿0 such that, for all 𝛼 and 𝛽
that are greater than 𝛿0, the inequality 𝜚(𝑓𝛾(𝑥𝛼), 𝑓𝛾(𝑥𝛽))<𝑡 holds.
Using the triangle inequality, we obtain 𝜚(𝑓(𝑥𝛼), 𝑓(𝑥𝛽))<𝜚 (𝑓(𝑥𝛼),
𝑓𝛾(𝑥𝛼)) + 𝜚(𝑓𝛾(𝑥𝛼), 𝑓𝛾(𝑥𝛽)) + 𝜚(𝑓𝛾(𝑥𝛽), 𝑓(𝑥𝛽))<3𝑡 = 𝜀. This ends
the proof. □

The preceding lemma helps us to prove the following “continu-
ity preserving” theorem. In fact, the theorem says that after a
uniform limiting process, the degree of continuity and the degree
of constancy are preserved, or can become higher. So the limit is
never “uglier” than the approaching functions.

Theorem 2.10. Let 𝑋 be a topological space, and let (𝑌, 𝑑) and
(𝑍, 𝜚) be complete metric spaces. Let ℎ : 𝑋 → 𝑌 and 𝑓 : 𝑋 → 𝑍
be functions. Let {𝑓𝛾}𝛾∈Γ be a net of functions from 𝑋 to 𝑍. Let
{𝑓𝛾}𝛾∈Γ converge uniformly to 𝑓 . Let 𝑥 be a point of 𝑋 and let 𝐴
be a subset of 𝑋. Then
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(i) If for all 𝛾 from Γ 𝑐𝐴𝑡 (𝑓𝛾) ≥ 𝑐𝐴𝑡 (ℎ), then 𝑐𝐴𝑡 (𝑓) ≥ 𝑐𝐴𝑡 (ℎ).
(ii) If for all 𝛾 from Γ 𝑐𝑥𝑡 (𝑓𝛾) ≥ 𝑐𝑥𝑡 (ℎ) and if ℎ is continuous at

𝑥, then 𝑓 is continuous at 𝑥.
(iii) If for all 𝛾 from Γ 𝑐𝐴𝑠 (𝑓𝛾) ≥ 𝑐𝐴𝑠 (ℎ), then 𝑐𝐴𝑠 (𝑓) ≥ 𝑐𝐴𝑠 (ℎ).
(iv) If for all 𝛾 from Γ 𝑐𝐴𝑠 (𝑓𝛾) ≥ 𝑐𝐴𝑠 (ℎ) and if ℎ is constant on

𝐴, then 𝑓 is constant on 𝐴.

Proof: (i) Take an arbitrary net 𝑠 = {𝑥𝛿}𝛿∈Δ of points of 𝑋
converging to a point 𝑎 from 𝐴. Suppose the net {ℎ(𝑥𝛿)}𝛿∈Δ con-
verges in 𝑌 . We have to prove that the net {𝑓(𝑥𝛿)}𝛿∈Δ converges
in 𝑍. Since, for every 𝛾 from Γ, we have 𝑐𝐴𝑡 (𝑓𝛾) ≥ 𝑐𝐴𝑡 (ℎ); this
means that for every 𝛾 from Γ, the net {𝑓𝛾(𝑥𝛿)}𝛿∈Δ converges in
𝑍, so it is Cauchy. Then, according to the preceding lemma, the
net {𝑓(𝑥𝛿)}𝛿∈Δ is Cauchy in 𝑍, so it is convergent in 𝑍.

(ii) Take an arbitrary net {𝑥𝛿}𝛿∈Δ converging to 𝑥. The con-
tinuity of ℎ at 𝑥 means that the net {ℎ(𝑥𝛿)}𝛿∈Δ converges in 𝑌 .
According to (i) (just put A = { x } ), the net {𝑓(𝑥𝛿)}𝛿∈Δ converges
in 𝑍. But this means 𝑓 is continuous at 𝑥.

(iii) The proof is the same as the proof of (i), but instead of a
net converging to a point from 𝐴, we just consider an arbitrary net
𝑠 = {𝑥𝛿}𝛿∈Δ of points of 𝐴 and we replace the degree of constancy
by the degree of continuity.

(iv) First realize that because of (iii), we have 𝑐𝐴𝑠 (𝑓) ≥ 𝑐𝐴𝑠 (ℎ).
The rest of the proof is very similar to the proof of Lemma 2.6 and
is omitted. □

3. Limits, generalized continuity

In this section we are going to work with special nets constructed
from other nets. First, we will modify the indexed set of a net in
the following way:

Let Γ be an indexed set. By Γ
′
we will mean an indexed set

defined as follows

(∗)Γ′
= {(𝛾, 1); 𝛾 ∈ Γ} ∪ {(𝛾, 2); 𝛾 ∈ Γ}

and Γ
′
is equipped with a preorder defined by

For all 𝛼, 𝛽 ∈ Γ, if 𝛼<𝛽, then (𝛼, 1)<(𝛼, 2)<(𝛽, 1)<(𝛽, 2). It is

easy to check that Γ
′
is an indexed set.
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In the proof of the following theorem we need a special kind of
net that we are going to define now. Suppose {(𝑥𝛾)}𝛾∈Γ is a net of
points of a set 𝑋. Let 𝑎 be a point from 𝑋. By the symbol {𝑥𝛾 , 𝑎},
we will denote this special net:

{𝑥𝛾 , 𝑎} = {𝑦𝛾′}𝛾′∈Γ′ where Γ
′
is defined as in (*), and for all 𝛾

from Γ, we have 𝑦(𝛾,1) = 𝑥𝛾 and 𝑦(𝛾,2) = 𝑎. We can see immediately
that the net {𝑥𝛾}𝛾∈Γ is a subnet of {𝑥𝛾 , 𝑎} and that the constant
net {𝑦(𝛾,2)}𝛾∈Γ is a subnet of {𝑥𝛾 , 𝑎} = {𝑦𝛾′}𝛾′∈Γ′ too.

Theorem 3.1. Let 𝑋, 𝑌 , and 𝑍 be Hausdorff topological spaces.
Let 𝑓 : 𝑋 → 𝑌 and 𝑔 : 𝑋 → 𝑍 be functions. Let 𝑓 ≈ 𝑔.
Let {𝑥𝛾}𝛾∈Γ be a net in 𝑋 and 𝐴 ⊂ 𝑋 (let 𝑎 be a point from
𝑋). Suppose 𝑙𝑖𝑚𝛾∈Γ𝑓(𝑥𝛾) ∈ 𝑓(𝐴) (𝑙𝑖𝑚𝛾∈Γ𝑓(𝑥𝛾) = 𝑓(𝑎)). Then
𝑙𝑖𝑚𝛾∈Γ𝑔(𝑥𝛾) ∈ 𝑔(𝐴) (𝑙𝑖𝑚𝛾∈Γ𝑔(𝑥𝛾) = 𝑔(𝑎)).

Proof: First of all, since 𝑓 ≈ 𝑔, the limit 𝑙 = 𝑙𝑖𝑚𝛾∈Γ𝑔(𝑥𝛾) exists
in 𝑍. Let 𝑎 ∈ 𝐴 be such that 𝑙𝑖𝑚𝛾∈Γ𝑓(𝑥𝛾) = 𝑓(𝑎). Consider the net
{𝑦𝛾′}𝛾′∈Γ′ := {𝑥𝛾 , 𝑎}. We can see that 𝑙𝑖𝑚𝛾′∈Γ′𝑓(𝑦𝛾′ ) = 𝑓(𝑎). Since

𝑓 ≈ 𝑔 this means there exists 𝑚 ∈ 𝑍 such that 𝑚 = 𝑙𝑖𝑚𝛾′∈Γ′𝑔(𝑦𝛾′ ).

Now we are going to use the fact that the nets {𝑥𝛾}𝛾∈Γ and {𝑎}𝛾∈Γ
(by this we mean the net {𝑎𝛾}𝛾∈Γ where for all 𝛾 𝑓𝑟𝑜𝑚 Γ 𝑎𝛾 = 𝑎)
are both subnets of the net {𝑦𝛾′}𝛾′∈Γ′ . This gives us the following

equalities: 𝑙𝑖𝑚𝛾
′∈Γ′𝑔(𝑥𝛾′ ) = 𝑙𝑖𝑚𝛾∈Γ𝑔(𝑥𝛾) = 𝑙 and 𝑙𝑖𝑚𝛾

′∈Γ′𝑔(𝑥𝛾′ ) =

𝑙𝑖𝑚𝛾∈Γ𝑔(𝑎) = 𝑔(𝑎). So 𝑙 = 𝑔(𝑎) and this means also 𝑙 ∈ 𝑔(𝐴). (If
we put 𝐴 = {𝑎}, we see that the “bracket” part of this theorem has
been proven too.) □

The proof of the following theorem is very similar to the proof
of the preceding theorem. It suffices to use the net {𝑥𝛾 , 𝑎} again.
That is why we omit the proof.

Theorem 3.2. Let 𝑋, 𝑌 , and 𝑍 be Hausdorff topological spaces,
and let 𝑎 ∈ 𝑋 be a point. Let 𝑓 : 𝑋 → 𝑌 and 𝑔 : 𝑋 → 𝑍 be
functions. Let 𝑐𝑎𝑡 (𝑓) = 𝑐𝑎𝑡 (𝑔). Let {𝑥𝛾}𝛾∈Γ be a net in 𝑋, converging
to 𝑎. If 𝑙𝑖𝑚𝛾∈Γ𝑓(𝑥𝛾) = 𝑓(𝑎), then 𝑙𝑖𝑚𝛾∈Γ𝑔(𝑥𝛾) = 𝑔(𝑎).

The relation of constancy is so strong that if two functions have
the same degree of constancy, i. e., when they are strongly similar,
they have the same generalized continuity properties. Sometimes
only continuous similarity is needed. We will show this in the ex-
ample of quasicontinuity, which is one of the most used generalized
continuity properties (see [6], [4], or [5] for applications).
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Definition 3.3 ([4]). Let 𝑋 and 𝑌 be topological spaces. A func-
tion 𝑓 : 𝑋 → 𝑌 is said to be quasicontinuous at 𝑥 from 𝑋 if and
only if for any open set 𝑉 such that 𝑓(𝑥) ∈ 𝑉 and any open set
𝑈 such that 𝑥 ∈ 𝑈 , there exists a nonempty open set 𝑂 ⊂ 𝑈 such
that 𝑓(𝑂) ⊂ 𝑉 .

Theorem 3.4. Let 𝑋, 𝑌 , and 𝑍 be Hausdorff topological spaces.
Let 𝑓 : 𝑋 → 𝑍 and 𝑔 : 𝑋 → 𝑌 be functions. Let 𝑥 be a point from
𝑋. Let 𝑐𝑥𝑡 (𝑓) = 𝑐𝑥𝑡 (𝑔). Then 𝑓 is quasicontinuous at 𝑥 if and only
if 𝑔 is quasicontinuous at 𝑥.

Proof: We proceed by contradiction. Suppose that one of the
functions is quasicontinuous at 𝑥 and the other is not. Without
loss of generality we can denote the first function by 𝑓 and the
second by 𝑔. Since 𝑔 is not quasicontinuous at 𝑥, there exists an
open neighborhood 𝑊 of 𝑔(𝑥) and an open neighborhood 𝑈 of 𝑥
such that for any open subset 𝑈1 of 𝑈 there exists a point 𝑡 from
𝑈1 such that 𝑔(𝑡) ∈ 𝑌 −𝑊 . In other words, the set 𝑔−1(𝑌 −𝑊 ) is
dense in 𝑈 .

Denote by Γ := {𝑂 : 𝑂 is an open neighborhood of 𝑥,𝑂 ⊂
𝑈}, 𝐴 := {𝑆 : 𝑆 is an open neighborhood of 𝑓(𝑥)}. Define 𝐵 =
Γ×𝐴. Define a partial order “≤” on 𝐵 by

∀(𝛾1, 𝛼1), (𝛾2, 𝛼2) ∈ 𝐵 (𝛾1, 𝛼1) ≤ (𝛾2, 𝛼2) iff 𝛾2 ⊂ 𝛾1 and 𝛼2 ⊂ 𝛼1.

It is easy to see that 𝐵 as equipped is a directed set.
For each 𝛽 ∈ 𝐵 and 𝛽 = (𝛾, 𝛼), the following holds (since 𝛾 is

an open neighborhood of 𝑥 and 𝛼 is an open neighborhood of 𝑓(𝑥)
and 𝑓 is quasicontinuous at 𝑥): There exists an open set 𝐷 such
that 𝐷 ⊂ 𝛾 and 𝑓(𝐷) ⊂ 𝛼. Since 𝑔−1(𝑌 −𝑊 ) is dense in 𝑈 , there
exists a point 𝑧 from 𝐷 such that 𝑔(𝑧) ∈ 𝑌 −𝑊 . At the same time,
𝑓(𝑧) ∈ 𝛼. Denote 𝑥𝛽 := 𝑧.

We have just constructed a net of points {𝑥𝛽}𝛽∈𝐵. It is easy to
see that this net has the following properties:

(1) 𝑙𝑖𝑚𝛽∈𝐵𝑥𝛽 = 𝑥;
(2) 𝑙𝑖𝑚𝛽∈𝐵𝑓(𝑥𝛽) = 𝑓(𝑥);
(3) for all 𝛽 ∈ 𝐵 𝑔(𝑥𝛽) ∈ 𝑌 −𝑊.

Now, since 𝑐𝑥𝑡 (𝑓) = 𝑐𝑥𝑡 (𝑔) and (1) and (2) hold, according to the
preceding theorem, 𝑙𝑖𝑚𝛽∈𝐵𝑔(𝑥𝛽) = 𝑔(𝑥). This is a contradiction
with (3). □
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4. Optimization applications

In what follows we are going to use some connectedness prop-
erties. We will say that a topological space 𝑋 is locally arcwise
connected at a point 𝑥 if every neighborhood 𝑈 of 𝑥 contains
a neighborhood 𝑉 of 𝑥 such that any two points 𝑎 and 𝑏 from
𝑉 can be joined by an arc in 𝑉 ; i. e., there exists a function
ℎ : <0, 1> → 𝑉 such that ℎ : <0, 1> → ℎ(<0, 1>) is a homeomor-
phism and ℎ(0) = 𝑎, ℎ(1) = 𝑏 holds.

The following lemma shows that strongly similar continuous func-
tions defined on an interval attain local extrema at the same points.
In a way, it shows a possibility of how to investigate a nondifferen-
tiable function for extrema. (Some nondifferentiable functions are
strongly similar to differentiable ones and these can be investigated
in a classical way.)

Lemma 4.1. Let <𝑎, 𝑏> be an interval in ℝ. Let 𝑓 : <𝑎, 𝑏> → ℝ
and 𝑔 : <𝑎, 𝑏> → ℝ be continuous functions. Let 𝑓 ≈ 𝑔. Then the
following assertions hold.

(1) If <𝑐, 𝑑> ⊂ <𝑎, 𝑏>, then 𝑓 is monotonous on <𝑐, 𝑑> if and
only if 𝑔 is monotonous on <𝑐, 𝑑>.

(2) If <𝑐, 𝑑> ⊂ <𝑎, 𝑏>, then 𝑓 is strictly monotonous on <𝑐, 𝑑>
if and only if 𝑔 is strictly monotonous on <𝑐, 𝑑>.

(3) A point 𝑥 from (𝑎, 𝑏) is a point of a global (local) extremum
of 𝑓 on <𝑎, 𝑏> if and only if 𝑥 is a point of a global (local)
extremum of 𝑔 on <𝑎, 𝑏>.

(4) A point 𝑥 from (𝑎, 𝑏) is a point of a strict global (local)
extremum of 𝑓 on <𝑎, 𝑏> if and only if 𝑥 is a point of a
strict global (local) extremum of 𝑔 on <𝑎, 𝑏>.

Proof: (1) It suffices to show that if 𝑔 is not monotonous, then
𝑓 is not monotonous. Suppose 𝑔 is neither nondecreasing nor non-
increasing on <𝑐, 𝑑>. Then one of the two following assertions has
to be true.

(i) There exist 𝑡1, 𝑡2, 𝑡3 from <𝑐, 𝑑> such that 𝑡1<𝑡2<𝑡3 and
𝑔(𝑡1)<𝑔(𝑡2) and 𝑔(𝑡3)<𝑔(𝑡2) are true.

(ii) There exist 𝑡1, 𝑡2, 𝑡3 from <𝑐, 𝑑> such that 𝑡1<𝑡2<𝑡3 and
𝑔(𝑡1)>𝑔(𝑡2) and 𝑔(𝑡3)>𝑔(𝑡2) are true.

We are going to work with (i); (ii) can be reduced to (i) by
working with the function −𝑔 because −𝑔 ≈ 𝑓 holds too. Supposing
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(i) is true; denote 𝐼 = 𝑔(<𝑡1, 𝑡2>) and 𝐽 = 𝑔(<𝑡2, 𝑡3>). Of course,
𝐼 and 𝐽 are closed intervals and <𝑚𝑎𝑥{𝑔(𝑡1), 𝑔(𝑡3)}, 𝑔(𝑡2)> ⊂ 𝐼∩𝐽 .
Pick an arbitrary point 𝑐 from <𝑚𝑎𝑥{𝑔(𝑡1), 𝑔(𝑡3)}, 𝑔(𝑡2)>. We can
see that there exists two points 𝑜1 ∈ (𝑡1, 𝑡2) and 𝑜2 ∈ (𝑡2, 𝑡3) such
that 𝑐 = 𝑔(𝑜1) = 𝑔(𝑜2). Since 𝑔 ≈ 𝑓 , we obtain 𝑓(𝑜1) = 𝑓(𝑜2) and
since 𝑔(𝑡2) ∕= 𝑔(𝑜1), we have 𝑓(𝑡2) ∕= 𝑓(𝑜1) too. Now remembering
that 𝑜1 < 𝑡2 <𝑜2, we see that 𝑓 is not monotonous on <𝑐, 𝑑>.

(2) If 𝑓 is strictly monotonous on <𝑐, 𝑑>, then it is monotonous
on this interval and according to (1), 𝑔 is monotonous too. Now it
suffices to show that 𝑔 is injective on <𝑐, 𝑑>. But this has to be
true because 𝑓 ≈ 𝑔 is true and 𝑓 is injective on <𝑐, 𝑑>.

Before proving (3) and (4), we should realize that only the case
of global extrema on an interval needs to be treated. This is so
because a local extremum on an interval is a global extremum on a
subinterval.

(3) Suppose 𝑥 from (𝑎, 𝑏) is a point of a global extremum of 𝑓 .
Without loss of generality we are going to assume that 𝑓 has a
global maximum at 𝑥. Notice that since 𝑓 ≈ 𝑔, the sets 𝑓−1(𝑓(𝑥))
and 𝑔−1(𝑔(𝑥)) are identical. If 𝑓 is constant on <𝑎, 𝑏>, then 𝑔 is
constant on <𝑎, 𝑏> too, and we are done.

Now we examine the second case – the case when the set 𝑔−1(𝑔(𝑥))
does not coincide with <𝑎, 𝑏>. Choose a point 𝑡 from <𝑎, 𝑏> such
that 𝑔(𝑡) ∕= 𝑔(𝑥). Suppose 𝑔(𝑡)>𝑔(𝑥) (the case 𝑔(𝑡)<𝑔(𝑥) is similar
and therefore omitted). We will show that for all 𝑧 from <𝑎, 𝑏>
we have 𝑔(𝑧) ≥ 𝑔(𝑥). Suppose this is not true. Then there exists a
point 𝑠 from <𝑎, 𝑏> such that 𝑔(𝑠)<𝑔(𝑥). Suppose 𝑡<𝑥<𝑠 (other
cases, for example 𝑡<𝑠<𝑥, etc., can be treated with the same rea-
soning that we use for our chosen case). Since the sets 𝑔−1(𝑔(𝑡)),
𝑔−1(𝑔(𝑠)), and 𝑔−1(𝑔(𝑥)) are pairwise disjoint, the sets 𝑓−1(𝑓(𝑡)),
𝑓−1(𝑓(𝑠)), and 𝑓−1(𝑓(𝑥)) are also pairwise disjoint. Examine the
case 𝑓(𝑠)<𝑓(𝑡)<𝑓(𝑥) (the case 𝑓(𝑡)<𝑓(𝑠)<𝑓(𝑥) is similar). Define
𝑐 = inf{𝑒 : 𝑓(<𝑒, 𝑠>) ⊂ (−∞, 𝑓(𝑡)>}. Since 𝑓 is continuous we
obtain 𝑥<𝑐<𝑠. We remind the reader that because of the con-
tinuity of 𝑓 we have <𝑓(𝑠), 𝑓(𝑥)> ⊂ 𝑓(<𝑥, 𝑠>). Because of the
definition of 𝑐 and the continuity of 𝑓 we obtain 𝑓(𝑐) = 𝑓(𝑡). This
means 𝑔(𝑐) = 𝑔(𝑡). Since 𝑔 is continuous, the set 𝑔(<𝑐, 𝑠>) con-
tains the closed interval <𝑔(𝑠), 𝑔(𝑐)>. Since 𝑔(𝑠)<𝑔(𝑥)<𝑔(𝑡) = 𝑔(𝑐)
is true, there exists a point 𝑟 from the open interval (𝑐, 𝑠) such that
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𝑔(𝑟) = 𝑔(𝑥). This implies 𝑓(𝑟) = 𝑓(𝑥). But 𝑟 is from (𝑐, 𝑠) and,
because of the definition of 𝑐, the point 𝑓(𝑥) = 𝑓(𝑟) is not from
𝑓(<𝑐, 𝑠>). This is a contradiction. We have just proved that for
all 𝑧 from <𝑎, 𝑏>, the inequality 𝑔(𝑧) ≥ 𝑔(𝑥) holds. The function
𝑔 is proven to have a global extremum at 𝑥.

(4) Suppose 𝑓 has a strict global maximum at 𝑥 from (𝑎, 𝑏). With
(3) proven, we can claim that 𝑔 has a global extremum at 𝑥. If this
extremum of 𝑔 were not strict, there would exist a point 𝑐 from
<𝑎, 𝑏> with the property 𝑔(𝑐) = 𝑔(𝑥). Since 𝑓 ≈ 𝑔, this would
imply 𝑓(𝑐) = 𝑓(𝑥), but this is not possible. □

Now we are ready for the main result of this section.

Theorem 4.2. Let 𝑋 be a topological space, let 𝑥 be from 𝑋, and
let 𝑋 be locally arcwise connected at 𝑥. Let 𝑓 : 𝑋 → ℝ and 𝑔 :
𝑋 → ℝ be continuous functions. Let 𝑓 ≈ 𝑔. Then

(j) 𝑥 is a point of a local extremum of 𝑓 if and only if 𝑥 is a
point of a local extremum of 𝑔;

(jj) 𝑥 is a point of a strict local extremum of 𝑓 if and only if 𝑥
is a point of a strict local extremum of 𝑔.

Proof: If 𝑥 is an isolated point, the theorem is true. Suppose 𝑥
is not isolated.

(j) We will prove that if 𝑓 has a local extremum at 𝑥, then 𝑔 has
an extremum at 𝑥 too. Suppose 𝑓 has at 𝑥 a local maximum. This
means there exists an arcwise connected open neighborhood 𝑈 of
𝑥 such that for all 𝑡 from 𝑈 the inequality 𝑓(𝑡) ≤ 𝑓(𝑥) takes place.

Choose an arbitrary point 𝑢 from 𝑈 − {𝑥}. Suppose 𝑔(𝑢) ≥
𝑔(𝑥). We are going to prove that for all 𝑠 from 𝑈 the inequality
𝑔(𝑠) ≥ 𝑔(𝑥). Choose an arbitrary 𝑠 from 𝑈 ; suppose 𝑠 is different
from 𝑥 and 𝑢. Since U is arcwise connected, there exists an arc
connecting the points 𝑢, 𝑥, and 𝑠. More concretely, there exists a
continuous function ℎ : <0, 2> → 𝑈 such that ℎ(0) = 𝑢, ℎ(1) = 𝑥,
and ℎ(2) = 𝑠. Define functions 𝑓 : <0, 2> → ℝ and 𝑔 : <0, 2> → ℝ
in the following way:

for all 𝑧 from <0, 2>, 𝑓(𝑧) = 𝑓(ℎ(𝑧)) and 𝑔(𝑧) = 𝑔(ℎ(𝑧)).

According to Lemma 2.8, the functions 𝑓 and 𝑔 satisfy 𝑓 ≈ 𝑔.
Since 𝑓 has a local extremum on 𝑈 at the point 𝑥, we can see that
𝑓 has a local extremum on <0, 2> at the point 1. This means
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(according to Lemma 4.1) that 𝑔 has a local extremum on <0, 2>
at the point 1. We know that 𝑔(0) = 𝑔(𝑢) ≥ 𝑔(𝑥) = 𝑔(1) so 𝑔
has at 1 a local minimum. Therefore, 𝑔(2) ≥ 𝑔(1) must be true.
Since 𝑔(2) = 𝑔(𝑠) and 𝑔(1) = 𝑔(𝑥), we have just proved that for an
arbitrary 𝑠 from 𝑈 we have 𝑔(𝑠) ≥ 𝑔(𝑥). □

The next example shows that without connectedness of 𝑋 our
theorem need not be true.

Example 4.3. Define a subset 𝑋 of ℝ by

𝑋 = <− 1,−1

2
> ∪<− 1

4
,−1

8
> ∪ ⋅ ⋅ ⋅ ∪ {0} ∪<

1

2
, 1> ∪ . . . .

More concretely, 𝑋 = {0} ∪𝐴 ∪𝐵 where

𝐴 =
∞∪
𝑖=0

<− 1

22𝑖
,− 1

22𝑖+1
> =

∞∪
𝑖=0

𝐼𝑖 and

𝐵 =
∞∪
𝑖=0

<
1

22𝑖+1
,
1

22𝑖
> =

∞∪
𝑖=0

𝐽𝑖.

We define two functions 𝑓 : 𝑋 → ℝ and 𝑔 : 𝑋 → ℝ by

𝑓(𝑥) = − 1

22𝑖
if x ∈ Ii, f(0) = 0, f(x) = − 1

22i+1
if x ∈ Ji and

𝑔(𝑥) = − 1

22𝑖
if x ∈ Ii, g(0) = 0, g(x) =

1

22i+1
if x ∈ Ji.

The functions 𝑓 and 𝑔 coincide on 𝐴∪{0}. Globally, it is easy to
see that 𝑓 ≈ 𝑔 is true. The function 𝑓 has a strict global maximum
at 0, but 𝑔 is nondecreasing on its domain and has no extremum at
0.

Remark 4.4. We can see that it is worth investigating which con-
tinuous functions defined on convex sets are strongly similar to
convex functions. There are plenty of results concerning extrema
of convex functions and with the aid of the preceding theorem these
results could be used for this general class of functions.
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