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A SIMPLE PROOF OF THE

BORSUK-ULAM THEOREM FOR ℤ𝑝-ACTIONS

MAHENDER SINGH

Abstract. In this note, we give a simple proof of the Borsuk-
Ulam theorem for ℤ𝑝-actions. We prove that if 𝑆𝑛 and 𝑆𝑚

are equipped with free ℤ𝑝-actions (𝑝 prime) and 𝑓 : 𝑆𝑛 → 𝑆𝑚

is a ℤ𝑝-equivariant map, then 𝑛 ≤ 𝑚.

Introduction

Let 𝑆𝑛 be the unit 𝑛-sphere in ℝ𝑛+1. There is a natural involu-
tion on 𝑆𝑛, called the antipodal involution and given by 𝑥 7→ −𝑥.
The well-known Borsuk-Ulam theorem states that if there is a map
𝑓 : 𝑆𝑛 → 𝑆𝑚 taking a pair of antipodal points to a pair of antipo-
dal points, then 𝑛 ≤ 𝑚. Over the years, there have been several
generalizations of the theorem in many directions. We refer the
reader to an interesting article by H. Steinlein [7], which lists 457
publications concerned with various generalizations of the Borsuk-
Ulam theorem. Also the recent book by Jǐŕı Matoušek [5] contains
a detailed account of various generalizations and applications of the
Borsuk-Ulam theorem. There are several proofs of this theorem in
literature; in fact, most algebraic topology texts contain a proof.

The purpose of this note is to give a simple proof of a general-
ization of this theorem in the setting of group actions.
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Let 𝐺 be a group acting on a space𝑋 with the action 𝐺×𝑋 → 𝑋
denoted by (𝑔, 𝑥) 7→ 𝑔𝑥. Associated with the group action, the orbit
space 𝑋/𝐺 is obtained by identifying all the points in the orbit of 𝑥
(denoted by 𝑥) for each 𝑥 ∈ 𝑋. The orbit map 𝑋 → 𝑋/𝐺 is given
by 𝑥 7→ 𝑥.

If spaces 𝑋 and 𝑌 carry 𝐺-actions, then a map 𝑓 : 𝑋 → 𝑌 is
called 𝐺-equivariant if 𝑓(𝑔𝑥) = 𝑔(𝑓(𝑥)) for all 𝑥 ∈ 𝑋 and 𝑔 ∈ 𝐺.
An equivariant map 𝑓 : 𝑋 → 𝑌 induces a map 𝑓 : 𝑋/𝐺 → 𝑌/𝐺

given by 𝑓(𝑥) = 𝑓(𝑥). Recall that a 𝐺-action is said to be free if
𝑔𝑥 = 𝑥 implies 𝑔 = 𝑒, the identity of 𝐺.

In 1983, Arunas Liulevicius [4] published the following general-
ization of the Borsuk-Ulam theorem:

If a map 𝑓 : 𝑆𝑛 → 𝑆𝑚 commutes with some free
actions of a non-trivial compact Lie group 𝐺 on the
spheres 𝑆𝑛 and 𝑆𝑚, then 𝑛 ≤ 𝑚.

An alternative, but relatively simple, proof of the later theorem
was also given by Albrecht Dold [2] in 1983. There are also some
other generalizations of the result; see, for example, [1]. In this
note, we give a simple proof of the above result for free actions
of the cyclic group ℤ𝑝 of prime order 𝑝 involving only elementary
algebraic topology. More precisely, we prove the following theorem.

Theorem A. Let 𝑆𝑛 and 𝑆𝑚 be equipped with free ℤ𝑝-actions. If
there is a ℤ𝑝-equivariant map 𝑓 : 𝑆𝑛 → 𝑆𝑚, then 𝑛 ≤ 𝑚.

Before proceeding to prove the theorem, we recall the universal
coefficient formula for singular cohomology.

Theorem 1 ([6, p. 243]). There is a natural short exact sequence
0 → 𝐸𝑥𝑡

(
𝐻𝑘−1(𝑋;ℤ),ℤ𝑝

) → 𝐻𝑘(𝑋;ℤ𝑝) → 𝐻𝑜𝑚
(
𝐻𝑘(𝑋;ℤ),ℤ𝑝

)
→ 0

for each 𝑘 ≥ 0.

Proof of Theorem A

Suppose that 𝑛 > 𝑚. Let the ℤ𝑝 - actions on 𝑆𝑛 and 𝑆𝑚 be
generated by 𝑇 and 𝑆, respectively. Note that the map 𝑓 : 𝑆𝑛 → 𝑆𝑚

is ℤ𝑝-equivariant if 𝑓(𝑇 (𝑥)) = 𝑆(𝑓(𝑥)) for all 𝑥 ∈ 𝑋. Let 𝑞1 : 𝑆
𝑛 →

𝑆𝑛/𝑇 and 𝑞2 : 𝑆𝑚 → 𝑆𝑚/𝑆 be the orbit maps which are also 𝑝-
sheeted covering projections. We claim that 𝑓# : 𝜋1(𝑆

𝑛/𝑇 ) →



THE BORSUK-ULAM THEOREM FOR ℤ𝑝-ACTIONS 251

𝜋1(𝑆
𝑚/𝑆) is zero. This will give a lift 𝑓 of 𝑓 , that is, the following

diagram commutes

𝑆𝑛

𝑞1
��

𝑓
// 𝑆𝑚

𝑞2
��

𝑆𝑛/𝑇
𝑓

//

𝑓
::uuuuuuuuu
𝑆𝑚/𝑆.

Since 𝐸𝑥𝑡
(
𝐻0(𝑆

𝑛/𝑇 ;ℤ),ℤ𝑝

)
= 0, taking 𝑘 = 1 in Theorem 1, we

have 𝐻1(𝑆𝑛/𝑇 ;ℤ𝑝) ∼= 𝐻𝑜𝑚
(
𝐻1(𝑆

𝑛/𝑇 ;ℤ),ℤ𝑝

)
. The same holds for

𝑆𝑚/𝑆 also. By naturality of the universal coefficient formula, the
map 𝑓 : 𝑆𝑛/𝑇 → 𝑆𝑚/𝑆 gives the following commutative diagram

𝐻1(𝑆𝑚/𝑆;ℤ𝑝)

𝑓
∗

��

∼= // 𝐻𝑜𝑚
(
𝐻1(𝑆

𝑚/𝑆;ℤ),ℤ𝑝

)
𝛼 7→𝛼𝑓∗

��

𝐻1(𝑆𝑛/𝑇 ;ℤ𝑝)
∼= // 𝐻𝑜𝑚

(
𝐻1(𝑆

𝑛/𝑇 ;ℤ),ℤ𝑝

)
.

For 𝑝 odd, both 𝑛 and 𝑚 are odd. It is known that for a free
action of ℤ𝑝 on a sphere 𝑆2𝑘−1, there are integers 𝑛1, ..., 𝑛𝑘 such

that 𝑆2𝑘−1/ℤ𝑝 is homotopy equivalent to the lens space 𝐿2𝑘−1(𝑝;
𝑛1, ..., 𝑛𝑘). Thus, both 𝑆𝑛/𝑇 and 𝑆𝑚/𝑆 are homotopy equivalent to
lens spaces and have the following cohomology algebras [3, p. 251]

𝐻∗(𝑆𝑛/𝑇 ;ℤ𝑝) ∼= ℤ𝑝[𝑠, 𝑡]/⟨𝑠2, 𝑡
𝑛+1
2 ⟩,

𝐻∗(𝑆𝑚/𝑆;ℤ𝑝) ∼= ℤ𝑝[𝑠1, 𝑡1]/⟨𝑠21, 𝑡
𝑚+1

2
1 ⟩,

with 𝑡 = 𝛽(𝑠) and 𝑡1 = 𝛽(𝑠1), where 𝛽 is the mod-𝑝 Bockstein
homomorphism. Naturality of the Bockstein homomorphism gives
the commutative diagram

𝐻1(𝑆𝑚/𝑆;ℤ𝑝)

𝑓
∗

��

𝛽
// 𝐻2(𝑆𝑚/𝑆;ℤ𝑝)

𝑓
∗

��

𝐻1(𝑆𝑛/𝑇 ;ℤ𝑝)
𝛽

// 𝐻2(𝑆𝑛/𝑇 ;ℤ𝑝).

If 𝑓
∗
is non zero, then 𝑓

∗
(𝑠1) = 𝑠. From the diagram, we have

𝑓
∗
(𝑡1) = 𝑡. But 0 = 𝑓

∗
(𝑡

𝑚+1
2

1 ) = 𝑓
∗
(𝑡1)

𝑚+1
2 = 𝑡

𝑚+1
2 , a contradiction

as 𝑛 > 𝑚. Hence, 𝑓
∗
is zero in this case.
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For 𝑝 = 2, both 𝑆𝑛/𝑇 and 𝑆𝑚/𝑆 have the homotopy type of
real projective spaces and hence have the cohomology algebras [3,
p. 250]

𝐻∗(𝑆𝑛/𝑇 ;ℤ2) ∼= ℤ2[𝑠]/⟨𝑠𝑛+1⟩,
𝐻∗(𝑆𝑚/𝑆;ℤ2) ∼= ℤ2[𝑠1]/⟨𝑠𝑚+1

1 ⟩,
where 𝑠 and 𝑠1 are homogeneous elements of degree one each.

If 𝑓
∗
is non zero, then 𝑓

∗
(𝑠1) = 𝑠. But 0 = 𝑓

∗
(𝑠𝑚+1

1 ) =

𝑓
∗
(𝑠1)

𝑚+1
= 𝑠𝑚+1, a contradiction as 𝑛 > 𝑚. Hence, 𝑓

∗
must be

zero and by the commutativity of the second diagram, the map 𝛼 7→
𝛼𝑓∗ is zero. From this we get 𝑓∗ : 𝐻1(𝑆

𝑛/𝑇 ;ℤ) → 𝐻1(𝑆
𝑚/𝑆;ℤ) is

zero. Now by naturality of the Hurewicz homomorphism

ℎ : 𝜋1(𝑆
𝑛/𝑇 ) → 𝐻1(𝑆

𝑛/𝑇 ;ℤ)
(which is an isomorphism in our case), we have the following com-
mutative diagram

𝜋1(𝑆
𝑛/𝑇 )

ℎ∼=
��

𝑓#
// 𝜋1(𝑆

𝑚/𝑆)

ℎ∼=
��

𝐻1(𝑆
𝑛/𝑇 ;ℤ)

𝑓∗ // 𝐻1(𝑆
𝑚/𝑆;ℤ),

which shows that 𝑓# : 𝜋1(𝑆
𝑛/𝑇 ) → 𝜋1(𝑆

𝑚/𝑆) is zero and hence
the lift exists.

The commutativity of the first diagram shows that both 𝑓 and
𝑓𝑞1 are lifts of 𝑓𝑞1. Let 𝑥0 ∈ 𝑆𝑛, then by definition of 𝑞2,

𝑞2
(
𝑓(𝑥0)

)
= 𝑞2

(
𝑆𝑓(𝑥0)

)
= 𝑞2

(
𝑆2𝑓(𝑥0)

)
= ... = 𝑞2

(
𝑆𝑝−1𝑓(𝑥0)

)
,

that is, the fiber over 𝑞2
(
𝑓(𝑥0)

)
is the set

{𝑓(𝑥0), 𝑆𝑓(𝑥0), ..., 𝑆𝑝−1𝑓(𝑥0)}.
Also, 𝑞2

(
𝑓𝑞1(𝑥0)

)
= 𝑓𝑞1(𝑥0) = 𝑞2𝑓(𝑥0). Therefore, 𝑓𝑞1(𝑥0) =

𝑓(𝑥0) or 𝑓𝑞1(𝑥0) = 𝑆𝑖𝑓(𝑥0) for some 1 ≤ 𝑖 ≤ 𝑝 − 1. Note that in

the later case we have 𝑓𝑞1
(
𝑇 𝑖(𝑥0)

)
= 𝑓𝑞1(𝑥0) = 𝑆𝑖𝑓(𝑥0) = 𝑓𝑇 𝑖(𝑥0).

Hence, in either case, the lifts 𝑓 and 𝑓𝑞1 agree at a point, and there-
fore by uniqueness of lifting, we have 𝑓 = 𝑓𝑞1. Now for any 𝑥 ∈ 𝑆𝑛,
𝑞1(𝑥) = 𝑞1𝑇 (𝑥). But 𝑓𝑞1(𝑥) = 𝑓𝑞1𝑇 (𝑥) = 𝑓𝑇 (𝑥) = 𝑆𝑓(𝑥) ∕= 𝑓(𝑥),
a contradiction. Hence, 𝑛 ≤ 𝑚.
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