

http://topology.auburn.edu/tp/

A SIMPLE PROOF OF THE BORSUK-ULAM THEOREM FOR \mathbb{Z}_p -Actions

by

Mahender Singh

Electronically published on May 5, 2010

Topology Proceedings

Web:	http://topology.auburn.edu/tp/
Mail:	Topology Proceedings
	Department of Mathematics & Statistics
	Auburn University, Alabama 36849, USA
E-mail:	topolog@auburn.edu
ISSN:	0146-4124
COPYRIGHT \bigodot by Topology Proceedings. All rights reserved.	

E-Published on May 5, 2010

A SIMPLE PROOF OF THE BORSUK-ULAM THEOREM FOR \mathbb{Z}_p -ACTIONS

MAHENDER SINGH

ABSTRACT. In this note, we give a simple proof of the Borsuk-Ulam theorem for \mathbb{Z}_p -actions. We prove that if S^n and S^m are equipped with free \mathbb{Z}_p -actions (p prime) and $f: S^n \to S^m$ is a \mathbb{Z}_p -equivariant map, then $n \leq m$.

INTRODUCTION

Let S^n be the unit *n*-sphere in \mathbb{R}^{n+1} . There is a natural involution on S^n , called the antipodal involution and given by $x \mapsto -x$. The well-known Borsuk-Ulam theorem states that if there is a map $f: S^n \to S^m$ taking a pair of antipodal points to a pair of antipodal points, then $n \leq m$. Over the years, there have been several generalizations of the theorem in many directions. We refer the reader to an interesting article by H. Steinlein [7], which lists 457 publications concerned with various generalizations of the Borsuk-Ulam theorem. Also the recent book by Jiří Matoušek [5] contains a detailed account of various generalizations and applications of the Borsuk-Ulam theorem. There are several proofs of this theorem in literature; in fact, most algebraic topology texts contain a proof.

The purpose of this note is to give a simple proof of a generalization of this theorem in the setting of group actions.

²⁰¹⁰ Mathematics Subject Classification. Primary 57S17; Secondary 55M35. Key words and phrases. cohomology ring, equivariant map, Hurewicz homomorphism, universal coefficient formula.

^{©2010} Topology Proceedings.

M. SINGH

Let G be a group acting on a space X with the action $G \times X \to X$ denoted by $(g, x) \mapsto gx$. Associated with the group action, the orbit space X/G is obtained by identifying all the points in the orbit of x (denoted by \overline{x}) for each $x \in X$. The orbit map $X \to X/G$ is given by $x \mapsto \overline{x}$.

If spaces X and Y carry G-actions, then a map $f: X \to Y$ is called G-equivariant if f(gx) = g(f(x)) for all $x \in X$ and $g \in G$. An equivariant map $f: X \to Y$ induces a map $\overline{f}: X/G \to Y/G$ given by $\overline{f}(\overline{x}) = \overline{f(x)}$. Recall that a G-action is said to be free if qx = x implies q = e, the identity of G.

In 1983, Arunas Liulevicius [4] published the following generalization of the Borsuk-Ulam theorem:

> If a map $f : S^n \to S^m$ commutes with some free actions of a non-trivial compact Lie group G on the spheres S^n and S^m , then $n \leq m$.

An alternative, but relatively simple, proof of the later theorem was also given by Albrecht Dold [2] in 1983. There are also some other generalizations of the result; see, for example, [1]. In this note, we give a simple proof of the above result for free actions of the cyclic group \mathbb{Z}_p of prime order p involving only elementary algebraic topology. More precisely, we prove the following theorem.

Theorem A. Let S^n and S^m be equipped with free \mathbb{Z}_p -actions. If there is a \mathbb{Z}_p -equivariant map $f: S^n \to S^m$, then $n \leq m$.

Before proceeding to prove the theorem, we recall the universal coefficient formula for singular cohomology.

Theorem 1 ([6, p. 243]). There is a natural short exact sequence $0 \to Ext(H_{k-1}(X;\mathbb{Z}),\mathbb{Z}_p) \to H^k(X;\mathbb{Z}_p) \to Hom(H_k(X;\mathbb{Z}),\mathbb{Z}_p)$ $\to 0$

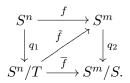
for each $k \geq 0$.

PROOF OF THEOREM A

Suppose that n > m. Let the \mathbb{Z}_p -actions on S^n and S^m be generated by T and S, respectively. Note that the map $f: S^n \to S^m$ is \mathbb{Z}_p -equivariant if f(T(x)) = S(f(x)) for all $x \in X$. Let $q_1: S^n \to S^n/T$ and $q_2: S^m \to S^m/S$ be the orbit maps which are also psheeted covering projections. We claim that $\overline{f}_{\#}: \pi_1(S^n/T) \to$

250

 $\pi_1(S^m/S)$ is zero. This will give a lift \tilde{f} of $\overline{f},$ that is, the following diagram commutes



Since $Ext(H_0(S^n/T;\mathbb{Z}),\mathbb{Z}_p) = 0$, taking k = 1 in Theorem 1, we have $H^1(S^n/T;\mathbb{Z}_p) \cong Hom(H_1(S^n/T;\mathbb{Z}),\mathbb{Z}_p)$. The same holds for S^m/S also. By naturality of the universal coefficient formula, the map $\overline{f}: S^n/T \to S^m/S$ gives the following commutative diagram

For p odd, both n and m are odd. It is known that for a free action of \mathbb{Z}_p on a sphere S^{2k-1} , there are integers $n_1, ..., n_k$ such that S^{2k-1}/\mathbb{Z}_p is homotopy equivalent to the lens space $L^{2k-1}(p;$ $n_1, ..., n_k)$. Thus, both S^n/T and S^m/S are homotopy equivalent to lens spaces and have the following cohomology algebras [3, p. 251]

$$H^*(S^n/T; \mathbb{Z}_p) \cong \mathbb{Z}_p[s, t] / \langle s^2, t^{\frac{n+1}{2}} \rangle,$$

$$H^*(S^m/S; \mathbb{Z}_p) \cong \mathbb{Z}_p[s_1, t_1] / \langle s_1^2, t_1^{\frac{m+1}{2}} \rangle,$$

with $t = \beta(s)$ and $t_1 = \beta(s_1)$, where β is the mod-*p* Bockstein homomorphism. Naturality of the Bockstein homomorphism gives the commutative diagram

$$\begin{array}{c} H^{1}(S^{m}/S;\mathbb{Z}_{p}) \xrightarrow{\beta} H^{2}(S^{m}/S;\mathbb{Z}_{p}) \\ & \downarrow_{\overline{f}^{*}} & \downarrow_{\overline{f}^{*}} \\ H^{1}(S^{n}/T;\mathbb{Z}_{p}) \xrightarrow{\beta} H^{2}(S^{n}/T;\mathbb{Z}_{p}). \end{array}$$

If \overline{f}^* is non zero, then $\overline{f}^*(s_1) = s$. From the diagram, we have $\overline{f}^*(t_1) = t$. But $0 = \overline{f}^*(t_1^{\frac{m+1}{2}}) = \overline{f}^*(t_1)^{\frac{m+1}{2}} = t^{\frac{m+1}{2}}$, a contradiction as n > m. Hence, \overline{f}^* is zero in this case.

M. SINGH

For p = 2, both S^n/T and S^m/S have the homotopy type of real projective spaces and hence have the cohomology algebras [3, p. 250]

$$H^*(S^n/T; \mathbb{Z}_2) \cong \mathbb{Z}_2[s]/\langle s^{n+1} \rangle,$$

$$H^*(S^m/S; \mathbb{Z}_2) \cong \mathbb{Z}_2[s_1]/\langle s_1^{m+1} \rangle,$$

where s and s_1 are homogeneous elements of degree one each.

If \overline{f}^* is non zero, then $\overline{f}^*(s_1) = s$. But $0 = \overline{f}^*(s_1^{m+1}) = \overline{f}^*(s_1)^{m+1} = s^{m+1}$, a contradiction as n > m. Hence, \overline{f}^* must be zero and by the commutativity of the second diagram, the map $\alpha \mapsto \alpha \overline{f}_*$ is zero. From this we get $\overline{f}_* : H_1(S^n/T;\mathbb{Z}) \to H_1(S^m/S;\mathbb{Z})$ is zero. Now by naturality of the Hurewicz homomorphism

$$h: \pi_1(S^n/T) \to H_1(S^n/T;\mathbb{Z})$$

(which is an isomorphism in our case), we have the following commutative diagram

$$\pi_1(S^n/T) \xrightarrow{\overline{f}_{\#}} \pi_1(S^m/S)$$
$$\cong \downarrow h \qquad \cong \downarrow h$$
$$H_1(S^n/T; \mathbb{Z}) \xrightarrow{\overline{f}_*} H_1(S^m/S; \mathbb{Z})$$

which shows that $\overline{f}_{\#} : \pi_1(S^n/T) \to \pi_1(S^m/S)$ is zero and hence the lift exists.

The commutativity of the first diagram shows that both f and $\tilde{f}q_1$ are lifts of $\overline{f}q_1$. Let $x_0 \in S^n$, then by definition of q_2 ,

$$q_2(f(x_0)) = q_2(Sf(x_0)) = q_2(S^2f(x_0)) = \dots = q_2(S^{p-1}f(x_0)),$$

that is, the fiber over $q_2(f(x_0))$ is the set

$$\{f(x_0), Sf(x_0), ..., S^{p-1}f(x_0)\}.$$

Also, $q_2(\tilde{f}q_1(x_0)) = \overline{f}q_1(x_0) = q_2f(x_0)$. Therefore, $\tilde{f}q_1(x_0) = f(x_0)$ or $\tilde{f}q_1(x_0) = S^if(x_0)$ for some $1 \le i \le p-1$. Note that in the later case we have $\tilde{f}q_1(T^i(x_0)) = \tilde{f}q_1(x_0) = S^if(x_0) = fT^i(x_0)$. Hence, in either case, the lifts f and $\tilde{f}q_1$ agree at a point, and therefore by uniqueness of lifting, we have $f = \tilde{f}q_1$. Now for any $x \in S^n$, $q_1(x) = q_1T(x)$. But $\tilde{f}q_1(x) = \tilde{f}q_1T(x) = fT(x) = Sf(x) \ne f(x)$, a contradiction. Hence, $n \le m$.

252

Acknowledgment. The author thanks the referee for comments which improved the presentation of the note.

References

- Carlos Biasi and Denise de Mattos, A Borsuk-Ulam theorem for compact Lie group actions, Bull. Braz. Math. Soc. (N.S.) 37 (2006), no. 1, 127–137.
- [2] Albrecht Dold, Simple proofs of some Borsuk-Ulam results in Proceedings of the Northwestern Homotopy Theory Conference. Contemporary Mathematics, 19. Providence, RI: Amer. Math. Soc., 1983. 65–69
- [3] Allen Hatcher, *Algebraic Topology*. Cambridge: Cambridge University Press, 2002.
- [4] Arunas Liulevicius, Borsuk-Ulam theorems for spherical space forms in Proceedings of the Northwestern Homotopy Theory Conference. Contemporary Mathematics, 19. Providence, R.I: Amer. Math. Soc., 1983. 189–192
- [5] Jiří Matoušek, Using the Borsuk-Ulam Theorem. Lectures on Topological Methods in Combinatorics and Geometry. Written in cooperation with Anders Björner and Günter M. Ziegler. Universitext. Berlin: Springer-Verlag, 2003.
- [6] Edwin H. Spanier, Algebraic Topology. New York-Toronto, Ont.-London: McGraw-Hill Book Co., 1966.
- [7] H. Steinlein, Borsuk's antipodal theorem and its generalizations and applications: a survey in Topological Methods in Nonlinear Analysis. Ed. A. Granas. Sém. Math. Sup., 95. Montréal, QC: Presses Univ. Montreal, 1985. 166–235

School of Mathematics; Harish-Chandra Research Institute; Chhat-Nag Road, Jhunsi; Allahabad 211019, INDIA

E-mail address: msingh@mri.ernet.in