

http://topology.auburn.edu/tp/

On Topological Homotopy Groups of n-Hawaiian Like Spaces

by

F. H. GHANE, Z. HAMED, B. MASHAYEKHY, AND H. MIREBRAHIMI

Electronically published on May 5, 2010

Topology Proceedings

Web:	http://topology.auburn.edu/tp/
Mail:	Topology Proceedings
	Department of Mathematics & Statistics
	Auburn University, Alabama 36849, USA
E-mail:	topolog@auburn.edu
ISSN:	0146-4124
COPYRIGHT © by Topology Proceedings. All rights reserved.	

E-Published on May 5, 2010

ON TOPOLOGICAL HOMOTOPY GROUPS OF *n*-HAWAIIAN LIKE SPACES

F. H. GHANE, Z. HAMED, B. MASHAYEKHY, AND H. MIREBRAHIMI

ABSTRACT. By an *n*-Hawaiian like space X, we mean the natural inverse limit, $\lim_{i \to \infty} (Y_i^{(n)}, y_i^*)$, where

$$(Y_i^{(n)}, y_i^*) = \bigvee_{j \le i} (X_j^{(n)}, x_j^*)$$

is the wedge of $X_j^{(n)}$'s in which $X_j^{(n)}$'s are (n-1)-connected, locally (n-1)-connected, *n*-semilocally simply connected, and compact CW spaces. First, we show that the natural homomorphism $\beta_n : \pi_n(X, *) \to \lim_{n \to \infty} \pi_n(Y_i^{(n)}, y_i^*)$ is a bijection. Second, using this fact, we prove that the topological *n*-homotopy group of an *n*-Hawaiian like space $\pi_n^{top}(X, x^*)$ is a topological group for all $n \geq 2$ which is a partial answer to the open question whether $\pi_n^{top}(X, x^*)$ is a topological group for any space X and $n \geq 1$. Moreover, we show that $\pi_n^{top}(X, x^*)$ is metrizable.

1. INTRODUCTION

In 2002, a work of Daniel K. Biss [1] initiated the development of a theory in which the familiar fundamental group $\pi_1(X, x^*)$ of a topological space X becomes a topological space denoted by $\pi_1^{top}(X, x^*)$ by endowing it with the quotient topology inherited from the path components of based loops in X with the compactopen topology. An important feature of the theory is that if X and

²⁰¹⁰ Mathematics Subject Classification. 55Q05; 55U40; 54H11; 55P35.

 $Key\ words\ and\ phrases.$ homotopy group,
 $n\mbox{-}Hawaiian$ like space, topological group.

^{©2010} Topology Proceedings.

Y have the same homotopy type, then $\pi_1^{top}(X, x^*)$ and $\pi_1^{top}(Y, y^*)$ are homeomorphic. Among other things, Biss claimed that $\pi_1^{top}(X, x^*)$ is a topological group and π_1^{top} is a functor from the category of based spaces to the category of topological groups. However, there is a gap in the proof of Proposition 3.1 in [1]. For more details, see [5] and [2].

In [7], the authors extended the above theory to higher homotopy groups by introducing a topology on the *n*-th homotopy group of a pointed space (X, x^*) as a quotient of the *n*-loop space $\Omega^n(X, x^*)$ equipped with the compact-open topology. Call this space the topological homotopy group and denote it by $\pi_n^{top}(X, x^*)$. The misstep in the proof is repeated by the authors to prove that $\pi_n(X, x^*)$ is a topological group [7, Theorem 2.1]; see also [2]. Hence, there is a question whether or not $\pi_n^{top}(X, x^*)$, $n \geq 1$, is a topological group.

Note that if X is locally contractible, then $\pi_1^{top}(X, x^*)$ inherits the discrete topology [5], and thus there is no information other than algebraic data. The same thing happens in the case of higher homotopy groups when X is a locally *n*-connected metric space; see [7, Theorem 3.6]. So spaces that are not locally *n*-connected, $n \ge 1$, are interesting. One of the simplest nonlocally *n*-connected spaces is the *n*-dimensional Hawaiian earring $\mathcal{H}_n, n \ge 1$.

John W. Morgan and Ian Morrison [9], presenting a van Kampen theorem for 1-Hawaiian like spaces, proved that the natural homomorphism

$$\beta: \pi_1(\mathcal{H}_1, *) \to \varprojlim \pi_1(Y_i^{(1)}, y_i^*)$$

is injective, where $Y_i^{(1)} = \bigvee_{j \leq i} S_j^1$ is the wedge of 1-spheres S_j^1 of radius $\frac{1}{j}$ and center $(\frac{1}{j}, 0)$ and hence $\mathcal{H}_1 = \varprojlim Y_i^{(1)}$ with respect to the natural inverse system for the $Y_i^{(1)}$. Now consider the *n*-dimensional Hawaiian earring $\mathcal{H}_n, n \geq 2$,

Now consider the *n*-dimensional Hawaiian earring \mathcal{H}_n , $n \geq 2$, which is the union of a sequence of *n*-spheres S_j^n of radius $\frac{1}{j}$ identified at a common point * as a subspace of \mathbb{R}^{n+1} . This paper aims to explore \mathcal{H}_n in the context of inverse limit space, i.e., $\mathcal{H}_n = \varprojlim Y_i^{(n)}$, where \mathcal{H}_n can be approximated by factors $Y_i^{(n)} = \bigvee_{j \leq i} S_j^n$.

As in [9], we consider a natural homomorphism

$$\beta_n : \pi_n(\mathcal{H}_n, *) \to \varprojlim \pi_n(Y_i^{(n)}, y_i^*)$$

as follows: Let $R_j : \mathcal{H}_n \to Y_j^{(n)}$ denote the projection fixing $Y_j^{(n)}$ pointwise and collapsing $\bigcup_{i=j+1}^{\infty} Y_i^{(n)}$ to the based point *. The formula $\beta_n([f]) = ([R_1(f)], [R_2(f)], ...)$ determines the induced homomorphism β_n into the inverse limit. We intend to show that β_n is a bijection, for all $n \geq 2$. Then we present two natural ways of imparting a topology on $\pi_n(\mathcal{H}_n, *)$, for $n \geq 2$:

- (1) Since β_n is an isomorphism, one can pull back via β_n to create the prodiscrete metric space $\pi_n^{lim}(\mathcal{H}_n, *)$. Indeed, as mentioned before, $Y_i^{(n)}$ is locally *n*-connected and thus by [7, Theorem 3.6], $\pi_n^{top}(Y_i^{(n)}, y_i^*)$ is discrete, which implies that $\varprojlim \pi_n^{top}(Y_i^{(n)}, y_i^*)$ is a prodiscrete metric space.
- (2) We can endow the quotient topology on $\pi_n(\mathcal{H}_n, *)$ inherited by the compact-open topology of *n*-loop space $\Omega^n(X, x^*)$, denoted by $\pi_n^{top}(\mathcal{H}_n, *)$; see [7].

Additionally, we will show that these two topologies agree. Therefore, $\pi_n^{top}(\mathcal{H}_n, *)$ is metrizable, for $n \geq 2$. However, a result of Paul Fabel [4] shows that the topological fundamental group $\pi_1^{top}(\mathcal{H}_n, *)$ fails to be metrizable. Moreover, we assert that $\pi_n^{top}(\mathcal{H}_n, *)$ is a topological group, for $n \geq 2$. This statement answers the question whether $\pi_n^{top}(X, x^*)$ is a topological group for *n*-Hawaiian like spaces. In fact, the main results of the paper are formulated as follows.

Theorem 1.1. Suppose that for each j, $X_j^{(n)}$ is an (n-1)-connected, locally (n-1)-connected, n-semilocally simply connected, compact CW space and X is approximated by the factors $Y_i^{(n)}$, that is, $(X,*) = \varprojlim(Y_i^{(n)}, y_i^*)$, where $(Y_i^{(n)}, y_i^*) = \bigvee_{j \leq i} (X_j^{(n)}, x_j^*)$ is the wedge of $X_j^{(n)}$'s. Then the homomorphism

$$\beta_n : \pi_n(X, *) \to \varprojlim \pi_n(Y_i^{(n)}, y_i^*)$$

is a bijection.

We call a space X that satisfies the assumptions of Theorem 1.1 an *n*-Hawaiian like space.

Theorem 1.2. If X is an n-Hawaiian like space, then $\pi_n^{top}(X, x^*)$ is a topological group, for $n \ge 2$. Moreover, it is a prodiscrete metric space.

2. Proof of Theorem 1.1

First, we extend the van Kampen theorem [9] to higher homotopy groups of *n*-Hawaiian like spaces. As a suitable model, one can consider the *n*-dimensional Hawaiian earring \mathcal{H}_n . Katsuya Eda and Kazuhiro Kawamura [3] determined the *n*th homotopy group of \mathcal{H}_n by showing that $\pi_n(\mathcal{H}_n, *)$ is isomorphic to \mathbb{Z}^{ω} . But this section aims to determine $\pi_n(\mathcal{H}_n, *)$ by a form of van Kampen theorem applicable to Hawaiian like spaces which is needed to prove the further results.

We begin by fixing some notation. Let $X_j^{(n)}$, $j \in \mathbb{N}$, be a based compact CW-complex which is also (n-1)-connected, locally (n-1)-connected, and *n*-semilocally simply connected. Take the wedge $Y_i^{(n)} = \bigvee_{j \leq i} X_j^{(n)}$ with collapsing maps $r_k^i : Y_i^{(n)} \to Y_k^{(n)}$, where $k \leq i$, which are the identity on $Y_k^{(n)}$ and collapse $X_j^{(n)}$ to the base point x_k^* if $k < j \leq i$. Let $G_i = \bigoplus_{j=1}^i \pi_n(X_j^{(n)}, x_j^*)$ with projections $\pi_k^i : G_i \to G_k$ defined by $\pi_k^i(\eta_1, \cdots, \eta_i) = (\eta_1, \cdots, \eta_k), k \leq i$. Then $\{Y_i^{(n)}, r_k^i\}$ and $\{G_i, \pi_k^i\}$ are inverse systems of topological spaces and groups whose limits we denote by \mathcal{H}_n and \mathcal{G} , respectively.

Example 2.1. Consider \mathcal{H}_n to be a finite family $\{\mathcal{H}_n^k\}_{k=1}^m$ of *n*-Hawaiian earring spaces, which are joint to *m* points of an *n*-sphere S^n at their based points. One can see that \mathcal{H}_n is an *n*-Hawaiian like space. Indeed, if \mathcal{H}_n^k is approximated by $Y_{i,k}^{(n)}$'s, then $\mathcal{H}_n = \varprojlim Y_i^{(n)}$, where $Y_i^{(n)} = (\bigcup_{k=1}^m Y_{i,k}^{(n)}) \cup S^n$.

We start with a lemma from [6].

Lemma 2.2. Suppose that X is an (n-1)-connected, locally (n-1)connected, compact metric space and $\pi_n(X)$ is not finitely generated. Then there exists $x \in X$ such that for each positive integer m, there exists an n-loop f_m at x with diameter less than 2^{-m} which is not nullhomotopic. In particular, X is not n-semilocally simply connected at x.

The next assertion follows immediately.

Corollary 2.3. Let $X_j^{(n)}$, $j \in \mathbb{N}$, be as above. Then $\pi_n(X_j^{(n)}, x_j^*)$ is finitely generated.

For each $j \in \mathbb{N}$, we denote the generators of $\pi_n(X_j^{(n)}, x_j^*)$ by $\alpha_{j,1}, \dots, \alpha_{j,k_j}$.

Now we recall a result of [12, Proposition 6.36].

Proposition 2.4. If X is an n-connected CW-complex and Y is an m-connected CW-complex, then the maps $i_X : (X, x^*) \to (X \lor Y, *)$ and $i_Y : (Y, y^*) \to (X \lor Y, *)$ given by $i_X(x) = (x, y^*)$ and $i_Y(y) = (x^*, y)$ induce an isomorphism $(i_{X_*}, i_{Y_*}) : \pi_k(X, x^*) \bigoplus \pi_k(Y, y^*) \to \pi_k(X \lor Y, *)$ for $2 \le k \le n + m$, provided X or Y is locally finite.

So, one can determine $\pi_n(Y_i^{(n)}, y_i^*)$ as follows (see [12]).

Corollary 2.5. With the previous notation, let $Y_i^{(n)}$ be the wedge $\bigvee_{j \leq i} X_j^{(n)}$. Then

$$\pi_n(Y_i^{(n)}, y_i^*) \cong \bigoplus_{j=1}^i \pi_n(X_j^{(n)}, x_j^*) \quad (for \ all \ n \ge 2).$$

Remark 2.6. By corollaries 2.3 and 2.5, $\pi_n(Y_i^{(n)}, y_i^*)$ is finitely generated. Since $r_k^i(Y_i^{(n)}) = Y_k^{(n)}$, then clearly, $\alpha_{1,1}, \dots, \alpha_{1,k_1}$, $\alpha_{2,1}, \dots, \alpha_{2,k_2}, \dots, \alpha_{i,1}, \dots, \alpha_{i,k_i}$ are the generators of $\pi_n(Y_i^{(n)}, y_i^*)$. This means that if $\gamma \in \pi_n(Y_i^{(n)}, y_i^*)$, then $\gamma = (\alpha_{1,1}^{l_{1,1}} \dots \alpha_{1,k_1}^{l_{1,k_1}}, \alpha_{2,1}^{l_{2,1}} \dots \alpha_{2,k_2}^{l_{2,k_2}}, \dots, \alpha_{i,1}^{l_{i,1}} \dots \alpha_{i,k_i}^{l_{i,k_i}})$ for some integers $l_{1,1}, \dots, l_{1,k_1}$, $\dots, l_{i,1}, \dots, l_{i,k_i}$, where $\alpha^l = \alpha \dots \alpha$ is the concatenation *l*-times of the homotopy class of α with itself. We embed the generators $\alpha_{j1}, \dots, \alpha_{jk_j}, (j \leq i), \text{ in } \pi_n(Y_i^{(n)}, y_i^*)$ by a map induced by inclusion $X_j^{(n)} \to Y_i^{(n)} = \bigvee_{k=1}^i X_k^{(n)}$. For simplicity, one can denote the embedded classes by the same notations $\alpha_{j,1} \dots \alpha_{j,k_j}$. It is easy to see that the map

$$\alpha_{1,1}^{l_{1,1}} \cdots \alpha_{1,k_1}^{l_{1,k_1}} \cdots \alpha_{i,1}^{l_{i,1}} \cdots \alpha_{i,k_i}^{l_{i,k_i}} \mapsto (\alpha_{1,1}^{l_{1,1}} \cdots \alpha_{1,k_1}^{l_{1,k_1}}, \cdots, \alpha_{i,1}^{l_{i,1}} \cdots \alpha_{i,k_i}^{l_{i,k_i}})$$

induces an isomorphism between $\pi_n(Y_i^{(n)}, y_i^*)$ and $\bigoplus_{j=1}^i \pi_n(X_j^{(n)}, x_j^*)$.

Let $f: I^n \to \mathcal{H}_n$ be an *n*-loop with $f(\partial I^n) = \{*\}$; f is said to be standard if $f(J_i^n) \subseteq X_i^{(n)}$, where $J_i^n = [a_i, b_i] \times I^{(n-1)}$ with $a_i = 1 - \frac{1}{2^{i-1}}$ and $b_i = 1 - \frac{1}{2^i}$, for $i \in \mathbb{N}$.

260 F. H. GHANE, Z. HAMED, B. MASHAYEKHY, AND H. MIREBRAHIMI

Now we recall a definition from [11]. Suppose that (X, x) is a pointed space. Given an *n*-loop f based at x in X, then any other *n*loop g based at x in X, with $H: g \simeq f(rel\partial I^n)$ and $g(I^n \setminus I_1^n) = \{x\}$, is called a concentration of f on subcube I_1^n .

We will need the following lemma which is a key step in the proof of Theorem 1.1.

Lemma 2.7. Each n-homotopy class in $\pi_n(\mathfrak{H}_n, *)$ is represented by a standard n-loop.

Proof: Let f be any n-loop in \mathcal{H}_n based at *. Then f determines a sequence of *n*-loops f_i in $Y_i^{(n)}$ defined by $f_i = R_i \circ f$, where $R_i : \mathcal{H}_n \to Y_i^{(n)}$ denotes the retraction fixing $Y_i^{(n)}$ pointwise and collapsing $\bigcup_{j=n+1}^{\infty} Y_j^{(n)}$ to the point *. By Corollary 2.5, the *n*-homotopy class of f_i is contained in $\bigoplus_{j=1}^i \pi_n(X_j^{(n)}, x_j^*)$. There-fore, $[f_i] = (\alpha_{1,1}^{l_{1,1}} \cdots \alpha_{1,k_1}^{l_{1,k_1}}, \cdots, \alpha_{i,1}^{l_{i,1}} \cdots \alpha_{i,k_i}^{l_{i,k_i}})$ for some integers $l_{1,1}, \dots, l_{1,k_1}, \dots, l_{i,1}, \dots, l_{i,k_i}$. Let g_1, \dots, g_i be *n*-loops in $X_1^{(n)}$, $\cdots, X_i^{(n)}$ representing the *n*-homotopy classes $\gamma_1, \cdots, \gamma_i$, where $\gamma_j = \alpha_{j,1}^{l_{j,1}} \cdots \alpha_{i,k_i}^{l_{j,k_j}}$. By Remark 2.6, $f_i \simeq g_1 \ast \cdots \ast g_i$, where \ast denotes the product of *n*-loops in $\Omega^n(Y_i^{(n)}, y_i^*)$. Note that each *n*-loop in $X_j^{(n)}$ (j < i) can be embedded in $Y_i^{(n)}$ or in \mathcal{H}_n , if it is necessary, by maps induced by the inclusions $X_i^{(n)} \to Y_i^{(n)}$ and $Y_i^{(n)} \to \mathfrak{H}_n$, respectively.

Let h_j be a concentration of g_j on subcube J_j^n , for $j \in \mathbb{N}$. By [11, Lemma 2.5.2], such concentration exists. Then $f_i \simeq h_1 * \cdots * h_i$ $(rel\partial I^n)$ by a homotopy H_i .

We proceed by induction, constructing homotopies H_i : $I^n \times$ $[0,1] \rightarrow Y_i^{(n)}$ satisfying

- (1) $H_i(x,0) = f_i(x);$
- (2) $H_i(x,1) = h_1 * \cdots * h_i(x);$ (3) $r_k^i \circ H_i = H_k, \ (k \le i).$

Such homotopies give, in the limit, a homotopy H of n-loop fto a standard *n*-loop h (the homotopies H_i 's are endowed with the uniform metric, so the limit H exists and it is continuous; see [10, Theorem 46.8 and Corollary 46.6]). Now we prove the main result of this section.

Proof of Theorem 1.1: Suppose f is a standard n-loop based at * in \mathcal{H}_n , $n \geq 2$, with corresponding sequence of n-loops $f_i = R_i \circ f$ in $Y_i^{(n)}$. The homomorphism β_n is well defined, since $r_k^i(f_i) = f_k$, and by construction of standard map in Lemma 2.7 and Remark 2.6, we have $\pi_k^i[f_i] = [f_k]$.

To show the injectivity of β_n , we must prove that given a standard *n*-loop f in \mathcal{H}_n with $\beta_n([f]) = e_{\mathfrak{g}}$, there is a based homotopy between f and the constant *n*-loop at *, where $e_{\mathfrak{g}}$ is the identity of $\mathfrak{g} = \varprojlim \pi_n(Y_i^{(n)}, y_i^*)$. Let $f_i = R_i \circ f$. Clearly, $[f_i] = (e_1, \cdots, e_i)$, where e_j is the identity of $\pi_n(X_j^{(n)}, x_j^*)$, for $j = 1, \cdots, i$. Then there are based homotopies K_i between f_i and the constant *n*-loop at y_i^* . Now the limit of K_i 's is a homotopy between f and constant *n*-loop at *, denoted by K.

Now, it is sufficient to show that β_n is surjective. Let $\mathfrak{g} = (g_i) \in \mathfrak{g}$. Then $g_i = (\eta_1, \cdots, \eta_i) \in \bigoplus_{j=1}^i \pi_n(X_j^{(n)}, x_j^*) \cong \pi_n(Y_i^{(n)}, y_i^*)$. Suppose f_i represents *n*-homotopy class g_i . So $r_j^i(f_i) = f_j$, since $\pi_j^i(\eta_1, \cdots, \eta_i) = (\eta_1, \cdots, \eta_j)$ for $j \leq i$. Also, there are integers $l_{1,1}, \cdots, l_{1,k_1}, \cdots, l_{i,k_i}$ such that $[f_i] = \alpha_{1,1}^{l_{1,1}} \cdots \alpha_{1,k_1}^{l_{i,k_1}} \cdots \alpha_{i,1}^{l_{i,1}} \cdots \alpha_{i,k_i}^{l_{i,1}}$. Let the *n*-loop t_j represent $\alpha_{j,1}^{l_{j,1}} \cdots \alpha_{j,k_j}^{l_{j,k_j}}$, let s_j be a concentration of t_j on J_j^n , and let $h_i = s_1 \cdots s_i$. Clearly, the limit of h_i 's is an *n*-loop denoted by *h* and [h] = g (the homotopies K_i 's and the *n*-loops h_i 's are endowed with the uniform metric so their limits *K* and *h* exist and they are also continuous; see [10, Theorem 46.8 and Corollary 46.6]). This completes the proof.

Corollary 2.8. Let \mathcal{H}_n be the n-dimensional Hawaiian earring with based point *. Then $\pi_n(\mathcal{H}_n, *) \cong \mathcal{G} = \varprojlim G_i$, where G_i is the direct sum of *i* copies of integers \mathbb{Z} .

3. Proof of Theorem 1.2

In conclusion, we assert that $\pi_n^{top}(\mathcal{H}_n, *)$ is a topological group homeomorphic to $\pi_n^{lim}(\mathcal{H}_n, *)$ which implies that $\pi_n^{top}(\mathcal{H}_n, *)$ is metrizable.

As mentioned in the introduction, it is an open question whether or not in general $\pi_n^{top}(X, *)$ is a topological group. If X is a locally

261

262 F. H. GHANE, Z. HAMED, B. MASHAYEKHY, AND H. MIREBRAHIMI

n-connected metric space, then $\pi_n^{top}(X, x^*)$, and hence, $\pi_n^{top}(X, x^*) \times \pi_n^{top}(X, x^*)$ is discrete (see [7]), and therefore multiplication is continuous. In general, the continuity of multiplication remains an unsettled question.

The following lemma shows that if (X, x^*) is a pointed topological space, then left and right translations by a fixed element in $\pi_n^{top}(X, x^*)$ are homeomorphisms.

Lemma 3.1. Let (X, x^*) be a pointed topological space. If $[f] \in \pi_n^{top}(X, x^*)$, then left and right translations by [f] are homeomorphisms of $\pi_n^{top}(X, x^*)$.

Proof: First, we show that the multiplication

$$\Omega^n(X, x^*) \times \Omega^n(X, x^*) \xrightarrow{m} \Omega^n(X, x^*)$$

is continuous, where \tilde{m} is concatenation of *n*-loops and $\Omega^n(X, x^*)$ is equipped with compact-open topology.

Let $\langle K, U \rangle$ be a subbasis element in $\Omega^n(X, x^*)$. Define

$$K_1 = \{(t_1, \dots, t_n); (t_1, \dots, t_{n-1}, \frac{t_n}{2}) \in K\}$$

and

$$K_2 = \{(t_1, \dots, t_n); (t_1, \dots, t_{n-1}, \frac{t_n + 1}{2}) \in K\}.$$

Then

$$\tilde{m}^{-1}(\langle K, U \rangle) = \{(f_1, f_2); (f_1 * f_2)(K) \subseteq U\} = \langle K_1, U \rangle \times \langle K_2, U \rangle$$

is open in $\Omega^n(X, x^*) \times \Omega^n(X, x^*)$ and so \tilde{m} is continuous.

Now, fix $[f] \in \pi_n^{top}(X, x^*)$ and consider left translation by [f] on $\pi_n^{top}(X, x^*)$

$$\pi_n^{top}(X, x^*) \to \pi_n^{top}(X, x^*)$$
$$[g] \mapsto [f] \cdot [g].$$

Clearly, the following diagram is commutative.

where \tilde{m}_f is defined by $g \mapsto f * g$. By the universal property of quotient maps [10, Theorem 11.1], $m_{[f]}$ is continuous. Since $m_{[f]}^{-1} = m_{[f^{-1}]}$ is also continuous, so $m_{[f]}$ is a homeomorphism, as desired. A similar argument implies that right translation is also a homeomorphism.

Note that $\pi_n^{top}(X, x^*)$ acts on itself by left and right translations as a group of homeomorphisms. It is easy to see that these actions are both transitive. So, we have the following result.

Proposition 3.2. If (X, x^*) is a pointed topological space, then $\pi_n^{top}(X, x^*)$ is a homogeneous space.

Now, let U be an open neighborhood of x^* in X and U be the set of all *n*-loops based at x^* lying inside U. Also, let \hat{U} be its quotient under homotopy, that is

$$\hat{U} = \{ [f]; f \in \Omega^n(X, x^*) \text{ and } imf \subseteq U \}.$$

Suppose $W \subset \pi_n^{top}(X, x^*)$ is an open neighborhood containing the identity element $[e_{x_*}]$. Then

$$e_{x_*} \in q^{-1}(W) = \bigcup_{\alpha \in J} (\bigcap_{i=1}^{k_\alpha} \langle K_i^\alpha, V_i^\alpha \rangle),$$

where e_{x_*} is the constant n-loop based at x^* . Therefore, there exists an index $\alpha \in J$ such that $e_{x_*} \in \bigcap_{i=1}^{k_{\alpha}} \langle K_i^{\alpha}, V_i^{\alpha} \rangle$, which implies that

$$x^* \in \bigcup_{i=1}^{k_{\alpha}} V_i^{\alpha} = V^{\alpha} , \quad \tilde{V}^{\alpha} \subset \bigcap_{i=1}^{k_{\alpha}} \langle K_i^{\alpha}, V_i^{\alpha} \rangle \subset q^{-1}(W)$$

and then $[e_{x_*}] \in \hat{V}^{\alpha} \subset W$.

Since left translation is continuous in $\pi_n^{top}(X, x^*)$,

$$[f]W = \{ [f] \cdot [g]; \ [g] \in W \}$$

runs through a basis at [f] for $\pi_n^{top}(X, x^*)$, as W runs through a basis at $[e_{x_*}]$ in its topology.

Now we use a classical theorem in the theory of topological groups [8] which asserts that for a given group G with a filter base $\{U\}$, satisfying the following conditions

• each U is symmetric, i.e., $U^{-1} = U$,

264 F. H. GHANE, Z. HAMED, B. MASHAYEKHY, AND H. MIREBRAHIMI

- for each U in $\{U\}$, there exists a V in $\{U\}$ such that $V^2 \subset U$, where $V^2 = \{xy; x, y \in V\}$,
- for each U in $\{U\}$ and $a \in G$, there exists a V in $\{U\}$ such that $V \subset a^{-1}Ua$ or $aVa^{-1} \subset U$,

then $\{U\}$ forms a fundamental system of neighborhoods of e. In particular, G with the topology induced by this fundamental system becomes a topological group.

Since $\pi_n(X, x^*)$ is an abelian group, for $n \geq 2$, it is easy to see that the filter base $\{\hat{U}\}$ forms a fundamental system of neighborhoods of the identity element e, and hence $\pi_n(X, x^*)$ with this topology becomes a topological group, denoted by $\pi_n^{lim}(X, x^*)$. By the above statements, this topology, denoted by τ^{lim} , is coarser than quotient topology τ^{top} on $\pi_n(X, x^*)$ inherited from $\Omega^n(X, x^*)$ with the compact-open topology.

If $X = \mathcal{H}_n$ and $W_i^{(n)}$ is an n-connected neighborhood of x_i^* in $X_i^{(n)}$, then the following sets provide a basis for \mathcal{H}_n at *

$$\mathfrak{U}_k = (\bigcup_{i \le k} W_i^{(n)}) \cup (\bigcup_{i > k} X_i^{(n)}).$$

Also, a basis of neighborhoods of the identity $e_{\mathcal{G}}$ in \mathcal{G} is given by the subgroups

$$\mathfrak{G}_k = \{\mathfrak{g} = (g_i) \in \mathfrak{G}; g_k = (e_1, \dots, e_k)\}, \text{ for } k \in \mathbb{N}.$$

Theorem 3.3. The map $\beta_n : \pi_n^{lim}(\mathfrak{H}_n, *) \to \mathfrak{G}$ is a homeomorphism and therefore an isomorphism of topological groups.

Proof: Since $\{\hat{\mathcal{U}}_k\}$ and $\{\mathcal{G}_k\}$ form bases at * and $e_{\mathcal{G}}$ for topologies on $\pi_n^{lim}(\mathcal{H}_n, *)$ and \mathcal{G} (see also the statement before Theorem 3.3), it is sufficient to show that $\beta_n(\hat{\mathcal{U}}_k) = \mathcal{G}_k$. For, let $[f] \in \hat{\mathcal{U}}_k$ and hbe a standard *n*-loop representing [f]. Since $W_i^{(n)}$ is *n*-connected for $i \leq k$, we have that $h_k = R_k \circ h$ is nullhomotopic. Therefore, $\beta_n([f]) \in \mathcal{G}_k$.

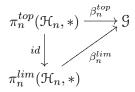
Conversely, if $\mathfrak{g} = (g_i) \in \mathfrak{G}_k$, then $g_k = (e_1, \ldots, e_k)$. The homomorphism β_n is a bijection, so there is a standard *n*-loop f such that $[f] \in \pi_n(\mathfrak{H}_n, *)$ and $\beta_n([f]) = g$. But $\beta_n([f]) =$ $([R_1(f)], [R_2(f)], \ldots)$. This implies that $[R_k(f)] = (e_1, \ldots, e_k)$ and therefore, $R_k(f) = f_k$ is nullhomotopic. Take h a standard n-loop such that $h \simeq f$ (rel ∂I^n) and $R_k \circ h = y_k^*$. Then β_n $[h] = \beta_n$ $[f] \in$ $\hat{\mathcal{U}}_k$. The homomorphism β_n gives a compatible sequence of homomorphisms $\beta_{n,i} : \pi_n(\mathfrak{H}_n, *) \to \pi_n(Y_i^{(n)}, y_i^*)$. By [7], the homomorphisms $\beta_{n,i} : \pi_n^{top}(\mathfrak{H}_n, *) \to \pi_n^{top}(Y_i^{(n)}, y_i^*)$ are continuous when we dealing with topological homotopy groups, which implies that $\beta_n : \pi_n^{top}(\mathfrak{H}_n, *) \to \mathfrak{G} = \varprojlim \pi_n^{top}(Y_i^{(n)}, y_i^*)$ is also continuous.

So that there is no ambiguity in notation, we denote

$$\beta_n : \pi_n^{lim}(\mathfrak{H}_n, *) \to \mathfrak{G} \quad \text{and} \quad \beta_n : \pi_n^{top}(\mathfrak{H}_n, *) \to \mathfrak{G}$$

by β_n^{lim} and β_n^{top} , respectively.

Now consider the following commutative diagram.



Since β_n^{lim} is a homeomorphism, the identity map *id* is continuous. This fact shows that quotient topology τ^{top} inherited from compact-open topology of *n*-loop space is coarser than τ^{lim} . But we have already seen that $\tau^{top} \subset \tau^{lim}$. Therefore, these two topologies on $\pi_n(\mathcal{H}_n, *)$ are equivalent. This means that $\pi_n^{top}(\mathcal{H}_n, *)$ is a topological group and also a prodiscrete metric space.

Acknowledgment. The authors are grateful to the referee for valuable suggestions and useful remarks.

References

- Daniel K. Biss, The topological fundamental group and generalized covering spaces, Topology Appl. 124 (2002), no. 3, 355–371.
- [2] Jack S. Calcut and John D. McCarthy, Discreteness and homogeneity of the topological fundamental group, Topology Proc. 34 (2009), 339–349.
- [3] Katsuya Eda and Kazuhiro Kawamura, Homotopy and homology groups of the n-dimensional Hawaiian earring, Fund. Math. 165 (2000), no. 1, 17–28.
- [4] Paul Fabel, *The Hawaiian earring group and metrizability*. Available at arXiv:math/0603252v1 [math/GT].
- [5] _____, Topological fundamental groups can distinguish spaces with isomorphic homotopy groups, Topology Proc. 30 (2006), no. 1, 187–195.

- [6] H. Ghane and Z. Hamed, On nondiscreteness of a higher topological homotopy group and its cardinality, Bull. Belg. Math. Soc. Simon Stevin 16 (2009), no. 1, 179–183.
- [7] H. Ghane, Z. Hamed, B. Mashayekhy, and H. Mirebrahimi, *Topological homotopy groups*, Bull. Belg. Math. Soc. Simon Stevin 15 (2008), no. 3, 455–464.
- [8] Taqdir Husain, Introduction to Topological Groups. Philadelphia, Pa.-London: W. B. Saunders Co., 1966.
- [9] John W. Morgan and Ian Morrison, A van Kampen theorem for weak joins, Proc. London Math. Soc. (3) 53 (1986), no. 3, 562–576.
- [10] James R. Munkres, Topology: A First Course. Englewood Cliffs, N.J.: Prentice-Hall, Inc., 1975.
- [11] Gregory L. Naber, Topology, Geometry, and Gauge Fields: Foundations. Texts in Applied Mathematics, 25. New York: Springer-Verlag, 1997.
- [12] Robert M. Switzer, Algebraic Topology—Homotopy and Homology. Reprint of the 1975 original [New York: Springer]. Classics in Mathematics. Berlin: Springer-Verlag, 2002.

(Ghane, Hamed, Mashayekhy, Mirebrahimi) DEPARTMENT OF PURE MATH-EMATICS; CENTER OF EXCELLENCE IN ANALYSIS ON ALGEBRAIC STRUCTURES; FERDOWSI UNIVERSITY OF MASHHAD; P.O.BOX 1159-91775; MASHHAD, IRAN.