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ABSTRACT. By an n-Hawaiian like space X, we mean the
natural inverse limit, 1(121(1’1.(”), yi ), where
V") =\ (XM, 25)
Jj<i

is the wedge of X;")7s in which Xj(m’s are (n — 1)-connected,
locally (n—1)-connected, n-semilocally simply connected, and
compact CW spaces. First, we show that the natural
homomorphism S, : m (X, *) — @Wn(n(n), y; ) is a bijection.
Second, using this fact, we prove that the topological n-homo-
topy group of an n-Hawaiian like space 7.7 (X, z*) is a topo-
logical group for all n > 2 which is a partial answer to the
open question whether 7.°?(X, z*) is a topological group for
any space X and n > 1. Moreover, we show that 7.7 (X, z*)
is metrizable.

1. INTRODUCTION

In 2002, a work of Daniel K. Biss [1] initiated the development
of a theory in which the familiar fundamental group 71 (X, z*) of
a topological space X becomes a topological space denoted by
(X, 2*) by endowing it with the quotient topology inherited
from the path components of based loops in X with the compact-
open topology. An important feature of the theory is that if X and
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Y have the same homotopy type, then 7.P(X,z*) and 7\ (Y, y*)
are homeomorphic.  Among other things, Biss clalmed that

TP (X, x*) is a topological group and 7i°” is a functor from the cat-
egory of based spaces to the category of topological groups. How-
ever, there is a gap in the proof of Proposition 3.1 in [1]. For more
details, see [5] and [2].

In [7], the authors extended the above theory to higher homotopy
groups by introducing a topology on the n-th homotopy group of a
pointed space (X, z*) as a quotient of the n-loop space Q"(X, z*)
equipped with the compact-open topology. Call this space the topo-
logical homotopy group and denote it by P(X,x*). The misstep
in the proof is repeated by the authors to prove that m,(X,z*) is
a topological group [7, Theorem 2.1]; see also [2]. Hence, there is a
question whether or not 72 P(X,x*), n > 1, is a topological group.

Note that if X is locally contractible, then 7i°"(X,z*) inherits
the discrete topology [5], and thus there is no information other
than algebraic data. The same thing happens in the case of higher
homotopy groups when X is a locally n-connected metric space;
see [7, Theorem 3.6]. So spaces that are not locally n-connected,
n > 1, are interesting. One of the simplest nonlocally n-connected
spaces is the n-dimensional Hawaiian earring H,, n > 1.

John W. Morgan and Ian Morrison [9], presenting a van Kam-
pen theorem for 1-Hawaiian like spaces, proved that the natural
homomorphism

()

B m(Hy, ) = Imm (Y, )

is injective, where Y( ) = \/J<Z Sl is the wedge of 1-spheres S; Lof
radius 1 5 and center (3, 0) and hence 3; = @YZ( ) with respect to

the natural inverse system for the Yi(l).

Now consider the n-dimensional Hawaiian earring H,,, n > 2,
which is the union of a sequence of n-spheres 7 of radius % identi-
fied at a common point * as a subspace of R"*1. This paper aims to

)

explore H,, in the context of inverse limit space ie, H, = L Y

where JH,, can be approximated by factors Y =V j<i Si.
As in [9], we consider a natural homomorphlsm

Bn:ﬂ-n n» %Lﬂ-n 7yz
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as follows: Let R; : 3, — Yj(") denote the projection fixing Y;.(n)

pointwise and collapsing Ufi] 11 Yi(n) to the based point *. The
formula 5, ([f]) = ([R1(f)], [R2(f)], ...) determines the induced ho-
momorphism S, into the inverse limit. We intend to show that 5,
is a bijection, for all n > 2. Then we present two natural ways of
imparting a topology on 7, (H,, %), for n > 2:

(1) Since 3, is an isomorphism, one can pull back via §, to
create the prodiscrete metric space 72 (3(,, *). Indeed, as
mentioned before, Yi(n) is locally n-connected and thus by
[7, Theorem 3.6], m” (Yi(n),y; ) is discrete, which implies
that @ﬂ;"p (Y;(n),y;k ) is a prodiscrete metric space.

(2) We can endow the quotient topology on 7, (H,, *) inherited
by the compact-open topology of n-loop space Q" (X, z*),
denoted by P (H,, *); see [7].

Additionally, we will show that these two topologies agree. There-
fore, riop (Hp, %) is metrizable, for n > 2. However, a result of Paul
Fabel [4] shows that the topological fundamental group i (3(,,, *)
fails to be metrizable. Moreover, we assert that i (H,,*) is a
topological group, for n > 2. This statement answers the ques-
tion whether w.F (X, z*) is a topological group for n-Hawaiian like
spaces. In fact, the main results of the paper are formulated as
follows.

Theorem 1.1. Suppose that for each j, X](-n) is an (n—1)-connected,
locally (n — 1)-connected, n-semilocally simply connected, compact

CW space and X 1is approximated by the factors Y-(n), that 1is,

(X, ) =1im(V,", y7), where (V" y7) = V(X" 25) is the

wedge of X](n) ’s. Then the homomorphism

B+ T (X, %) = lim m, (V) )
s a bijection.
We call a space X that satisfies the assumptions of Theorem 1.1

an n-Hawaiian like space.

Theorem 1.2. If X is an n-Hawaiian like space, then mil? (X, *)
1s a topological group, for n > 2. Moreover, it is a prodiscrete
metric space.
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2. PROOF OoF THEOREM 1.1

First, we extend the van Kampen theorem [9] to higher homotopy
groups of n-Hawaiian like spaces. As a suitable model, one can
consider the n-dimensional Hawaiian earring H,,. Katsuya Eda and
Kazuhiro Kawamura [3] determined the nth homotopy group of H,
by showing that m,(H,,*) is isomorphic to Z*. But this section
aims to determine 7, (H,,*) by a form of van Kampen theorem
applicable to Hawaiian like spaces which is needed to prove the
further results.

We begin by fixing some notation. Let Xj(n), 7 € N, be a based
compact CW-complex which is also (n — 1)-connected, locally (n —
1)-connected, and n-semilocally simply connected. Take the wedge

Y;(”) =V j<i X j(n) with collapsing maps ri : Y;(n) — Yk(n), where

k <4, which are the identity on Yk(n) and collapse X ](n) to the base
point x} if k < j <i. Let G; = @221 ﬁn(X](n),:E;‘-) with projections
7, G; = Gy, defined by 7 (91, -+ ,m) = (1, -+ k), k < 4. Then
{Yi("),r,i} and {G;,mi} are inverse systems of topological spaces
and groups whose limits we denote by J(,, and G, respectively.

Example 2.1. Consider 3, to be a finite family {H*}"™ = of n-
Hawaiian earring spaces, which are joint to m points of an n-
sphere S™ at their based points. One can see that H,, is an n-

Hawaiian like space. Indeed, if f}{fl is approximated by Yi(z)’s, then

3, = lim V", where v\ = (U, V) U s™.
We start with a lemma from [6].

Lemma 2.2. Suppose that X is an (n—1)-connected, locally (n—1)-
connected, compact metric space and m,(X) is not finitely gener-
ated. Then there exists x € X such that for each positive integer m,
there exists an n-loop fn, at x with diameter less than 27™ which
18 not nullhomotopic. In particular, X is not n-semilocally simply
connected at x.

The next assertion follows immediately.

Corollary 2.3. Let X](n), j €N, be as above. Then ﬂn(XJ(n),x;f)
is finitely generated.
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For each j € N, we denote the generators of m,(X; (n), z7) by
Qs Ak e

Now we recall a result of [12, Proposition 6.36].

Proposition 2.4. If X is an n-connected CW-complex and Y is an
m-connected CW-complex, then the maps ix : (X,z*) — (X VY, *)
and iy : (Y,y*) = (X VY, %) given by ix(x) = (x,y*) and iy (y) =
(z*,y) induce an isomorphism (ix,,iy.) : (X, 2*) @ (Y, y*) —
(X VY, %) for 2 <k <n+m, provided X orY is locally finite.
n)

So, one can determine 7rn(Y;( ,y¥) as follows (see [12]).

Corollary 2.5. With the previous notation, let Y;(n)

V< X;n). Then

be the wedge

Tn Y, 7yz @ﬂ—n n , L * (fOT' all n > 2)

Remark 2.6. By corollaries 2.3 and 2.5, m,(Y] v ),yl) is finitely

generated. Since rk(Yi(n)) = Yk(n), then clearly, ai,1,---, ok,
Q21,5 Q2 kg, 01,7, 04, are the generators of 7, (Y] .("),yl).
This means that if v € Wn(Y(n),y;"), then v = (ozlllf o 111]:11
al;f-- 1221522 - aif’f‘ alk ) for some integers Iy 1, , l1k,
<y b, Ly, where ol = a-- -« is the concatenation I-times

of the homotopy class of « with itself. We embed the generators

(n),y;‘ ) by a map induced by inclu-

1, Ok, (j <), in ﬂn(Y
sion X ]( n Y, () _ \/k, X, ™) For simplicity, one can denote the
embedded classes by the same notations aj1- k. It is easy to

see that the map

l11 ll,kl i1 i kg l11 ll k1 li1 li,ki
al,l R a17k1 “ e ai71 “ . ai,ki —> (al,l .. 1 kl .. 70[1;71 o a’i,ki )
: : : (n) % i (n) _x
induces an isomorphism between 7, (Y;, y;') and @;_; ™ (X, 27).

Let f : I™ — 3, be an n-loop with f(9I") = {x}; f is said
to be standard if £(J7) C X" where J* = [a;,b;] x ™) with

ai:1—2i—1,1andb,~:1 2l,f0rz€N
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Now we recall a definition from [11]. Suppose that (X,z) is a
pointed space. Given an n-loop f based at  in X, then any other n-
loop g based at x in X, with H : g >~ f(rel0I") and g(I"\I") = {z},
is called a concentration of f on subcube I7'.

We will need the following lemma which is a key step in the proof
of Theorem 1.1.

Lemma 2.7. Each n-homotopy class in m,(Hy,*) is represented
by a standard n-loop.

Proof: Let f be any n-loop in H, based at *x. Then f deter-

mines a sequence of n-loops f; in V™ defined by fi = R;o f,

1
where R; : H,, — Yi(n) denotes the retraction fixing Yi(")

(n)
;.o=n+1 Y;

the n-homotopy class of f; is contained in @3-:1 T (X J(n), 7). There-

point-

wise and collapsing | to the point *. By Corollary 2.5,

l11 ll,kl i1 lik,

fore, [fi] = (ayy o)), Oy k:) for some integers
iy sl 5l ik, Let g1,--+,9; be n-loops in an),
. ,XZ.(") representing the m-homotopy classes ~1,---,7;, where

, Uik
v = aé{f---ai}fj. By Remark 2.6, f; ~ g1 % -+ % g;, where x
denotes the product of n-loops in Q”(Y(n) y¥). Note that each

7 )

n-loop in Xj(n) (j < i) can be embedded in Y;(n) or in H,, if it

is necessary, by maps induced by the inclusions X ](.n) — Yi(n) and

Yi(n) — H,, respectively.

Let hj be a concentration of g; on subcube J}', for j € N. By [11,
Lemma 2.5.2 ], such concentration exists. Then f; ~ hy - x h;
(reldI™) by a homotopy H;.

We proceed by induction, constructing homotopies H; : I™ X
[0,1] — VAR satisfying

(1) Hi(z,0) = fi(z);
(2) Hl(x, 1) =hy - x hi(x);
(3) rpo Hy = Hy, (k < ).

Such homotopies give, in the limit, a homotopy H of n-loop f
to a standard n-loop h (the homotopies H;’s are endowed with the
uniform metric, so the limit H exists and it is continuous; see [10,
Theorem 46.8 and Corollary 46.6]). O



HOMOTOPY GROUPS OF n-HAWAIIAN LIKE SPACES 261

Now we prove the main result of this section.

Proof of Theorem 1.1: Suppose f is a standard n-loop based at
x in H,, n > 2, with corresponding sequence of n-loops f; = R;o f
in Yi(n). The homomorphism f3, is well defined, since r%(fi) = fk,
and by construction of standard map in Lemma 2.7 and Remark
2.6, we have 7t [fi] = [fx)-

To show the injectivity of 5,, we must prove that given a stan-

dard n-loop f in 3, with §,([f]) = eg, there is a based homotopy
between f and the constant n-loop at *, where eg is the identity of
9 L Y. 7yz . Let fl = RZ o f ClearlY? [f’L] = (elv"' 7€i)7
where e; is the identity of Wn(XJ(n), x3), for j =1, ,i. Then there
are based homotopies K; between f; and the constant n-loop at y;.
Now the limit of K;’s is a homotopy between f and constant n-loop
at x, denoted by K.

Now, it is sufficient to show that £, is surjective. Let g = (¢;) €
S. Then gi = (m,-,m) € @y (X", 25) = m(¥™,y7).
Suppose f; represents n-homotopy class gl So 7‘;( fi) = fj, since
773.(7)1,--~ i) = (m,---,n;) for j < 4. Also, there almre integers

l L
L, Uik, b, ik, such that [f] = 041111 . 11,511 ai”f

l l;

Q; k . Let the n-loop t; represent al SR -aj,k,j , let s; be a con-
centration of ¢; on JJ’.‘, and let h; = s1---s;. Clearly, the limit of
h;’s is an n-loop denoted by h and [h] = g (the homotopies K;’s
and the n-loops h;’s are endowed with the uniform metric so their

limits K and h exist and they are also continuous; see [10, Theorem
46.8 and Corollary 46.6]). This completes the proof. O

Corollary 2.8. Let H,, be the n-dimensional Hawaiian earring
with based point x. Then m,(H,,*) =G = l'&lGi, where G; is the
direct sum of i copies of integers Z.

3. PROOF OF THEOREM 1.2

In conclusion, we assert that mi?(H,, %) is a topological group
homeomorphic to 77 (H,,, ) which implies that 7 (H,,, ¥) is me-
trizable.

As mentioned in the introduction, it is an open question whether
or not in general my? (X, *) is a topological group. If X is a locally
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n-connected metric space, then 7 (X, 2*), and hence, 7P (X, 2*) x
TP (X, x*) is discrete (see [7]), and therefore multiplication is con-
tinuous. In general, the continuity of multiplication remains an
unsettled question.

The following lemma shows that if (X, z*) is a pointed topolog-
ical space, then left and right translations by a fixed element in

top * .

7 (X, x*) are homeomorphisms.

Lemma 3.1. Let (X,z*) be a pointed topological space. If [f] €
TP (X, x*), then left and right translations by [f] are homeomor-
phisms of TP (X, xz*).

Proof: First, we show that the multiplication
O"(X,2*) x Q*(X,2%) 2 Q*(X, 2%)

is continuous, where 7 is concatenation of n-loops and Q" (X, z*)
is equipped with compact-open topology.
Let (K,U) be a subbasis element in Q" (X, z*). Define

t
Ki={(t1,...,tn); (t1,.. ., th_1, —) € K}

2
and
Ko = {(t1, - tn): (s, %) € KY.
Then

(K, U)) = {(fi, f2); (fr * f2)(K) C U} = (K1,U) x (K3,U)
is open in Q"(X, z*) x Q"(X, z*) and so m is continuous.
Now, fix [f] € mi?P(X, 2*) and consider left translation by [f] on
TP (X, %)
TP (X, x*) — wlP(X, z*)
lg] = [f]- [g].

Clearly, the following diagram is commutative.
O(X, 2*) —2 s (X, z*)

top * M top *
T (X, %) P (X, 1Y),
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where my is defined by g — f * g. By the universal property
of quotient maps [10, Theorem 11.1], mys is continuous. Since
m[}]l = myy-1) is also continuous, so ms is a homeomorphism, as
desired. A similar argument implies that right translation is also a
homeomorphism. ]

Note that 7P(X, z*) acts on itself by left and right translations
as a group of homeomorphisms. It is easy to see that these actions
are both transitive. So, we have the following result.

Proposition 3.2. If (X,z*) is a pointed topological space, then
TP (X, 2*) is a homogeneous space.

Now, let U be an open neighborhood of z* in X and U be the set

of all n-loops based at x* lying inside U. Also, let U be its quotient
under homotopy, that is

U={[f]; f € Q(X,z*) and imf C U}.

Suppose W C mi??(X, *) is an open neighborhood containing the
identity element [e;,]. Then

ka
€z, € q_l(W) = U (ﬂ < Kiav‘/ia >)7
acd i=1

where e, is the constant n-loop based at z*. Therefore, there exists
an index a € J such that e,, € ﬂfgl < K, V% >, which implies
that

ke ke
el JVr=ve, VECc(\ <KLV >C gt (W)
=1 i=1

and then [e,,] € V* C W.
Since left translation is continuous in 7P (X, 2*),

W = {11 1gl; lg] € W}

runs through a basis at [f] for 7P(X, z*), as W runs through a
basis at [e,,] in its topology.

Now we use a classical theorem in the theory of topological
groups [8] which asserts that for a given group G with a filter base
{U}, satistying the following conditions

e cach U is symmetric, i.e., U™t =U,
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e for each U in {U}, there exists a V in {U} such that V2 C U,
where V2 = {ay; z,y € V},

e for each U in {U} and a € G, there exists a V in {U} such
that V Cc a 'Ua or aVa™' C U,

then {U} forms a fundamental system of neighborhoods of e. In
particular, G with the topology induced by this fundamental system
becomes a topological group.

Since m,(X,z*) is an abelian group, for n > 2, it is easy to
see that the filter base {(7 } forms a fundamental system of neigh-
borhoods of the identity element e, and hence 7, (X, z*) with this
topology becomes a topological group, denoted by 7™ (X, 2*). By
the above statements, this topology, denoted by 7/, is coarser
than quotient topology 7P on m, (X, z*) inherited from Q"(X, z*)
with the compact-open topology.

If X =X, and Wi(n) is an n-connected neighborhood of z} in

Xi(n), then the following sets provide a basis for H,, at *

W, = (Jw"udJx").
i<k i>k
Also, a basis of neighborhoods of the identity eg in G is given by
the subgroups

Sr={9=1(9)€9; 9r = (e1,...,exr)}, forkeN.

Theorem 3.3. The map B, : T (H,,*) — G is a homeomor-

phism and therefore an isomorphism of topological groups.

Proof: Since {Uy,} and {G;} form bases at * and eg for topologies
on 7 (F,, *) and G (see also the statement before Theorem 3.3),
it is sufficient to show that f,(Uy) = Gx. For, let [f] € Uy and h

be a standard n-loop representing [f]. Since Wi(n) is m-connected
for i < k, we have that hy = Ry o h is nullhomotopic. Therefore,

Conversely, if g = (¢;) € Gk, then g, = (e1,...,ex). The
homomorphism [, is a bijection, so there is a standard n-loop
f such that [f] € 7, (Hp,*) and B,([f]) = g. But Bu([f]) =
([R1(f)], [R2(f)],--.). This implies that [Rx(f)] = (e1,...,ex) and
therefore, Ry(f) = fr is nullhomotopic. Take h a standard n-loop
such that h ~ f (rel 0I") and Ryoh = yj. Then S, [h] = 3, [f] €

Uy O
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The homomorphism f,, gives a compatible sequence of homo-
morphisms £y ; @ mp(Hp,*x) — wn(Yi(n),y;‘). By [7], the homo-

morphisms 3, ; : iop (Fp, %) — iop (Y;(n), yF) are continuous when
we dealing with topological homotopy groups, which implies that
B TP (Hp, %) — G = lim miop (Y;(n), y¥) is also continuous.

So that there is no ambiguity in notation, we denote
B ™ Hpx) = G and By wlP(Ha, k) = G

by 84 and BP, respectively.
Now consider the following commutative diagram.

giov
W;:Lop(g—fnv *) —9

wlim(J{n, *)

n

Since 4™ is a homeomorphism, the identity map id is continu-
ous. This fact shows that quotient topology 7!° inherited from
compact-open topology of n-loop space is coarser than 7/™. But
we have already seen that 7% C 75 Therefore, these two topolo-
gies on 7, (Hy, *) are equivalent. This means that 7P (H,,, %) is a
topological group and also a prodiscrete metric space.

Acknowledgment. The authors are grateful to the referee for valu-
able suggestions and useful remarks.
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