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REGULAR VARIATION,

TOPOLOGICAL DYNAMICS, AND

THE UNIFORM BOUNDEDNESS THEOREM

A. J. OSTASZEWSKI

Abstract. In the metrizable topological groups context, a
semi-direct product construction provides a canonical multi-
plicative representation for arbitrary continuous flows. This
implies, modulo metric differences, the topological equiva-
lence of the natural flow formalization of regular variation of
N. H. Bingham and A. J. Ostaszewski in [Topological regular
variation: I. Slow variation, [to appear in Topology and its
Applications]with the B. Baj šanski and J. Karamata group
formulation in [Regularly varying functions and the principle
of equi-continuity, Publ. Ramanujan Inst. 1 (1968/1969),
235–246]. In consequence, topological theorems concerning
subgroup actions may be lifted to the flow setting. Thus, the
Baǰsanski-Karamata Uniform Boundedness Theorem (UBT),
as it applies to cocycles in the continuous and Baire cases,
may be reformulated and refined to hold under Baire-style
Carathéodory conditions. Its connection to the classical UBT,
due to Stefan Banach and Hugo Steinhaus, is clarified. An
application to Banach algebras is given.

1. Introduction

The theory of regular variation, as originally conceived, is a the-
ory of positive functions of a positive variable, and so belongs to
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306 A. J. OSTASZEWSKI

real analysis – for a full treatment, see e.g., [9]. In the classical
(Karamata) setting, 𝑓 : ℝ+ → ℝ+ is regularly varying if

𝑓(𝑡𝑥) /𝑓(𝑥) → 𝑔(𝑡) ∈ ℝ+ (𝑥→∞) ∀𝑡 > 0. (RV)

The main result (Uniform Convergence Theorem) is that, subject to
appropriate regularity on 𝑓, the convergence is uniform on compact
sets of 𝑡 in ℝ+ and 𝑔 is a power function 𝑡𝜌. The initial area of
application was Tauberian theorems, but probability theory became
the main beneficiary (see, again, [9]). In the classical theory, one
assumes measurability of 𝑓 , but one can also handle (in parallel)
the topological case, where one assumes instead the property of
Baire. More recently, much effort has been devoted to building up a
theory in higher dimensions (finitely or infinitely many), motivated
now principally by probability theory (see [11, Introduction] for
an account). In addition, recent work has succeeded in solving
the main foundational problem of the classical theory – finding
a common generalization of measurability and the Baire property
[10], [13]. The resulting theory may be called combinatorial, as the
techniques used belong to infinite combinatorics. But it emerges
that it is the topological, rather than the measurable, case that is
the more important (see e.g., [12] and [15], [16], [17]), and so we
call the resulting theory that of topological regular variation.

The Uniform Convergence Theorem (UCT) in a topological dy-
namics setting is established in [15], providing the foundations for
the topological theory of regular variation. However, there appear
to be two such theorems rather than one; so one of the aims here
is to reconcile the duality. Its basis lies in the natural “action”
interpretation of (RV), as follows.

Let 𝑋 be a state space, a homogeneous metric space, specifically
a group with identity 𝑒𝑋 and metric 𝑑𝑋 . If a metrizable topological
group 𝑇 acts on the space 𝑋 by mapping (𝑡, 𝑥) to 𝑡(𝑥), then we
say that 𝑇 is an action space for 𝑋. It is convenient (though not
essential) to treat 𝑇 as a subgroup of 𝐴𝑢𝑡ℎ(𝑋), the (algebraic)
group of auto-homeomorphisms of 𝑋 under composition (following
the notation of [8]). Say that 𝑥 → 𝑡(𝑥) is bounded if ∣∣𝑡∣∣𝑇 : =

𝑑(𝑡, 𝑖𝑑𝑋) <∞, where 𝑖𝑑𝑋(𝑥) ≡ 𝑥 is the identity mapping of 𝑋 and

𝑑(𝑡, 𝑡′) := sup𝑥 𝑑
𝑋(𝑡(𝑥), 𝑡′(𝑥)) (sup)
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denotes the supremum metric (for which see [23, §4.2]). Denote by
ℋ(𝑋) the subgroup of bounded elements of 𝐴𝑢𝑡ℎ(𝑋); then, with
applications in mind, we make the blanket assumption that 𝑇 is an
(algebraic) subgroup of ℋ(𝑋). We say that ℎ : 𝑋 → ℝ is regularly
varying on the action space 𝑇 if, for each 𝑡 ∈ 𝑇,

∂𝑋ℎ(𝑡) := limℎ(𝑡𝑥𝑛)ℎ(𝑥𝑛)
−1

exists for every divergent sequence {𝑥𝑛} (i.e., with ∣∣𝑥𝑛∣∣𝑋 → ∞
where ∣∣𝑥𝑛∣∣𝑋 := 𝑑𝑋(𝑥𝑛, 𝑒𝑋)). Also we say that ℎ : 𝑋 → ℝ is
regularly varying in the state space 𝑋 if, for each 𝑥 ∈ 𝑋,

∂𝑇ℎ(𝑥) := limℎ(𝑡𝑛𝑥)ℎ(𝑡𝑛𝑒𝑋)−1

exists for every divergent sequence of homeomorphisms {𝑡𝑛} in 𝑇.
Here “divergent” may be taken either in the uniform sense that
∣∣𝑡𝑛∣∣𝑇 → ∞, or in the pointwise sense that, for each 𝑥, one has
𝑑𝑋(𝑡𝑛(𝑥), 𝑒𝑋)→∞.

The Primal and Dual UCT assert that each of the two limit
functions ∂ℎ(.) above, on the state or action space, is a homomor-
phism and convergence to the limit is uniform on compact sets (for
ℎ Baire, but a theorem of Kunihiko Kodaira in [30] permits the
substitution of measurable in the sense of Haar measure when 𝑋 is
locally compact; for further details see [14, Section 5]). The purpose
in establishing duality is to demonstrate that these two theorems
are merely two instances of a single UCT.

Section 2 provides a formal setting for this duality by represent-
ing a general flow as the multiplicative action of a subgroup and
deriving the algebraic complementarity of action and state space.
The main tool here is an internal direct product (or semi-direct
product). This framework also embraces, as a particular case, the
group-theoretic approach advanced by B. Baj šanski and J. Kara-
mata [5]. In section 3 the internal direct product is equipped with
a metric which defines topological regular variation. Section 4 con-
nects this regular variation to the topological dynamics of cocycles
and establishes Uniform Boundedness Theorems (UBTs) for cocy-
cles motivated by classical regular variation; we point out that the
results have immediate applications in regular variation and under-
pin the theory of non-autonomous differential equations. Section 5
is devoted to applications in functional analysis.



308 A. J. OSTASZEWSKI

2. Multiplicative action, duality,
and a transfer principle

We work in the category of metrizable topological groups unless
otherwise stated, implying that if 𝑋 and 𝑌 are isomorphic, then
they are also homeomorphic. Recall the Birkhoff-Kakutani Theo-
rem ([19], [29], [27, Theorem 8.3]; see also [38, Theorem 1.24], albeit
in a topological vector space setting) that a metrizable topological
group 𝑋 has an equivalent right (left, respectively) invariant metric
𝑑𝑋𝑅 (𝑑𝑋𝐿 , respectively). For groups 𝑇 and 𝑋, with identities 𝑒𝑇 and
𝑒𝑋 , a 𝑇 -flow on 𝑋 ([26], [7], or the more recent [21]) is a continuous
mapping 𝜑 : 𝑇 ×𝑋 → 𝑋 such that, for 𝑠, 𝑡 ∈ 𝑇 and 𝑥 ∈ 𝑋,

𝜑(𝑠𝑡, 𝑥) = 𝜑(𝑠, 𝜑(𝑡, 𝑥)) and 𝜑(𝑒𝑇 , 𝑥) = 𝑥.

Write the map induced by 𝑡 as 𝜑𝑡(𝑥) := 𝜑(𝑡, 𝑥); then 𝜑𝑡 is a home-

omorphism with (continuous) inverse 𝜑𝑡−1
(𝑥), and for 𝑒 = 𝑒𝑇 ,

𝜑𝑒 = 𝑖𝑑𝑋 , so in effect 𝑇 ⊆ 𝐴𝑢𝑡ℎ(𝑋). We assume that 𝑇 ⊆ ℋ(𝑋).
Let 𝑇𝑋 denote the algebraic group of translates {𝑡𝑥 : 𝑥 ∈ 𝑋, 𝑡 ∈

𝑇}, where 𝑡𝑥(𝑢) := 𝑡(𝑥𝑢), the group operation being 𝑠𝑥 ⋅ 𝑡𝑦 = 𝑠𝑡𝑥𝑦.
In general, with a right-invariant metric on 𝑋, one has only 𝑇 ⊆
𝑇𝑋 ⊆ ℋ(𝑋). (The latter inclusion is implied by 𝑑𝑋𝑅 (𝑡(𝑥𝑢), 𝑢) ≤
𝑑𝑋𝑅 (𝑡(𝑥𝑢), 𝑥𝑢) + 𝑑𝑋𝑅 (𝑥𝑢, 𝑢) ≤ ∣∣𝑡∣∣𝑇 + ∣∣𝑥∣∣𝑋 .) Identifying 𝑡 with 𝜑𝑡

and writing 𝑡(𝑥) for 𝜑𝑡(𝑥) induces a duality between the 𝑇 -flow
𝜑𝑇 (𝑡, 𝑥) = 𝑡(𝑥) and the associated 𝑋-flow on 𝑇𝑋 (rather than on
𝑇, which may be too “small”) given by 𝜑𝑋(𝑥, 𝑡) = 𝑡𝑥. (This was
first noted, albeit in another context, in [41]). Point-evaluation
of 𝑡𝑥 at 𝑒𝑋 , formally a projection on the 𝑒𝑋 coordinate space, is
𝑡𝑥(𝑒𝑋) = 𝑡(𝑥), the original 𝑇 -flow. Write 𝑥𝑡 for 𝑡𝑥 and 𝑡𝑥 for 𝑡(𝑥),
or even ⟨𝑡, 𝑥⟩; then 𝑡 and 𝑥 commute relative to projection on the
𝑒𝑋 coordinate space (which is all that actually matters).

These observations prompt an approach to duality via 𝐴𝑢𝑡ℎ(𝑋),
developed elsewhere (see [14]), which proceeds roughly speaking by
embedding 𝑇 algebraically in 𝐴𝑢𝑡ℎ(𝑋) via 𝜑 : 𝑡 → 𝜑𝑡 and giving
proper expression to the duality by also embedding 𝑋 in the double
“topological dual” 𝐴𝑢𝑡ℎ(𝐴𝑢𝑡ℎ(𝑋)); the latter allows 𝑋 to act on
𝐴𝑢𝑡ℎ(𝑋).

However, such an approach, though feasible, has certain limi-
tations. The group 𝐴𝑢𝑡ℎ(𝑋) supports a number of interesting,
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natural topologies (going back to [2] and [3]), but not all of them
give it a topological group structure, nor even a metric except un-
der some additional hypotheses on 𝑋 (see [8, Chapter I, §5, and
Chapter IV, §1]; for a third example, see [14, Theorem 3.19]). One
well-quoted example which does give the structure, but unfortu-
nately requires 𝑋 to be compact, is the symmetrization metric

𝑑(𝑠, 𝑡) = max{𝑑(𝑠, 𝑡), 𝑑(𝑠−1, 𝑡−1)}, where 𝑑 is the supremum met-
ric defined by (sup) above; this is complete for 𝑑𝑋 complete. (See
[23, Theorem 4.2.16]; see also [45, Corollary 1.2.16] for possible
extensions to locally compact spaces for a related metric.) Evi-

dently, here 𝑑 ≤ 𝑑, and interestingly, as 𝑑 is right-invariant, we

have 𝑑(𝑡−1, 𝑒𝑇 ) = 𝑑(𝑒𝑇 , 𝑡), and so 𝑑(𝑡, 𝑒𝑇 ) = 𝑑(𝑡, 𝑒) = ∣∣𝑡∣∣ (see the
Introduction).

One way to counter the limitations is to enter the broader cate-
gory of normed groups (see section 3), since under 𝑑 the bounded
subgroup ℋ(𝑋) is always a normed group. Next, assume that the
topological group 𝑇 has a topology generated by a metric 𝑑𝑇 with
𝑑 ≤ 𝑑𝑇 (so finer, or the same as that induced by 𝑑); this would be
the case, for instance, with 𝑑𝑇 , the symmetrization metric for 𝑋
compact. (An alternative example is the topology just cited from
[14].) Under these circumstances continuity of the action is verified
via the following lemma.

Lemma 2.1. For 𝑇 ⊆ℋ(𝑋) and under 𝑑 on ℋ(𝑋), so also under

𝑑𝑇 on 𝑇 when 𝑑 ≤ 𝑑𝑇 , and with 𝑑𝑋 on 𝑋, the evaluation map
(ℎ, 𝑥)→ ℎ(𝑥) from 𝑇 ×𝑋 to 𝑋 is continuous.

Proof: Fix ℎ0 and 𝑥0. The result follows from continuity of ℎ0 at
𝑥0 via

𝑑𝑋(ℎ0(𝑥0), ℎ(𝑥)) ≤ 𝑑𝑋(ℎ0(𝑥0), ℎ0(𝑥)) + 𝑑𝑋(ℎ0(𝑥), ℎ(𝑥))

≤ 𝑑𝑋(ℎ0(𝑥0), ℎ0(𝑥)) + 𝑑(ℎ, ℎ0)

≤ 𝑑𝑋(ℎ0(𝑥0), ℎ0(𝑥)) + 𝑑𝑇 (ℎ, ℎ0),

since 𝑑 ≤ 𝑑𝑇 . □
Another solution (staying with topological groups) is to work

with the bi-uniformly continuous members of ℋ(𝑋), as in [14].
The approach below returns to our opening observation on the

relations between 𝑡𝑥 and 𝑥𝑡 and builds the duality formally around
the following commutative diagram of homeomorphisms, in which
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Φ𝑇 (𝑡, 𝑥) = (𝑡, 𝑡𝑥) and Φ𝑋(𝑥, 𝑡) = (𝑡, 𝑥𝑡).

(𝑡, 𝑥) � Φ𝑇
- (𝑡, 𝑡𝑥)

(𝑥, 𝑡)
?

6

� Φ𝑋
- (𝑡, 𝑥𝑡)

?

6

Here the two vertical maps may, and will, be used as identifica-
tions, since (𝑡, 𝑡𝑥) ↔ (𝑡, 𝑥) ↔ (𝑡, 𝑥𝑡) are bijections (more is true,
see below).

The purely algebraic approach for capturing the duality, pursued
here, is to observe first that the simplest example of a flow is a
restriction of the multiplicative action of a group 𝑋 on 𝑋 to the
action of a subgroup 𝑇 of 𝑋 on 𝑋, e.g., left translation 𝜆 : (𝑡, 𝑥)→
𝑡𝑥. Here 𝑡(𝑥) = 𝑡𝑥 and so the evaluation map is continuous. The
group 𝑇𝑋 is a subgroup of 𝑋 (since 𝑡𝑥(𝑢) = 𝑡𝑥𝑢) and so has a
natural topological group structure.

We show that a 𝑇 -flow on 𝑋 and a naturally associated 𝑋-flow
on 𝑇𝑋 may be represented canonically in this multiplicative form
by a group structure on the phase space 𝑇 ×𝑋 with 𝑇 and 𝑋 rep-
resented by complementary normal subgroups isomorphic to 𝑇 and
𝑋. We denote the group 𝑇 ⊳⊲ 𝑋 and call it the phase group. (We
thank Anatole Beck for pointing out that 𝑇 is sometimes called
the parameter space and 𝑋 the state space, so their product may
correctly be termed a phase space.) Albeit with more structure
here, this is similar in spirit to the semi-direct product of group
theory; see e.g., [4, Section 10]. Our construction mimics the con-
struction of the action groupoid of Lie groupoid theory (see [46], or
[1, Section 1.4]), but remains within group theory (appropriately
to our context/category). Here again the topological structure is
richer than in the groupoid setting since it also takes into account
the group structure of 𝑋 – see Example 2.5 for further elucida-
tion. We recalled above the convenient multiplicative notation 𝑡𝑥
of topological dynamics (see [26]), which now becomes a de facto
multiplicative notation under our representation.

The representation implies the transfer principle that a topolog-
ical theorem about multiplicative group actions may be lifted to
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a theorem concerning flow actions, in fact to a primal and dual
form of the theorem (see also [15] for a discussion of this point).
Here we give the details for two such transfers which are of inter-
est to the topological theory of regular variation: the two Uniform
Boundedness Theorems (for continuous and for Baire cocycles).

Recall that a group 𝐺 is an internal direct product (for a topo-
logical view, see [35, Chapter 2.7]; for an algebraic view, see [44,
Chapter 6, §47], [28, chapters 9 and 10], or [24, §9.1]) if it is fac-
torizable by two normal subgroups 𝐻 and 𝐾, i.e., 𝐺 = 𝐻𝐾 with
𝐻 ∩𝐾 = {𝑒𝐺} (so that factorization in 𝐺 is unique). Under these
circumstances ℎ𝑘 = 𝑘ℎ holds for ℎ ∈ 𝐻 and 𝑘 ∈ 𝐾 (since ℎ𝑘ℎ−1𝑘−1

is in 𝐻 ∩ 𝐾, see [44, Chapter 6, §47]), so this setting provides a
pleasingly simple expression, when 𝑋 and 𝑇 are metrizable, of the
inherent duality between 𝑇 acting on 𝑋 and 𝑋 acting on 𝑇 if, as
can be arranged, 𝐻 and 𝐾 are isomorphs of 𝑋 and 𝑇 . We now
indicate why.

Under the above circumstances, 𝐾 is a unique complement for
𝐻 (for which see [4, §10, p. 29]), and vice versa 𝐻 is a unique
complement of 𝐾, so we may also regard them as duals of each
other. Furthermore, suppose that the group under discussion 𝐺
has a right-invariant metric 𝑑𝐺𝑅 (see Section 3 for details). If we
identify an element ℎ in 𝐻 with left translation by ℎ on 𝐺 (i.e.,
with 𝜆ℎ(𝑔) := ℎ𝑔), then

𝑑𝐻(ℎ, ℎ′) := sup𝑔∈𝐺 𝑑
𝐺
𝑅(ℎ𝑔, ℎ

′𝑔) = 𝑑𝐺𝑅(ℎ, ℎ
′)

shows that 𝐻, as a topological subgroup of 𝐺, is isometric with
{𝜆ℎ : ℎ ∈ 𝐻}, as a subgroup of ℋ(𝑋) under the supremum metric.
(Note: sup𝑔∈𝐺 𝑑𝐺(ℎ𝑔, 𝑔) = 𝑑𝐺(ℎ, 𝑒) = ∣∣ℎ∣∣ < ∞.) Now, restricting

𝜑𝐺, the multiplicative action of 𝐺 on 𝐺, to 𝐻, we obtain the 𝐻-flow
on 𝐺, namely 𝜑𝐻(ℎ, 𝑔) := ℎ𝑔. Then 𝜑ℎ, the map induced by ℎ, is
𝜆ℎ, i.e., the left translation, and ℎ → 𝜆ℎ embeds 𝐻 in ℋ(𝐺); its
image, 𝜑𝐻(𝐻), is simply an isometric isomorph of𝐻. The same goes
for 𝐾 and 𝜑𝐾 . Our theorem says we may identify 𝐻 with 𝑇 and 𝐾
with 𝑋, as well as having a commutative diagram of isomorphisms.

Theorem 2.2 (Multiplicative Representation of dual flows on topo-
logical groups). For 𝑇 and 𝑋 topological groups with 𝑇 ⊆ ℋ(𝑋) and
𝜑 a continuous 𝑇 -flow on 𝑋, there is a canonical internal direct
product group 𝐺 = ΘΞ and isomorphisms 𝜃 : 𝑇 → Θ, 𝜉 : 𝑋 → Ξ
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(as between topological groups) such that the 𝑇 -flow on 𝑋 is repre-
sented by the multiplicative Θ-flow on 𝐺 :

𝜑Θ : (𝜏, 𝑔)→ 𝜏𝑔, (𝜏 ∈ Θ, 𝑔 ∈ 𝐺),
as is simultaneously (mutatis mutandis) the associated 𝑋-flow on
𝑇𝑋 defined by

𝜑Ξ : (𝜉, 𝑔)→ 𝜉𝑔, (𝜉 ∈ Ξ, 𝑔 ∈ 𝐺).
That is,

(i) the isomorphisms 𝜃 and 𝜉 commute: 𝜃𝑡𝜉𝑥 = 𝜉𝑥𝜃𝑡;
(ii) there are isomorphisms such that

(𝑡, 𝑥) ←→ (𝜃𝑡, 𝜉𝑥) ←→ 𝜃𝑡𝜉𝑥 ←→ (𝑡, 𝑡𝑥) ←→ (𝑡, 𝑥)
↕ ↕

(𝑥, 𝑡) ←→ (𝜉𝑥, 𝜃𝑡) ←→ 𝜉𝑥𝜃𝑡 ←→ (𝑥𝑡, 𝑡) ←→ (𝑥, 𝑡)

(iii) 𝑇𝑋 is isomorphic to 𝐺 under the mapping 𝑥𝑡→ 𝜃𝑡𝜉𝑥,
(iv) denoting (𝜃 × 𝜉)(𝑡, 𝑥) := (𝜃𝑡, 𝜉𝑥), etc., the diagrams below

commute:

ΘΞ
𝜑Θ

- 𝐺 ΞΘ
𝜑Ξ

- 𝐺

and

𝑇 ×𝑋

𝜃 × 𝜉
6

Φ𝑇
- 𝑇 ×𝑋

wwwwwwwwwww
𝑋 × 𝑇

𝜉 × 𝜃
6

Φ𝑋
- 𝑇 ×𝑋

wwwwwwwwwww
as

Φ𝑇 = 𝜑𝑇 ∘ (𝜃 × 𝜉) and Φ𝑋 = 𝜑Ξ ∘ (𝜉 × 𝜃);

(v) moreover, if 𝑇 is an internal direct product with 𝑇 = 𝑈𝑉,
then Θ = 𝜃(𝑈)𝜃(𝑉 ) is also an internal direct product; like-
wise, if 𝑋 is an internal direct product with 𝑋 = 𝑌 𝑍, then
Ξ = 𝜉(𝑌 )𝜉(𝑍) is an internal direct product.

Proof: We proceed by constructing a generalized product group
(as in the Zappa-Szép product, or knit product, see [43] and also
Remark 5.7), i.e., a group that is factorizable by two general sub-
groups 𝐻 and 𝐾, so that 𝐺 = 𝐻𝐾 with 𝐻 ∩𝐾 = {𝑒𝐺}. We then
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check that 𝐻 and 𝐾 are normal. For 𝑋 a group and 𝑇 a subgroup
with 𝑇 ⊆ ℋ(𝑋), we equip the Cartesian product

𝐺 = 𝑇 ×𝑋
with a group operation on 𝐺 defined by

(𝑠, 𝑥) ⊳⊲ (𝑡, 𝑦) = (𝑠𝑡, 𝑠𝑡(𝑠−1(𝑥)𝑡−1(𝑦))), (knit)

for which 𝑒𝐺 = (𝑒𝑇 , 𝑒𝑋). Since 𝑇 and 𝑋 are topological groups,
the operation just defined is jointly continuous. (For an interesting
homeomorphic alternative, see Remark 2.3.) A more manageable
formulation is by the symmetric product formula

(𝑠, 𝑠(𝑎)) ⊳⊲ (𝑡, 𝑡(𝑏)) = (𝑠𝑡, 𝑠𝑡(𝑎𝑏)),

showing that (𝑡, 𝑡(𝑥))−1 = (𝑡−1, 𝑡−1(𝑥−1)). The latter product for-
mula (which motivates the construction) shows that Φ𝑇 : (𝑡, 𝑥) →
(𝑡, 𝑡(𝑥)) establishes an isomorphism from the direct product 𝑇 ×𝑋
to the generalized product 𝑇 ⊳⊲ 𝑋. As this is also a homeomor-
phism, we see that 𝑇 ⊳⊲ 𝑋 is a metrizable topological group, when
𝑋 and 𝑇 are metrizable. For 𝑡 ∈ 𝑇 and 𝑥 ∈ 𝑋, write

𝜃𝑡 := (𝑡, 𝑡(𝑒𝑋)), 𝜉𝑥 := (𝑒𝑇 , 𝑥).

Then 𝑋 is isomorphic to

Ξ := {𝜉𝑥 : 𝑥 ∈ 𝑋} = {(𝑒𝑇 , 𝑥) : 𝑥 ∈ 𝑋}.
Also Ξ is a normal subgroup, since

(𝑠, 𝑠(𝑎)) ⊳⊲ (𝑒𝑇 , 𝑥) ⊳⊲ (𝑠
−1, 𝑠−1(𝑎−1)) = (𝑒𝑇 , 𝑎𝑥𝑎

−1).

On the other hand, 𝑇 is isomorphic to

Θ := {𝜃𝑡 : 𝑡 ∈ 𝑇} = {(𝑡, 𝑡(𝑒𝑋)) : 𝑡 ∈ 𝑇},
since by the symmetric product formula

(𝑠, 𝑠(𝑒𝑋)) ⊳⊲ (𝑡, 𝑡(𝑒𝑋)) = (𝑠𝑡, 𝑠𝑡(𝑒𝑋)).

As with Ξ, so too here Θ is a normal subgroup, since

(𝑠, 𝑠(𝑎)) ⊳⊲ (𝑡, 𝑡(𝑒𝑋)) ⊳⊲ (𝑠−1, 𝑠−1(𝑎−1)) = (𝑠𝑡𝑠−1, 𝑠𝑡𝑠−1(𝑒𝑋)).

Finally, note Ξ∩Θ = {𝑒𝐺}, since if (𝑡, 𝑡(𝑒𝑋)) ∈ Ξ, then 𝑡 = 𝑒𝑇 =
𝑖𝑑𝑋 and so 𝑡(𝑒𝑋) = 𝑒𝑇 (𝑒𝑋) = 𝑒𝑋 . Thus, 𝐺 is in fact an internal
direct product.
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The flow 𝑇 ×𝑋 → 𝑋 may now be recovered from 𝜑Θ, the multi-
plicative action of the subgroup Θ, when restricted to the subgroup
Ξ via the natural coordinate projection 𝜋 : 𝐺→ 𝑋, since

𝜃𝑡 ⊳⊲ 𝜉𝑥 = (𝑡, 𝑡(𝑒𝑋)) ⊳⊲ (𝑒𝑇 , 𝑥) = (𝑡, 𝑡(𝑡−1(𝑡(𝑒𝑋))𝑥)) = (𝑡, 𝑡(𝑥)).

Indeed the equation confirms that the multiplicative action yields
an isomorphic target and also that the 𝑇 -flow on 𝑋 is isomorphic,
because

𝜃𝑠 ⊳⊲ 𝜃𝑡 ⊳⊲ 𝜉𝑥 = 𝜃𝑠𝑡 ⊳⊲ 𝜉𝑥 = (𝑠𝑡, 𝑠𝑡(𝑥)).

We note that 𝜃𝑡 ⊳⊲ 𝜉𝑥 = 𝜉𝑥 ⊳⊲ 𝜃𝑡, since

𝜉𝑥 ⊳⊲ 𝜃𝑡 = (𝑒𝑇 , 𝑥) ⊳⊲ (𝑡, 𝑡(𝑒𝑋)) = (𝑡, 𝑡(𝑥𝑒𝑋)) = (𝑡, 𝑡(𝑥)).

The same goes for the flow 𝑋 × 𝑇 → 𝑇𝑋 and the restriction
of the action 𝜑Ξ(𝑔, 𝜉) = 𝑔 ⊳⊲ 𝜉 to the subgroup Θ. Indeed, 𝑇𝑋 is
isomorphic to the internal direct product𝑋 ⊳⊲ 𝑇 under the mapping
𝑥𝑡 := 𝑡𝑥 ↔ (𝑥, 𝑡)→ (𝑡, 𝑥) = 𝜃𝑡 ⊳⊲ 𝜉𝑥 interpreted as a left translation
so that

𝑡𝑥(𝑢) := 𝑡(𝑥𝑢) = (𝜃𝑡 ⊳⊲ 𝜉𝑥) ⊳⊲ 𝜉𝑢 = (𝑡, 𝑡(𝑥𝑢)).

This is a homomorphism, since

(𝜃𝑠 ⊳⊲ 𝜉𝑥) ⊳⊲ (𝜃𝑡 ⊳⊲ 𝜉𝑦) ⊳⊲ 𝜉𝑢 = (𝑠, 𝑠(𝑥)) ⊳⊲ (𝑡, 𝑡(𝑦)) ⊳⊲ (𝑒𝑇 , 𝑢)

= (𝑠𝑡, 𝑠𝑡(𝑥𝑦𝑢)) = (𝜃𝑠𝑡 ⊳⊲ 𝜉𝑥𝑦) ⊳⊲ 𝜉𝑢.

It is injective, since 𝑡(𝑥) = 𝑠(𝑦) and 𝑡 = 𝑠 implies 𝑥 = 𝑦, and it is
surjective, since (𝑡, 𝑦) = (𝑡, 𝑡(𝑡−1𝑦)).

Finally, suppose that 𝑇 itself is an inner direct product 𝑇 = 𝑈𝑉,
with 𝑈 ∩ 𝑉 = {𝑒𝑇 } and 𝑈 and 𝑉 normal. Then, since 𝑈𝑉 = 𝑉 𝑈
elementwise, we see that

𝜃𝑢 ⊳⊲ 𝜃𝑣 = (𝑢𝑣, 𝑢𝑣(𝑒𝑋)) = (𝑣𝑢, 𝑣𝑢(𝑒𝑋)) = 𝜃𝑣 ⊳⊲ 𝜃𝑢.

Put 𝜃(𝑈) = {𝜃𝑢 : 𝑢 ∈ 𝑈} and 𝜃(𝑉 ) = {𝜃𝑣 : 𝑣 ∈ 𝑉 }. Then 𝜃(𝑈) and
𝜃(𝑉 ) are normal subgroups of 𝜃(𝑇 ) = Θ. Since 𝜃𝑢 = 𝜃𝑣 if and only
if 𝑢 = 𝑣, we see that Θ is an inner direct product of 𝜃(𝑈) and 𝑣(𝑉 ).
Thus,

Θ = 𝜃(𝑈)𝜃(𝑉 ).

Likewise for 𝑋 = 𝑌 𝑍, with 𝑌 ∩ 𝑍 = {𝑒𝑋} and 𝑌 and 𝑍 normal,
since this time we have

𝜉𝑦 ⊳⊲ 𝜉𝑧 = (𝑒𝑇 , 𝑦) ⊳⊲ (𝑒𝑇 , 𝑧) = (𝑒𝑇 , 𝑧𝑦) = 𝜉𝑧 ⊳⊲ 𝜉𝑦,

as claimed, since 𝑧𝑦 = 𝑦𝑧 in view of 𝑋 = 𝑌 𝑍. □
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Remark 2.3. 1. An alternative product, denoted 𝑇 ★ 𝑋, derives
from the group operations on 𝐺 defined by

(𝑠, 𝑥) ★ (𝑡, 𝑦) = (𝑠𝑡, (𝑠𝑡)−1(𝑠(𝑥)𝑡(𝑦))),

and is homeomorphic to 𝑇 ⊳⊲ 𝑋 via inversion (with a repeated
inversion on the first coordinate). An equivalent definition of the
operation is by the symmetric product formula

(𝑠, 𝑠−1(𝑎)) ★ (𝑡, 𝑡−1(𝑏)) = (𝑠𝑡, (𝑠𝑡)−1(𝑎𝑏)).

When 𝑇 is a subgroup of 𝑋, specialization of the formula here
yields pairs (𝑥, 𝑦) satisfying 𝑥𝑦 = 𝑎, etc.; thus, this generalized
product reflects the mechanics of a multiplicative convolution (Mel-
lin transform). The notation of regular variation, however, prefers
the earlier choice 𝑇 ⊳⊲ 𝑋 (see below). For

𝜃𝑠 := (𝑠, 𝑠−1(𝑒𝑋)) 𝜉𝑥 := (𝑒𝑇 , 𝑥),

we obtain

𝜃𝑠 ⋅𝜉𝑥 = (𝑠, 𝑠−1(𝑒𝑋))★(𝑒𝑇 , 𝑥) = (𝑠, 𝑠−1(𝑠(𝑠−1(𝑒𝑋))𝑥)) = (𝑠, 𝑠−1(𝑥)).

2. Note that (𝑠, 𝑠(𝑎))−1
⊳⊲ = (𝑠−1, 𝑠−1(𝑎−1)), since

(𝑠, 𝑠(𝑎)) ⊳⊲ (𝑡, 𝑡(𝑏)) = (𝑠𝑡, 𝑠𝑡(𝑎𝑏));

similarly, (𝑠, 𝑠−1(𝑎))−1
★ = (𝑠−1, 𝑠(𝑎−1)), since

(𝑠, 𝑠−1(𝑎)) ★ (𝑡, 𝑡−1(𝑏)) = (𝑠𝑡, (𝑠𝑡)−1(𝑎𝑏)).

3. If 𝑇 is a group of self-isomorphisms of 𝑋, then 𝑡(𝑒𝑋) = 𝑒𝑋
and so 𝜃𝑡 = (𝑡, 𝑒𝑋). Here

(𝑠, 𝑥) ⊳⊲ (𝑡, 𝑦) = (𝑠𝑡, (𝑠𝑡𝑠−1𝑥) ⋅ 𝑠𝑦),
suggesting more general forms, appropriate to isomorphism groups,
such as

(ℎ1, 𝑘1)(ℎ2, 𝑘2) = (𝛼(ℎ1, ℎ2)ℎ1, 𝛽(ℎ1, ℎ2)(𝑘1)ℎ1(𝑘2)),

with 𝛼 and 𝛽 homomorphisms, e.g., 𝛼(ℎ1, ℎ2) = ℎ1ℎ2ℎ
−1
1 and

𝛽(ℎ1, ℎ2) = ℎ1ℎ2ℎ
−1
1 .

4. Note that 𝜋(𝜃𝑠 ⋅ 𝑔) = 𝑠𝑥 for 𝑔 = (𝑡, 𝑥), since

𝜃𝑠 ⊳⊲ 𝑔 = (𝑠, 𝑠(𝑒𝑋)) ⊳⊲ (𝑡, 𝑥) = (𝑠𝑡, 𝑠𝑡(𝑡−1𝑥) = (𝑠(𝑡), 𝑠(𝑥)).

We use this observation in the transfer principle of the next section.
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Example 2.4. For 𝑋 abelian, if 𝑇 ⊆ 𝑇𝑟(𝑋) is a subgroup of
translations 𝜆𝑡 : 𝑧 → 𝑡𝑧, then

(𝜆𝑢, 𝑥) ⊳⊲ (𝜆𝑣, 𝑦) = (𝜆𝑢𝑣, 𝑢𝑣(𝑢−1𝑥𝑣−1𝑦)) = (𝜆𝑢𝜆𝑣, 𝑥𝑦).

Example 2.5. For two commuting flows 𝑈 and 𝑉 on 𝑋, the action
𝑇 = 𝑈 × 𝑉 is an internal direct product and so, as a special case,
the theorem asserts that both flows on 𝑋 are representable by com-
muting multiplications. Analogous to this is a representation for
the general linear skew-product flow 𝜋 in the theory of differential
equations (see [41], [42], and also [39], [40]). This is defined to be a
𝑇 -flow on 𝑋 = 𝑌 ×𝑍, with 𝑌 a topological space and 𝑍 a normed
vector space, whereby 𝜋 takes the form

𝜋(𝑡, 𝑦, 𝑧) = (𝑡(𝑦), 𝛼(𝑡, 𝑦)𝑧).

Here, 𝛼(𝑡, 𝑦) is an invertible, bounded linear map from 𝑍 to 𝑍, and
(𝑡, 𝑦)→ 𝑡(𝑦) is a flow in 𝑌 . Note that

𝜋(𝑠𝑡, 𝑦, 𝑧) = 𝜋(𝑠, 𝜋(𝑡, 𝑦, 𝑧)) = 𝜋(𝑠, (𝑡(𝑦), 𝛼(𝑡, 𝑦)𝑧))

= (𝑠(𝑡(𝑦)), 𝛼(𝑠, 𝑡(𝑦))𝛼(𝑡, 𝑦)𝑧),

so, since

𝜋(𝑠𝑡, 𝑦, 𝑧) = (𝑠𝑡(𝑦), 𝛼(𝑠𝑡, 𝑦)𝑧),

we have for all 𝑧

𝛼(𝑠𝑡, 𝑦)𝑧 = 𝛼(𝑠, 𝑡(𝑦))𝛼(𝑡, 𝑦)𝑧.

This is the cocycle condition (see section 4):

𝛼(𝑠𝑡, 𝑦) = 𝛼(𝑠, 𝑡(𝑦))𝛼(𝑡, 𝑦).

We have

𝐼 = 𝛼(𝑒, 𝑦) = 𝛼(𝑡−1, 𝑡(𝑦))𝛼(𝑡, 𝑦),

so 𝛼(𝑡−1, 𝑡(𝑦)) = 𝛼(𝑡, 𝑦)−1.
The one-parameter group Λ(𝑡) := 𝛼(𝑡, 𝑡(𝑦)) has Λ(0) = 𝐼, with

Λ(𝑡) invertible since Λ(−𝑡)Λ(𝑡) = Λ(0) = 𝐼. (In fact, more is true
when 𝑇 = ℝ, as the defining properties of a flow secure the conti-
nuity condition lim𝑡→0 ∣∣𝑄(𝑡)𝑧 − 𝑧∣∣ = 0 for every 𝑧 in 𝑍; hence, if
Λ(𝑡) is itself continuous on 𝑍, then Λ(𝑡) has an exponential repre-
sentation – see [38, Chapter 13].) Thus, a phase-group Θ𝐻𝑍 can
be created with

𝜋(𝑡, 𝑦, 𝑧) = 𝜃𝑡 ⊳⊲ 𝜂𝑦 ⊳⊲ 𝜁𝑧,
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with 𝑇 = ℝ, 𝑍 = ℝ𝑑, and 𝑌 as in the standard example. (Mo-
tivation and details are presented in Appendix 1 of the extended
website version of this paper.)

Example 2.6. We review the connection with action-groupoids of
a 𝑇 -action on 𝑋 which motivated our multiplicative representation
via the phase group. We follow the exposition in [20]. (Compare
Appendix 2 of the extended website version of this paper.) In
the current circumstances the groupoid is presented as a space of
points (objects) together with a space of arrows (morphisms), with
the space 𝑋 taken as the space of objects (we will call the points
locations), and 𝑇 ×𝑋 as the space of arrows (𝑡, 𝑥). The arrow (𝑡, 𝑥)
has source 𝑥 and target 𝑡(𝑥). The binary operation is a composi-
tion of two arrows (𝑡, 𝑥) followed by (𝑠, 𝑦), and is possible if and
only if 𝑦 = 𝑡(𝑥) (when the arrows are said to be a composable,
ordered pair); that is, speaking intuitively, the target of the first
displacement provides the location for a subsequent displacement.
We term the points 𝜉𝑥 in the group 𝐺 = 𝑇 ⊳⊲ 𝑋 the source ele-
ments, as they correspond to sources of arrows, and the terms 𝜃𝑡
displacement elements.

The natural embedding 𝛾 : 𝑇 ×𝑋 → ΘΞ of arrows to the phase-
group 𝐺 is

𝛾(𝑡, 𝑥) := (𝑡, 𝑡(𝑥)).

The embedding is continuous, if we agree to use the product topol-
ogy on the space of arrows 𝑇 ×𝑋. We may call the arrow (𝑡, 𝑒𝑋)
a basic displacement, as it represents an arrow from the base point
𝑒𝑋 of 𝑋; this is carried to 𝛾(𝑡, 𝑒𝑋) = (𝑡, 𝑡(𝑒𝑋)), i.e., to the point 𝜃𝑡
of Θ. We then have the unique representation of an arrow in 𝐺 as
a multiplicative decomposition

𝛾(𝑡, 𝑥) = 𝜃𝑡 ⊳⊲ 𝜉𝑥,

i.e., the product in 𝐺 of a displacement 𝜃𝑡 and a source 𝜉𝑥.
The decomposition above induces a natural projection 𝛿 from

arrows to displacements, defined from the set 𝑇 ×𝑋 to the subset
Θ of 𝑇 ×𝑋 by

𝛿(𝑡, 𝑥) = 𝜃𝑡 = (𝑡, 𝑡(𝑒𝑋)).

This is an idempotent when viewed as acting only on sets; however,
regarding Θ as a subgroup of 𝐺, the map 𝛿 there serves further as
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a disabling operation, since it disables one of the two operations
which define ⊳⊲ in 𝐺, as we see in the following computation:

𝛾(𝑠𝑡, 𝑥) = (𝑠𝑡, 𝑠𝑡𝑥) = (𝑠, 𝑠(𝑒𝑋)) ⊳⊲ (𝑡, 𝑡𝑥) = 𝜃𝑠 ⊳⊲ 𝛾(𝑡, 𝑥)

= 𝛿(𝑠, 𝑡𝑥) ⊳⊲ 𝛾(𝑡, 𝑥).

Thus,

(𝑠, 𝑡𝑥) ∘ (𝑡, 𝑥) = 𝛾−1[𝛿(𝑠, 𝑡𝑥) ⊳⊲ 𝛾(𝑡, 𝑥)],

so that the binary operation of composition ∘ in the space of arrows
is, via the representation 𝛾, recoverable from the projection 𝛿 and
the binary operation ⊳⊲ of 𝐺.

Example 2.7. Continuing from the last computation of Example
2.6, we deduce, for the composable pair of arrows 𝛼 = (𝑠, 𝑠𝑡𝑥) and
𝛽 = (𝑡, 𝑥), that

𝛾(𝛼 ∘ 𝛽) = 𝛿(𝛼) ⊳⊲ 𝛾(𝛽).

Thus fixing 𝛼, the following relation, for any 𝛽 right-composable
with 𝛼, holds in 𝐺 = ΘΞ :

𝛿(𝛼) = 𝛾(𝛼 ∘ 𝛽)𝛾(𝛽)−1.

The right-hand side (here independent of 𝛽) will later be recog-
nized as a 𝛾-cocycle, the key concept in relation to the Uniform
Boundedness Theorems of section 4.

3. Metric aspects of duality: regular variation

In any metric group (𝑋, 𝑑𝑋), recall that ∣∣𝑥∣∣𝑋 := 𝑑𝑋(𝑥, 𝑒𝑋). If
𝑑𝑋 is right- or left-invariant (in which case, write 𝑑𝑋𝑅 or 𝑑𝑋𝐿 for
emphasis), then we have symmetry : ∣∣𝑥−1∣∣𝑋 = ∣∣𝑥∣∣𝑋 . Assuming
either right- or left-invariant 𝑑𝑋 , we have subadditivity of ∣∣𝑥∣∣𝑋 ,
i.e., the triangle inequality is obeyed in the form

∣∣𝑥𝑦∣∣𝑋 ≤ ∣∣𝑥∣∣𝑋 + ∣∣𝑦∣∣𝑋 ,
since, for instance, for the (preferred) right-invariant case, on writ-
ing 𝑑𝑋𝑅 for 𝑑𝑋 ,

𝑑𝑋𝑅 (𝑥𝑦, 𝑒) = 𝑑𝑋𝑅 (𝑥, 𝑦−1) ≤ 𝑑𝑋𝑅 (𝑥, 𝑒) + 𝑑𝑋𝑅 (𝑒, 𝑦−1).

If the group is abelian, then additive notation reduces the inequal-
ity to the usual triangle inequality. If the group is a vector space
(e.g., ℝ or ℂ), then ∣∣𝑥∣∣ is the usual norm. Borrowing from this, a
map from 𝑋 to ℝ+ is said to be a group norm if it is symmetric,
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subadditive, and zero only at 𝑒𝑋 . Normed groups are of fundamen-
tal importance to regular variation; see [14] for an exploration of
the theory, the earlier literature on the subject, and an alternative
approach to the duality of topological flows.

For an example of particular significance, note that if 𝑇 is a
subgroup of the bounded elements in 𝐴𝑢𝑡ℎ(𝑋), with composition
as the group operation, then the supremum metric defines a group
norm. As regards symmetry, one has

∣∣ℎ∣∣ = sup𝑥 𝑑
𝑋(ℎ(𝑥), 𝑥) = sup𝑦 𝑑

𝑋(𝑦, ℎ−1(𝑦)) = ∣∣ℎ−1∣∣,
and the triangle inequality is satisfied, because

∣∣ℎ′ℎ∣∣ = sup𝑥 𝑑
𝑋(ℎ′ℎ(𝑥), 𝑥) = sup𝑦 𝑑

𝑋(ℎ(𝑦), ℎ−1(𝑦))

≤ sup𝑦
[
𝑑𝑋(ℎ(𝑦), 𝑒) + 𝑑𝑋(𝑒, ℎ−1(𝑦))

] ≤ ∣∣ℎ∣∣+ ∣∣ℎ′∣∣,
an argument which draws on the fact that the supremum metric 𝑑
is in fact right-invariant, since

𝑑(ℎ𝑔, ℎ′𝑔) = sup𝑥 𝑑
𝑋(ℎ(𝑔(𝑥)), ℎ′(𝑔(𝑥)))

= sup𝑦 𝑑
𝑋(ℎ(𝑦), ℎ′(𝑦)) = 𝑑(ℎ, ℎ′).

For the symmetrized metric 𝑑𝑇 (𝑠, 𝑡) = max{𝑑(𝑠, 𝑡), 𝑑(𝑠−1, 𝑡−1)} on
𝑇, one has, as noted already, ∣∣𝑡∣∣𝑇 := 𝑑𝑇 (𝑡, 𝑒) = ∣∣𝑡∣∣, and so ∣∣ ⋅ ∣∣𝑇
is then also a group norm.

When 𝑇 and 𝑋 are metrizable topological groups, we give the
phase-group 𝐺 = 𝑇 ⊳⊲ 𝑋 the metric

(3.1) 𝑑𝐺((𝑡, 𝑥), (𝑠, 𝑦)) = 𝑑𝑇 (𝑠, 𝑡) + 𝑑𝑋(𝑥, 𝑦).

Under it, 𝐺 is a topological group, and its norm is given by

∣∣(𝑡, 𝑥)∣∣𝐺 := 𝑑𝐺((𝑡, 𝑥), (𝑒𝑇 , 𝑒𝑋)) = ∣∣𝑡∣∣𝑇 + ∣∣𝑥∣∣𝑋 .
Before investigating metric connections between 𝑇 ⊳⊲ 𝑋 and

𝑇 × 𝑋, we note that sequential convergence is a topological no-
tion, whereas the notions of divergence are metric. We are more
concerned with divergence here, especially so in the following cases:
divergence defined in 𝑋 by ∣∣𝑥𝑛∣∣ → ∞, and in 𝑇 by either a uni-
form condition ∣∣𝑡𝑛∣∣ → ∞ or a pointwise condition ∣∣𝑡𝑛𝑥∣∣ → ∞,
for each 𝑥. The first result below is concerned with 𝑇 × 𝑋 and is
followed by a result for 𝑇 ⊳⊲ 𝑋.



320 A. J. OSTASZEWSKI

Proposition 3.1 (Duality of divergence). Let the topological group
𝑋 have right-invariant metric. For 𝑠 a bounded member of 𝐴𝑢𝑡ℎ(𝑋)
and 𝑎 ∈ 𝑋,

∣∣𝑠(𝑎)∣∣ ≤ ∣∣𝑠∣∣+ ∣∣𝑎∣∣ and ∣∣𝑎∣∣ ≤ ∣∣𝑠∣∣+ ∣∣𝑠(𝑎)∣∣.

Hence, for 𝑠 and {𝑡𝑛} bounded members of 𝐴𝑢𝑡ℎ(𝑋),

(i) ∣∣𝑥𝑛∣∣𝑋 →∞ iff ∣∣𝑠(𝑥𝑛)∣∣𝑋 →∞, and
(ii) if ∣∣𝑡𝑛(𝑥)∣∣𝑋 →∞, then ∣∣𝑡𝑛∣∣𝑇 →∞.

Moreover, if 𝑇 ⊆ 𝑋 and the action is multiplicative, then

∣∣𝑠∣∣ ≤ ∣∣𝑠𝑎∣∣+ ∣∣𝑎∣∣,
so that here ∣∣𝑡𝑛∣∣ → ∞ iff ∣∣𝑡𝑛(𝑥)∣∣ → ∞, for all/for some 𝑥 ∈ 𝑋.

Proof: All three results follow from inversion-invariance and the
triangle inequality. The second and third follow from the identities
𝑎 = 𝑠−1𝑠(𝑎) and 𝑠𝑒 = 𝑠𝑎𝑎−1. The first inequality implies (ii), be-
cause ∣∣𝑡𝑛(𝑥)∣∣ ≤ ∣∣𝑡𝑛∣∣+ ∣∣𝑥∣∣ and 𝑥 is fixed. The third implies that
∣∣𝑡𝑛∣∣ ≤ ∣∣𝑡𝑛𝑥∣∣+ ∣∣𝑥∣∣. □

Proposition 3.2 (Quasi triangle inequality, see [37, 2.2]). Let 𝐺 =
𝑇 ⊳⊲ 𝑋 be metrized by (3.1); then

∣∣𝜉𝑥∣∣𝐺 = ∣∣𝑥∣∣𝑋 and ∣∣𝜃𝑡∣∣𝐺 = ∣∣𝑡∣∣𝑇 + 𝑑𝑋(𝑡(𝑒𝑋), 𝑒𝑋),

so that

∣∣𝑡∣∣𝑇 ≤ ∣∣𝜃𝑡∣∣𝐺 ≤ 2∣∣𝑡∣∣𝑇 and ∣∣𝜃𝑡 ⊳⊲ 𝜉𝑥∣∣ ≤ 2(∣∣𝜃𝑡∣∣+ ∣∣𝜉𝑥∣∣).
Hence, for 𝑥 ∈ 𝑋 and 𝑡 ∈ 𝑇 ,

(i) ∣∣𝑥∣∣ → ∞ iff ∣∣𝜉𝑥∣∣ → ∞, and
(ii) ∣∣𝑡∣∣ → ∞ iff ∣∣𝜃𝑡∣∣ → ∞.
Proof: Indeed ∣∣𝜉𝑥∣∣ = 𝑑𝐺((𝑒𝑇 , 𝑥), (𝑒𝑇 , 𝑒𝑋)) = ∣∣𝑥∣∣. Now

∣∣(𝑡, 𝑡(𝑥))∣∣ = 𝑑𝐺((𝑡, 𝑡(𝑥)), (𝑒𝑇 , 𝑒𝑋))

=
[
sup𝑧 𝑑

𝑋(𝑡(𝑧), 𝑧)
]
+ 𝑑𝑋(𝑡(𝑥), 𝑒𝑋)

= ∣∣𝑡∣∣+ 𝑑𝑋(𝑡(𝑥), 𝑒𝑋) ≤ 2∣∣𝑡∣∣+ ∣∣𝑥∣∣,
so, in particular, ∣∣𝜃𝑡∣∣ = ∣∣𝑡∣∣+ 𝑑𝑋(𝑡(𝑒𝑋), 𝑒𝑋). Thus,

∣∣𝜃𝑡 ⊳⊲ 𝜉𝑥∣∣ = ∣∣(𝑡, 𝑡(𝑥))∣∣ ≤ 2∣∣𝑡∣∣+ ∣∣𝑥∣∣+ ∣∣𝑥∣∣
≤ 2(∣∣𝜃𝑡∣∣+ ∣∣𝜉𝑥∣∣). □
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Clearly, the factor 2 does not disturb divergence considerations.
Interest in divergence structures is motivated by the following.

Definition 3.3 (regular variation). Given groups 𝑇,𝑋,𝐻 and a 𝑇 -
flow on 𝑋, we say that the function ℎ : 𝑋 → 𝐻 is regularly varying
on 𝑇 , regularly varying on 𝑋, respectively, if the respective limit
below exists. (For a development of the theory, see [15].)

∂𝑋ℎ(𝑠) = lim∣∣𝑥∣∣→∞ ℎ(𝑠𝑥)ℎ(𝑥)−1, (𝑠 ∈ 𝑇 )(3.2)

∂𝑇ℎ(𝑥) = lim∣∣𝑠∣∣→∞ ℎ(𝑠𝑥)ℎ(𝑠(𝑒𝑋))−1, (𝑥 ∈ 𝑋).(3.3)

In the next section we begin a study of the relation of these ideas
to the phase group. Hereafter, we will write lim𝑠 for lim∣∣𝑠∣∣→∞.

4. Cocycles and the transfer principle

Recall (see [22]) that for a 𝑇 -flow on𝑋, a function 𝜎 : 𝑇×𝑋 → 𝐻
is a cocycle on 𝑋 if

(4.1) 𝜎(𝑠𝑡, 𝑥) = 𝜎(𝑠, 𝑡𝑥)𝜎(𝑡, 𝑥).

(In the case of Example 2.6, this says that 𝜎 preserves the compo-
sition of composable arrows of the action groupoid.) Motivated by
(3.2) and (3.3), put

(4.2) 𝜎ℎ(𝑡, 𝑥) = ℎ(𝑡𝑥)ℎ(𝑥)−1.

Then 𝜎ℎ is a cocycle (the ℎ-cocycle), since

(4.3) ℎ(𝑠𝑡𝑥)ℎ(𝑥)−1 = ℎ(𝑠𝑡𝑥)ℎ(𝑡𝑥)−1ℎ(𝑡𝑥)ℎ(𝑥)−1.

So the functions ∂ℎ defined by (3.2) and (3.3) are limits of ℎ-
cocycles. A cocycle is a coboundary on 𝑋 if there is continuous
ℎ : 𝑋 → 𝐻 such that

ℎ(𝑡𝑥) = 𝜎(𝑡, 𝑥)ℎ(𝑥).

We will then say that the cocycle is an ℎ-coboundary on 𝑋. Thus,
for ℎ continuous on 𝑋, 𝜎ℎ is an ℎ-coboundary on 𝑋. (Another
example: Equipping the space of arrows 𝑇 × 𝑋 of Example 2.6
with the product topology, the cocycle 𝜎𝛾(𝛼, 𝛽) of Example 2.7 is
a 𝛾-coboundary, since 𝛾 is continuous.)

In Remark 5.7 below, we mention applications to regular varia-
tion and to the skew-product flows in the theory of non-autonomous
differential equations. Note that identity (4.3) permits an “inter-
leafing” idempotent of 𝐻, a projection, 𝜋 to be inserted into the
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formula for 𝜎ℎ to yield the cocycle ℎ(𝑡𝑥)𝜋ℎ(𝑥)−1, a matter of im-
portance in the skew-product case (see [39, §3a]).

Before investigating boundedness properties of cocycles, we show
how to lift cocycles from 𝑇 ×𝑋 to 𝑇 ⊳⊲ 𝑋.

Proposition 4.1 (Transfer Principle). Given a 𝑇 -flow on 𝑋, and
a function ℎ : 𝑋 → 𝐻 into the group 𝐻, define its extension ℎ𝐺 to
the phase-group 𝐺 by

ℎ𝐺((𝑡, 𝑥)) := ℎ(𝑥).

Then the corresponding cocycle 𝜎𝐺 defined on Θ × 𝐺 by ℎ𝐺(𝜃𝑠 ⊳⊲
𝑔)ℎ𝐺(𝑔)

−1satisfies

𝜎𝐺(𝜃𝑠, (𝑡, 𝑥)) = 𝜎ℎ(𝑠, 𝑥) and, in particular, 𝜎𝐺(𝜃𝑠, 𝜉𝑥) = 𝜎ℎ(𝑠, 𝑥).

Hence, if ℎ is regularly varying on 𝑇 , then ℎ𝐺 is regularly varying on
Θ, and likewise, if ℎ is regularly varying on 𝑋, then ℎ𝐺 is regularly
varying on Ξ. That is,

∂𝑋ℎ(𝑠) = lim𝑥 ℎ(𝑠𝑥)ℎ(𝑥)
−1 = lim𝑔 ℎ𝐺(𝜃𝑠 ⋅ 𝑔)ℎ𝐺(𝑔)−1,

∂𝑇ℎ(𝑥) = lim𝑠 ℎ(𝑠𝑥)ℎ(𝑠(𝑒𝑋))−1 = lim𝑠 ℎ𝐺(𝜃𝑠 ⋅ 𝜉𝑥)ℎ𝐺(𝜃𝑠)−1.

Proof: Interpreting 𝐺 as the internal direct product of 𝑇 and 𝑋
in the sense of the representation theorem (Theorem 2.2), we have

ℎ𝐺(𝜃𝑡 ⊳⊲ 𝜉𝑥) = ℎ𝐺((𝑡, 𝑡(𝑥))) = ℎ(𝑡𝑥), and

ℎ𝐺(𝜉𝑥) = ℎ𝐺((𝑒𝑇 , 𝑥)) = ℎ(𝑥).

For 𝑔 = (𝑡, 𝑥), we have

ℎ𝐺(𝜃𝑠 ⊳⊲ 𝑔) = ℎ𝐺((𝑠, 𝑠(𝑒𝑋)) ⊳⊲ (𝑡, 𝑥)) = ℎ𝐺((𝑠𝑡, 𝑠𝑡(𝑡
−1𝑥))

= ℎ(𝑠𝑥) = ℎ𝐺(𝜃𝑠 ⊳⊲ 𝜉𝑥).

Also, ℎ𝐺(𝜃𝑠) = ℎ𝐺((𝑠, 𝑠(𝑒𝑋))) = ℎ(𝑠(𝑒𝑋)). So

𝜎ℎ(𝑠, 𝑥) = ℎ(𝑠𝑥)ℎ(𝑥)−1 = ℎ𝐺(𝜃𝑠 ⊳⊲ 𝑔)ℎ𝐺(𝜉𝑥)
−1 = 𝜎𝐺(𝜃𝑠, 𝜉𝑥).

Thus, we do indeed have

∂𝑋ℎ(𝑠) = lim𝑥 ℎ(𝑠𝑥)ℎ(𝑥)
−1 = lim𝑥 ℎ𝐺(𝜃𝑠 ⋅ 𝜉𝑥)/ℎ𝐺(𝜉𝑥),

∂𝑇ℎ(𝑥) = lim𝑠 ℎ(𝑠𝑥)ℎ(𝑠(𝑒𝑋))−1 = lim𝑠 ℎ𝐺(𝜃𝑠 ⋅ 𝜉𝑥)/ℎ𝐺(𝜃𝑠),
as asserted. Here it is important to bear in mind that ∣∣𝑥∣∣ → ∞ if
and only if ∣∣𝜉𝑥∣∣ → ∞, and ∣∣𝑡∣∣ → ∞ if and only if ∣∣𝜃𝑡∣∣ → ∞. □
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Remark 4.2. Recall that 𝑥𝑡 = 𝑡𝑥 and 𝑇𝑋 is isomorphic to 𝐺 under
𝑥𝑡→ 𝜉𝑥𝜃𝑡 = (𝑡, 𝑡(𝑥)). The natural extension of ℎ : 𝑋 → 𝐻 from 𝑋
to 𝑇𝑋 is via point-evaluation as given by

ℎ𝑇𝑋
(𝜏) := ℎ(𝜏(𝑒𝑋)) = ℎ(𝑡(𝑥)), for 𝜏 = 𝑡𝑥 ∈ 𝑇𝑋 .

This is consistent with the transfer principle, since

ℎ𝐺(𝜉𝑥𝜃𝑡) = ℎ(𝑡(𝑥)) = ℎ𝑇𝑋
(𝑥𝑡).

5. Uniform Boundedness Theorems for cocycles

In the theorems of this section we will be concerned with bound-
edness of cocycles. We say that 𝜎 is locally bounded (locally essen-
tially bounded, respectively) at 𝑡 ∈ 𝑇 if, for some open neighborhood
𝑈 ⊂ 𝑇 of 𝑡, the set {𝜎(𝑠, 𝑥) : 𝑠 ∈ 𝑈, 𝑥 ∈ 𝑋} is bounded in the norm
of 𝐻 (the set {𝜎(𝑠, 𝑥) : 𝑠 ∈ 𝑈, 𝑥 ∈ 𝑋∖𝐸} is bounded in 𝐻, for a
meager set 𝐸, respectively).

We will invoke somewhat less than continuity, placing instead
conditions on the separate behaviors of 𝜎(𝑡, .) and 𝜎(., 𝑥). Examples
below illustrate how these conditions may arise; however, it is as
well to pause and consider the general significance of the separate
continuity on 𝑇 of the map 𝑡 → 𝜎(𝑡, 𝑥). We note it is a natural
assumption in the theory of integral equations (see [34]), including
the renewal equation of probability (see [31]).

Specifically, consider the situation in a multiplicative framework,
when 𝑇 ⊆ 𝑋, so that 𝑒𝑇 = 𝑒𝑋 . Since 𝑇 may act on 𝑇 (being a
subgroup), we examine the restriction of cocycles from 𝑇 ×𝑋 down
to 𝑇 × 𝑇. Let ℎ : 𝑇 → 𝐻. Note that 𝜎ℎ(𝑡, 𝑒𝑇 ) = ℎ(𝑡)ℎ(𝑒𝑇 )

−1, from
which ℎmay be retrieved (up to a constant factor). Observe also the
standardization 𝜎ℎ(𝑒𝑇 , 𝑒𝑇 ) = 𝑒𝐻 , and that we may, additionally and
without loss of generality, also require ℎ(𝑒𝑇 ) = 𝑒𝐻 (since 𝐻(𝑡) =
ℎ(𝑡)ℎ(𝑒𝑇 )

−1 generates the same cocycle as ℎ on 𝑇 ).
Now let 𝜎 be an arbitrary cocycle from 𝑇 × 𝑇 → 𝐻 (implying

association with the multiplicative 𝑇 -flow on 𝑇 ), save only that it
satisfies 𝜎(𝑒𝑇 , 𝑒𝑇 ) = 𝑒𝐻 . Put 𝑘(𝑡) = 𝑘𝜎(𝑡) := 𝜎(𝑡, 𝑒𝑇 ); then 𝜎𝑘(𝑠, 𝑡)
is a 𝑘-coboundary on 𝑇 provided 𝜎(., 𝑒𝑇 ) is continuous. But

𝜎𝑘(𝑠, 𝑡) = 𝑘(𝑠𝑡)𝑘(𝑡)−1 = 𝜎(𝑠𝑡, 𝑒𝑇 )𝜎(𝑡, 𝑒𝑇 )
−1

= 𝜎(𝑠, 𝑡𝑒𝑇 )𝜎(𝑡, 𝑒𝑇 )𝜎(𝑡, 𝑒𝑇 )
−1 = 𝜎(𝑠, 𝑡).
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So if 𝜎(., 𝑒𝑇 ) is continuous, then 𝜎 itself is a 𝑘-coboundary on 𝑇,
as 𝑘(.) is continuous on 𝑇 (see [22, Proposition 2.4]). To go in the
opposite direction by taking 𝑇 = 𝑋 is, generally, over-restrictive.
For a more searching analysis, played out in a compact space set-
ting, see [22]; there, (𝑋,𝑇 ) is extendable to (𝑀,𝑇 ), a “universal
minimal set,” where the extended cocycle 𝜎 is a 𝑘𝜎-coboundary.

A special case of the first uniform boundedness theorem (Theo-
rem 5.1), when 𝑇 is a subgroup of 𝑋 and 𝜎 = 𝜎ℎ, with 𝑡→ 𝜎(𝑡, 𝑥)
continuous on 𝑇, was proved by Baǰsanski and Karamata; they
stated only conclusion (ii), but a close inspection of their proof
reveals the stronger, unstated, result (i). For convenience and to
document a new environment and the stronger conclusion, stronger
than asserted in [5], the brief proof for their case is reproduced here.

In the second uniform boundedness theorem (Theorem 5.5), we
weaken the continuity hypothesis to merely the Baire property and
obtain only the weaker original conclusion of Baǰsanski and Kara-
mata. We prove this in a group setting and from that deduce the
more general flow version.

The paradigm is of course the Banach-Steinhaus Theorem (see
[38, Theorem 2.5, p. 44]), where 𝑋 and 𝐻 are topological vector
spaces and Γ is a collection of continuous linear maps 𝑡 : 𝑋 → 𝑌
with bounded “orbits” {𝑡𝑥 : 𝑡 ∈ Γ}. (Working in the additive group
of bounded linear maps ℬ(𝑋,𝐻), embed Γ in the finitely generated
subgroup 𝑇 which it generates; this gives a 𝑇 -flow (𝑡, 𝑥) → 𝑡(𝑥).)
Example 2.4 demonstrates that the weaker hypothesis here yields,
in general (say in an infinite-dimensional Hilbert space), also a
weaker result.

We say that 𝑇 is a Baire group when 𝑇 is a Baire space ([23];
see especially p. 198, §3.9, and Exercises 3.9.J). The three distinct
conditions appearing as pairs in theorems 5.1 and 5.5 may be called
Baire Carathéodory conditions after the three conditions: (Co)
continuity, (M) measurability, and (Bo) boundedness, applied by
Carathéodory to the initial value problem of differential equations
(for details, see [25], and for a more recent example, [18]); here, one
has Baire analogues, obtained by replacing “measurable” with (Ba),
the “Baire property.” Below, recall again that ∣∣ℎ∣∣ := 𝑑(ℎ, 𝑒𝐻) and
note that “for quasi all 𝑡” means “for all 𝑡 off a meager set.”
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Theorem 5.1 (First, Continuous, Cocycle Uniform Boundedness
Theorem, see [5, Theorem 3]). Let 𝑋 and 𝐻 be topological groups
and 𝑇 a Baire group acting on 𝑋. Suppose the cocycle 𝜎 : 𝑇 ×𝑋 →
𝐻is such that

(Bo) for quasi all 𝑡 ∈ 𝑇, the mapping 𝑥→ 𝜎(𝑡, 𝑥) is bounded over
𝑋, i.e., there is a meager set 𝐸𝑇 and function 𝑚 : 𝑇 → 𝜔
such that, for all 𝑡 ∈ 𝑇∖𝐸𝑇 , ∣∣𝜎(𝑡, 𝑥)∣∣ ≤ 𝑚(𝑡), for all 𝑥 ∈ 𝑋;

(Co) for quasi any 𝑥 ∈ 𝑋, the mapping 𝑡→ 𝜎(𝑡, 𝑥) is continuous
on 𝑇.

Then

(i) 𝜎(𝑡, 𝑥) is essentially-bounded on the unit ball of 𝑇, and so
(ii) 𝜎(𝑡, 𝑥) is uniformly essentially-bounded for 𝑡 in compact

subsets 𝐾 avoiding 𝐸𝑇 .

Moreover, replacing throughout “quasi all” with “all” yields the
stronger conclusion obtained by replacing “essentially-bounded” with
“bounded” and “compact subsets 𝐾 avoiding 𝐸𝑇” with “all compact
subsets 𝐾.”

Proof: We give a streamlined version of the proof in [5] for the
group version of the theorem; the transfer principle implies the flow
version (see the second step in Theorem 5.5 for an explicit deduction
of the flow version). We suppose that (Co) and (Bo) hold off the
respective meager sets 𝐸𝑋 and 𝐸𝑇 of exceptions. For 𝑛 ∈ 𝜔, put
𝐹𝑛 = {ℎ ∈ 𝐻 : ∣∣ℎ∣∣ ≤ 𝑛} where ∣∣ℎ∣∣ is the norm on 𝐻. For 𝑛 ∈ 𝜔,
put also

𝐾𝑛(𝑥) = {𝑡 : 𝜎(𝑡, 𝑥) ∈ 𝐹𝑛}, 𝐾𝑛 =
∩
{𝐾𝑛(𝑥) : 𝑥 ∈ 𝑋∖𝐸𝑋}.

By assumption (Co), for each 𝑥 ∈ 𝑋∖𝐸𝑋 , the mapping 𝑡→ 𝜎(𝑡, 𝑥)
is continuous. Hence, 𝐾𝑛(𝑥) is closed for each 𝑥 ∈ 𝑋∖𝐸𝑋 . Hence,
also𝐾𝑛 is closed. Now, for a given 𝑡 /∈ 𝐸𝑇 , the set {𝜎(𝑡, 𝑥) : 𝑥 ∈ 𝑋},
being bounded, is contained in some 𝐹𝑚(𝑡). Hence, 𝑡 ∈ 𝐾𝑚(𝑡)(𝑥) for
each 𝑥 ∈ 𝑋, in fact, and so 𝑡 ∈ 𝐾𝑚(𝑡). Thus,

𝑇 = 𝐸𝑇 ∪
∪

𝑛∈𝜔𝐾𝑛 =
∪

𝑛∈𝜔 𝐸
𝑇
𝑛 ∪

∪
𝑛∈𝜔𝐾𝑛,

where each 𝐸𝑇
𝑛 is nowhere dense. As 𝑇 is Baire, for some non-

empty open 𝑈 and some 𝑝 ∈ 𝜔, we have 𝑈 ⊂ 𝐾𝑝. Thus, for 𝑡 ∈ 𝑈
and arbitrary 𝑥 ∈ 𝑋∖𝐸𝑋 , we have

∣∣𝜎(𝑡, 𝑥)∣∣ ≤ 𝑝,
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i.e., 𝜎 is locally uniformly-essentially bounded at 𝑡. But this local
assertion is true on 𝑠𝑈 for any 𝑠 /∈ 𝐸𝑇 , because for any 𝑡 ∈ 𝑈

𝜎(𝑠𝑡, 𝑥) = 𝜎(𝑠, 𝑡𝑥)𝜎(𝑡, 𝑥),

and the set {𝜎(𝑠, 𝑦) : 𝑦 ∈ 𝑋} is bounded, so that {𝜎(𝑠𝑡, 𝑥) : 𝑡 ∈
𝑈, 𝑥 ∈ 𝑋∖𝐸𝑋} is bounded.

This last result now implies the weaker property of uniform
essential-boundedness on compact sets. Indeed, let 𝐾 be compact
in 𝑇∖𝐸𝑇 . Since (𝐸𝑇 )−1 is meager, being a homeomorphic image of
𝐸𝑇 , we may pick 𝑡 ∈ 𝑈∖(𝐸𝑇 )−1; thus, 𝑡−1 /∈ 𝐸𝑇 . Since 𝑒 ∈ 𝑡−1𝑈 ,
we see that 𝑘𝑡−1𝑈 is an open neighborhood of 𝑘. Thus, there are
finitely many points 𝑘1, .., 𝑘𝑛 ∈ 𝐾 such that

𝐾 ⊂
∪𝑛

𝑖=1
𝑘𝑖𝑡

−1𝑈.

So for 𝑘 ∈ 𝐾, there is 𝑖 ≤ 𝑛 and 𝑠 ∈ 𝑈 such that 𝑘 = 𝑘𝑖𝑡
−1𝑠. Again

applying the defining property that 𝜎(𝑠𝑡, 𝑥) = 𝜎(𝑠, 𝑡𝑥)𝜎(𝑡, 𝑥), we
obtain

𝜎(𝑘, 𝑥) = 𝜎(𝑘𝑖𝑡
−1𝑠, 𝑥) = 𝜎(𝑘𝑖, 𝑡

−1𝑠𝑥)𝜎(𝑡−1𝑠, 𝑥)

= 𝜎(𝑘𝑖, 𝑡
−1𝑠𝑥)𝜎(𝑡−1, 𝑠𝑥)𝜎(𝑠, 𝑥).

Since 𝑠 ∈ 𝑈, the set {𝜎(𝑠, 𝑥) : 𝑥 ∈ 𝑋∖𝐸𝑋} is bounded. By assump-
tion (Bo), the set {𝜎(𝑡−1, 𝑦) : 𝑦 ∈ 𝑋} is bounded, and likewise,
so is each of the sets {𝜎(𝑘𝑖, 𝑧) : 𝑧 ∈ 𝑋} for 𝑖 = 1, ..., 𝑛. Hence,
the set {𝜎(𝑘, 𝑥) : 𝑘 ∈ 𝐾,𝑥 ∈ 𝑋∖𝐸𝑋} is bounded, i.e., 𝜎(𝑘, 𝑥) is
bounded uniformly for 𝑥 ∈ 𝑋∖𝑋𝐸 with 𝐾 ranging over compact
sets in 𝑇∖𝐸𝑇 .

Taking 𝐸𝑇 = 𝐸𝑋 = ∅, repeating the arguments above yields the
asserted strengthenings. □

The assumption (Co) is weakened in the following theorem and
consequently the conclusion is also weaker. The proof is more in-
volved as it employs the category embedding theorem (Theorem
5.3), a result that we quote below after a definition from [13] (to
which we refer for a proof).

Definition 5.2 (weak category convergence). A sequence of home-
omorphisms 𝜓𝑛 satisfies the weak category convergence condition
(wcc) if, for any non-empty open set 𝑈, there is an non-empty open
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set 𝑉 ⊆ 𝑈 such that, for each 𝑘 ∈ 𝜔,∩
𝑛≥𝑘

𝑉 ∖𝜓−1
𝑛 (𝑉 ) is meager. (wcc)

Equivalently, for each 𝑘 ∈ 𝜔, there is a meager set 𝑀 such that, for
𝑡 /∈𝑀,

𝑡 ∈ 𝑉 =⇒ (∃𝑛 ≥ 𝑘) 𝜓𝑛(𝑡) ∈ 𝑉.
For this “convergence to the identity” form, see [13].

Theorem 5.3 (Category Embedding Theorem). Let 𝑋 be a Baire
space. Suppose that homeomorphisms 𝜓𝑛 : 𝑋 → 𝑋 are given for
which the weak category convergence condition (5.2) is met. Then,
for any non-meager Baire set 𝑇, for quasi all 𝑡 ∈ 𝑇, there is an
infinite set 𝕄𝑡 that

{𝜓𝑚(𝑡) : 𝑚 ∈𝕄𝑡} ⊆ 𝑇.
Example 5.4. In any metrizable topological group with invariant
metric 𝑑, for any sequence tending to the identity 𝑧𝑛 → 𝑒, the
mappings defined by 𝜓𝑛(𝑥) = 𝑧𝑛𝑥 satisfy the (wcc). For a proof see
[14].

Theorem 5.5 (Second, or Baire, Cocycle Uniform Boundedness
Theorem, see [5, Theorem 3]). Let 𝑋 and 𝐻 be topological groups
and 𝑇 a Baire group acting on 𝑋. Suppose the cocycle 𝜎 : 𝑇 ×𝑋 →
𝐻 is such that

(Ba) for each fixed 𝑥 ∈ 𝑋, the mapping 𝑡 → 𝜎(𝑡, 𝑥) is Baire on
𝑇,

(Bo) for quasi all 𝑡 ∈ 𝑇, the mapping 𝑥→ 𝜎(𝑡, 𝑥) is bounded over
𝑋, i.e., there is a meager set 𝐸𝑇 and function 𝑚 : 𝑇 → 𝜔
such that, for all 𝑡 ∈ 𝑇∖𝐸𝑇 , ∣∣𝜎(𝑡, 𝑥)∣∣ ≤ 𝑚(𝑡), for all 𝑥 ∈ 𝑋.

Then 𝜎(𝑡, 𝑥) is uniformly bounded for 𝑡 in compact subsets 𝐾 avoid-
ing 𝐸𝑇 .

Moreover, replacing throughout “quasi all” with “all” yields the
stronger conclusion obtained by replacing “compact subsets 𝐾 avoid-
ing 𝐸𝑇” with “all compact subsets 𝐾.”

Proof: Our first step is to prove the result for 𝑇 a subgroup of 𝑋
rather than for 𝑇 a group acting on 𝑋. As a second step we infer
the result for flows.
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We suppose that (Bo) is satisfied off a meager set 𝐸𝑇 of excep-
tions. Suppose, by way of contradiction, that 𝑡𝑛 → 𝑡0 /∈ 𝐸𝑇 and
{𝜎(𝑡𝑛, 𝑥𝑛) : 𝑛 ∈ 𝜔} is unbounded. We may assume that 𝑡0 = 𝑒;
indeed

𝜎(𝑡−1
0 𝑡𝑚, 𝑥𝑚) = 𝜎(𝑡−1

0 , 𝑡𝑚𝑥𝑚)𝜎(𝑡𝑚, 𝑥𝑚),

and by assumption (Bo), the set {𝜎(𝑡−1
0 , 𝑧) : 𝑧 ∈ 𝑋} is bounded;

hence, {𝜎(𝑡−1
0 𝑡𝑛, 𝑥𝑛) : 𝑛 ∈ 𝜔} is unbounded and here 𝑡−1

0 𝑡𝑛 → 𝑒.
For each 𝑛, the mapping ℎ𝑛(.) = 𝜎(., 𝑥𝑛) is Baire. Let 𝑌 := {𝑥𝑖 :

𝑖 ∈ 𝜔}. On a co-meager set 𝑆 ⊂ 𝑇 each function ℎ𝑛(.) is continuous
on 𝑆. We may suppose that 𝑆 is complementary to 𝐸𝑇 . We now
adapt the proof in [5] by working with 𝑆 and 𝑌 in place of 𝑇 and
𝑋. Recalling that, as usual, ∣∣ℎ∣∣ = 𝑑(ℎ, 𝑒𝐻), put 𝐹𝑛 = {ℎ ∈ 𝐻 :
∣∣ℎ∣∣ ≤ 𝑛} and
𝐾𝑛(𝑥𝑖) = {𝑡 ∈ 𝑆 : 𝜎(𝑡, 𝑥𝑖) ∈ 𝐹𝑛}, 𝐾𝑛 =

∩
{𝐾𝑛(𝑥𝑖) : 𝑖 ∈ 𝜔}.

Thus, 𝐾𝑛 is a Baire set. Now, for a given 𝑡 ∈ 𝑆, the set {𝜎(𝑡, 𝑥) :
𝑥 ∈ 𝑌 }, being bounded, is contained by some 𝐹𝑚(𝑡). Hence, 𝑡 ∈
𝐾𝑚(𝑡)(𝑥) for each 𝑥, and so 𝑡 ∈ 𝐾𝑚(𝑡). Thus,

𝑆 =
∪

𝑛∈𝜔𝐾𝑛.

Now for some 𝑝, 𝐾𝑝 is non-meager. By the category embedding
theorem (Theorem 5.3), for some 𝑠 ∈ 𝑆 (implying that 𝑠 /∈ 𝐸𝑇 )
and some infinite 𝕄, the set {𝑠𝑡𝑚 : 𝑚 ∈ 𝕄} ⊂ 𝐾𝑝 . Thus, in
particular,

∣𝜎(𝑠𝑡𝑚, 𝑥𝑚)∣ ≤ 𝑝 .
But

𝜎(𝑠𝑡𝑚, 𝑥𝑚) = 𝜎(𝑠, 𝑡𝑚𝑥𝑚)𝜎(𝑡𝑚, 𝑥𝑚).

Now again by assumption (Bo), the set {𝜎(𝑠, 𝑧) : 𝑧 ∈ 𝑋} is bounded,
as 𝑠 /∈ 𝐸𝑇 . But this contradicts the unboundedness of {𝜎(𝑡𝑚, 𝑥𝑚) :
𝑚 ∈𝕄}.

Taking 𝐸𝑇 = 𝐸𝑋 = ∅, a re-reading of the arguments above,
again yields the asserted strengthenings.

Our second step is to deduce the theorem, as asserted, from its
group formulation. For ℎ : 𝑋 → 𝐻, and with 𝐺 = 𝑇 × 𝑋, define
the extension ℎ𝐺 : 𝐺→ 𝐻 by

ℎ𝐺((𝑡, 𝑥)) := ℎ(𝑥).
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Then, interpreting 𝐺 as the internal direct product of 𝑇 and 𝑋 in
the sense of the representation theorem (Theorem 2.2), we have

ℎ𝐺(𝜎𝑡 ⊳⊲ 𝜉𝑥) = ℎ𝐺((𝑡, 𝑡(𝑥))) = ℎ(𝑡𝑥), and

ℎ𝐺(𝜉𝑥) = ℎ𝐺((𝑒𝑇 , 𝑥)) = ℎ(𝑥),

and so

𝜎(𝑡, 𝑥) = ℎ𝐺(𝜎𝑠 ⊳⊲ 𝜉𝑥)ℎ𝐺(𝜉𝑥)
−1 = ℎ(𝑡𝑥)ℎ(𝑥)−1.

Now apply the group version of the theorem established in the first
step. □

Theorem 5.6 (Third, Asymptotic, Cocycle Uniform Bounded-
ness Theorem, see [9, Theorem 2.0.1]). Let 𝑋 and 𝐻 be topological
groups with right-invariant metric. Let 𝑇 be a Baire group acting
on 𝑋. Suppose the cocycle 𝜎 : 𝑇 ×𝑋 → 𝐻 is such that

(Ba) for each fixed 𝑥 ∈ 𝑋, the mapping 𝑡 → 𝜎(𝑡, 𝑥) is Baire on
𝑇,

(ABo) for quasi all 𝑡 ∈ 𝑇, the mapping 𝑥 → 𝜎(𝑡, 𝑥) is asymp-
totically bounded over 𝑋, i.e., there is a meager set 𝐸𝑇

and functions 𝑚, 𝑘 : 𝑇 → 𝜔 such that, for all 𝑡 ∈ 𝑇∖𝐸𝑇 ,
∣∣𝜎(𝑡, 𝑥)∣∣ ≤ 𝑚(𝑡), for all 𝑥 with ∣∣𝑥∣∣ ≥ 𝑘(𝑡).

Then 𝜎(𝑡, 𝑥) is uniformly bounded for 𝑡 in compact subsets 𝐾 avoid-
ing 𝐸𝑇 .

Proof: We argue as in Theorem 5.5, but now specifically suppose
that ∣∣𝜎(𝑢𝑛, 𝑥𝑛)∣∣ > 𝑛, for chosen sequences {𝑢𝑛} in 𝑇 and {𝑥𝑛} in
𝑋 with 𝑢𝑛 → 𝑢 and ∣∣𝑥𝑛∣∣ → ∞. Now boundedness at 𝑡 implies
that, for all 𝑛 with ∣∣𝑥𝑛∣∣ > 𝑘(𝑡), we have

∣∣𝜎(𝑡, 𝑥𝑛)∣∣ < 𝑚(𝑡) <
1

2
𝑛.

Put

𝑇 = 𝐸𝑇 ∪
∪

𝑘
𝑇𝑘 with 𝑇𝑘 =

∩
𝑛≥𝑘
{𝑡 : ∣∣𝜎(𝑡, 𝑥𝑛)∣∣ < 1

2
𝑛}.

By (Ba), for each 𝑘, the set 𝑇𝑘 is Baire. For some 𝐾, we see that
𝑇𝐾 is non-meager, so there is 𝑠 and an infinite 𝕄𝑠 > 𝐾 such that

{𝑠𝑢𝑚 : 𝑚 ∈𝕄𝑠} ⊆ 𝑇𝐾 .
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This gives, for 𝑚 ∈𝕄𝑡, that

∣∣𝜎(𝑠𝑢𝑚, 𝑥𝑚)∣∣ < 1

2
𝑚.

We claim that ∣∣𝑢𝑚𝑥𝑚∣∣ → ∞; otherwise, by inversion-invariance,
∣∣𝑢−1

𝑚 ∣∣ = ∣∣𝑢𝑚∣∣ is bounded, so boundedness of ∣∣𝑢𝑚𝑥𝑚∣∣ would imply
boundedness of ∣∣𝑥𝑚∣∣ from

∣∣𝑥𝑚∣∣ = ∣∣𝑢−1
𝑚 𝑢𝑚𝑥𝑚∣∣ ≤ ∣∣𝑢−1

𝑚 ∣∣+ ∣∣𝑢𝑚𝑥𝑚∣∣.
Now, for 𝑚 ∈𝕄𝑠 such that ∣∣𝑢𝑚𝑥𝑚∣∣ > 𝑘(𝑠), we have ∣∣𝜎(𝑠, 𝑢𝑚𝑥𝑚)∣∣
≤ 𝑚(𝑠). But, by the defining property of a cocycle,

𝜎(𝑠𝑢𝑚, 𝑥𝑚) = 𝜎(𝑠, 𝑢𝑚𝑥𝑚)𝜎(𝑢𝑚, 𝑥𝑚),

which implies that

∣∣𝜎(𝑢𝑚, 𝑥𝑚)∣∣ = ∣∣𝜎(𝑠, 𝑢𝑚𝑥𝑚)−1𝜎(𝑠𝑢𝑚, 𝑥𝑚)∣∣
≤ ∣∣𝜎(𝑠, 𝑢𝑚𝑥𝑚)−1∣∣+ ∣∣𝜎(𝑠𝑢𝑚, 𝑥𝑚)∣∣.

So, using inversion invariance and the triangle inequality of the
group norm, we have, for 𝑚 ∈ 𝕄𝑠 such that ∣∣𝑢𝑚𝑥𝑚∣∣ > 𝑘(𝑠) that

𝑚 < ∣∣𝜎(𝑢𝑚, 𝑥𝑚)∣∣ ≤ 1

2
𝑚+𝑚(𝑠) ≤ 1

2
𝑚+

1

2
𝑚 ≤ 𝑚,

a contradiction. □
Remark 5.7. 1. When 𝐻 is the real line, there is the opportunity
to interpret unboundedness in the two directions ±∞.

2. There is an implicit affinity between Theorem 5.6 and exten-
sions of the Karamata theory of regular variation (see [9, Chapter
2]). The classical context places the asymptotic boundedness as-
sumption on ℎ : 𝑋 → 𝐻, which at its simplest requires that there
exists 𝑚∗ : 𝑇 → 𝜔, such that

lim𝑛 sup∣∣𝑥∣∣≥𝑛 ∣∣ℎ(𝑡𝑥)ℎ(𝑥)−1∣∣ < 𝑚∗(𝑡).

From this hypothesis, in the case when 𝑇 = 𝐻 = 𝑋 = ℝ, one
deduction of [9, Theorem 2.0.1, p. 62 ] is a uniform asymptotic
boundedness theorem (UABT), that for 𝐾 compact

lim𝑛 sup∣∣𝑥∣∣≥𝑛 sup𝑡∈𝐾 ∣∣ℎ(𝑡𝑥)ℎ(𝑥)−1∣∣ <∞.
This is implied by Theorem 5.6. In the classical one-dimensional
case, UABT in turn yields the existence of a regularly varying func-
tion of 𝑡 dominating ℎ(𝑡𝑥)ℎ(𝑥)−1 for all large 𝑥 and 𝑡. That result
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generalizes to a multivariate form with varying indices in the var-
ious flow directions. For a version of this result, see [14, Theorem
7.11 ] (Global Bounds Theorem). See also [39, §3a ] for its relevance
to the theory of differential equations.

Example 5.8 (Illustrative Example: Euclidean equivalence of UBT
with Uniform Convergence Theorem). For ℎ : 𝑋 → 𝐻 and a given
𝑇 -flow on 𝑋, the map 𝑡→ 𝜎ℎ(𝑡, 𝑥) is continuous/Baire if the func-
tion ℎ is continuous/Baire, since (𝑡, 𝑥)→ 𝑡𝑥 is continuous (“if and
only if” when 𝑇 = 𝑋).

Suppose now that 𝑋 and 𝐻 are normed vector spaces and 𝑇 is
a subspace of 𝑋 acting on 𝑋 by translation. Assume first that ℎ is
linear. Reverting to the abelian additive notation, we have

𝜎ℎ(𝑡, 𝑥) = ℎ(𝑡𝑥)− ℎ(𝑥) = ℎ(𝑡),

so that for fixed 𝑡, the map 𝑥→ 𝜎ℎ(𝑡, 𝑥) is bounded. More generally,
assume that ℎ is Baire and regularly varying on 𝑇 , meaning that
(see §3, or [15]) the limit function

(5.1) ∂𝑋ℎ(𝑡) := lim
∣∣𝑥∣∣→∞

𝜎ℎ(𝑡, 𝑥)

exists for all 𝑡. Indeed, according to the Uniform Convergence The-
orem (see [15] for the general metrizable topological group setting
of UCT, and [9] for the special case of 𝑋 = ℝ), convergence to ∂𝑋ℎ
is uniform for 𝑡 restricted to compact sets. We take up this point
in a later step.

For now fix 𝑡; then, for all 𝑥 with ∣∣𝑥∣∣𝑋 large enough, say for
simplicity, for ∣∣𝑥∣∣𝑋 > 1,

(5.2) ∣∣𝜎ℎ(𝑡, 𝑥)∣∣𝐻 ≤ ∣∣∂𝑋ℎ(𝑡)∣∣𝐻 + ∣∣𝜎ℎ(𝑡, 𝑥)− ∂𝑋ℎ(𝑡)∣∣𝐻 .
If 𝑋 is finite-dimensional (Euclidean) and additionally ℎ is contin-
uous, then ∣∣𝜎ℎ(𝑡, 𝑥)∣∣𝐻 is bounded on the unit ball ∣∣𝑥∣∣𝑋 ≤ 1 and
so again, for fixed 𝑡, the map 𝑥→ 𝜎ℎ(𝑡, 𝑥) is bounded. In these cir-
cumstances both Theorem 5.1 and Theorem 5.5 assert that 𝜎ℎ(𝑡, 𝑥)
is bounded on the unit ball of 𝑇 .

Here is an alternative proof from UCT. Observe that ∂𝑋ℎ is
additive by (4.1), and, being Baire (5.1), is linear (by the Banach-
Mehdi Theorem, see e.g., [6, 1.3.4, p. 40] in collected works; also,
[33], or the literature cited in [16]; or [15]), because the Euclidean
space 𝑇 is Baire. Thus, ∂𝑋ℎ here is continuous, so has bounded
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operator norm; hence, ∣∣∂𝑋ℎ(𝑡)∣∣𝐻 ≤ ∣∣∂𝑋ℎ∣∣∣∣𝑡∣∣𝑋 . This together
with the UCT applied to (5.2) confirms that, for 𝑡 restricted to the
unit ball in 𝑇 , i.e., when ∣∣𝑡∣∣𝑋 ≤ 1, the function 𝜎ℎ(𝑡, 𝑥) remains
bounded as 𝑥 varies arbitrarily. This gives the following new result.

Proposition 5.9. For ℎ continuous, the UCT and the UBT are
equivalent in the Euclidean setting.

6. Applications in functional analysis

We give two examples of applications of the UBT to functional
analysis. The first clarifies the relationship between UBT for co-
cycles and the Banach-Steinhaus Theorem. The other views group
characters corresponding to maximal regular ideals as cocycles.

Example 6.1 (Adaptation of the “equicontinuity example” of [5]).
Let 𝑉 and 𝐻 be topological vector spaces regarded as additive
groups, with 𝑉 Baire (e.g., a Banach space). For simplicity, we
consider a countable family of continuous linear mappings from 𝑉
to 𝐻, presented for convenience as {𝐿𝑚 : 𝑚 ∈ ℤ}. Suppose that, for
each 𝑥 ∈ 𝑉, the set {𝐿𝑚(𝑥) : 𝑚 ∈ ℤ} is bounded in 𝐻. We deduce
that the family is uniformly bounded on compact subsets of 𝑉.

Form the direct product 𝑋 = 𝑉 ×ℤ of 𝑉 with the additive group
of integers. Take 𝑇 := {(𝑥, 0) : 𝑥 ∈ 𝑉 }, a subgroup of 𝑋 isomorphic
to 𝑉, hence a Baire group. Define the additive function ℎ : 𝑋 → 𝐻
by

ℎ((𝑥, 𝑛)) = 𝐿𝑛(𝑥).

Consider the ℎ-cocycle 𝜎ℎ : 𝑇 ×𝑋 → 𝐻, defined as in (4.2). Then,
with 𝑔 = (𝑦,𝑚) and 𝑡 = (𝑥, 0), we have

𝜎ℎ(𝑡, 𝑔) = 𝜎ℎ((𝑥, 0), (𝑦,𝑚)) = ℎ((𝑥, 0) + (𝑦,𝑚))− ℎ((𝑦,𝑚))

= 𝐿𝑚(𝑥+ 𝑦)− 𝐿𝑚(𝑦) = 𝐿𝑚(𝑥).

Hence,

(i) for fixed 𝑔, the map 𝑡 → 𝜎ℎ(𝑡, 𝑔) is Baire; indeed, for fixed
𝑚, the map 𝑥→ 𝐿𝑚(𝑥) is continuous;

(ii) for fixed 𝑡 = (𝑥, 1), the map 𝑔 → 𝜎ℎ(𝑡, 𝑔) is bounded in 𝐻;
indeed, for fixed 𝑥 ∈ 𝑉, the map (𝑦,𝑚)→ 𝐿𝑚(𝑥) is bounded
on 𝑋.

Theorem 5.5 asserts that {𝐿𝑚(𝑥) : 𝑚 ∈ ℤ} is uniformly bounded in
𝐻 for 𝑥 in any compact subset of 𝑉. On the other hand, Theorem
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5.1, with its stronger assumption that each map 𝑥 → 𝐿𝑚(𝑥) is
continuous, implies that 𝜎ℎ is locally uniformly bounded, so that
{𝐿𝑚(𝑥) : ∣∣𝑥∣∣ < 1,𝑚 ∈ ℤ} is bounded.
Example 6.2. We refer to [32] for standard terminology used here.
When 𝑋 = 𝒞(𝑇 ) is the Banach algebra of continuous, complex-
valued functions on a locally compact abelian group 𝑇, consider
the familiar continuous action of 𝑇 on 𝑋 given by (𝑡, 𝑥) → 𝑡𝑥,
where

(𝑡𝑥)(𝑠) = 𝑥(𝑡−1𝑠).

Thus, if ℎ : 𝐺 → ℂ is an algebra homomorphism (multiplicative,
as well as homogenous and additive) with kernel denoted by 𝒩 (ℎ),
then, for any 𝑥 /∈ 𝒩 (ℎ), the formula 𝛼ℎ(𝑡) := 𝜎ℎ(𝑡, 𝑥) = ℎ(𝑡𝑥)/ℎ(𝑥)
defines a character on 𝑇 corresponding to 𝒩 (ℎ); the latter needs
to be viewed as a maximal regular ideal of functions (see e.g.,
[32, p. 135]). The notation for 𝛼ℎ reflects the known fact that
ℎ(𝑡𝑥)/ℎ(𝑥) is independent of 𝑥. Here ℎ is continuous and, as in
Example 6.1, 𝑥 → 𝜎ℎ(𝑡, 𝑥) is trivially bounded as a function of 𝑥.
As an immediate corollary, we see that 𝛼ℎ(𝑡) is uniformly bounded
on compact subsets of 𝑇 ; indeed, in view of the continuity, it is
locally uniformly bounded. In fact, the cocycle equation (4.1) im-
plies that 𝛼ℎ(𝑡) is multiplicative (as the equation reduces in this
case to Cauchy’s functional equation). The conclusion here is a
special case of the Uniform Convergence Theorem (UCT) of regu-
lar variation (see [9] for the classical setting of functions ℎ : ℝ→ ℝ,
and [15] for a topological setting). The UCT asserts that the limit
function ∂𝑋ℎ(𝑡) := lim𝑥 𝜎ℎ(𝑡, 𝑥), if it exists, is multiplicative (with
uniform convergence on compacts), and thus provides a represen-
tation for ∂𝑋ℎ(𝑡) in the classical setting via Cauchy’s functional
equation (and in the topological setting via a Riesz Representation
Theorem).

Acknowledgments. This paper derives from a continuing collab-
oration with Nick Bingham on topological regular variation; it is a
pleasure to acknowledge his and Anatole Beck’s influence over the
ideas developed here.
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