

http://topology.auburn.edu/tp/

The Set-Open topology

by

A. V. Osipov

Electronically published on August 26, 2010

Topology Proceedings

Web:	http://topology.auburn.edu/tp/
Mail:	Topology Proceedings
	Department of Mathematics & Statistics
	Auburn University, Alabama 36849, USA
E-mail:	topolog@auburn.edu
ISSN:	0146-4124

COPYRIGHT © by Topology Proceedings. All rights reserved.

E-Published on August 26, 2010

THE SET-OPEN TOPOLOGY

A. V. OSIPOV

ABSTRACT. The \mathbb{R} -compactness property is studied, and criteria are established for the coincidence of the set-open topology (the weak set-open topology) and the topology of uniform convergence on the spaces of continuous functions.

1. INTRODUCTION

Let X be a Tikhonov space and let Y be metrizable topological vector space (TVS). On the set C(X, Y) of all continuous functions from X to Y, we consider the following three topologies: topology of uniform convergence on a family λ of subsets of the set X, setopen topology, and weak set-open topology.

The topology of uniform convergence is given by a base at each point $f \in C(X, Y)$. This base consists of all sets $\{g \in C(X, Y) : \rho(g(x), f(x)) < \varepsilon, x \in X\}$, where ρ is a metric on Y. The topology of uniform convergence on elements of a family λ (the λ -topology), where λ is a fixed family of nonempty subsets of the set X, is a natural generalization of this topology. All sets of the form $\{g \in C(X, Y) : \sup_{x \in F} \rho(f(x), g(x)) < \varepsilon\}$, where $F \in \lambda$ and $\varepsilon > 0$, form a base of the λ -topology at a point $f \in C(X, Y)$.

^{©2010} Topology Proceedings.

²⁰¹⁰ Mathematics Subject Classification. Primary 54C35, 54D30, 54D60; Secondary 54G10, 54G99.

Key words and phrases. Space of continuous functions, set-open topology, weak set-open topology, topology of uniform convergence on a family of sets.

If all finite subsets of the set X are taken as the family λ , the obtained topology is called the topology of pointwise convergence; if all compact subsets of the set X are taken, we obtain the topology of uniform convergence on compact sets or the compact-open topology. The compact-open topology was introduced for the first time by Fox [6] as the topology whose subbase is formed by all sets of the form $\{f \in C(X) : f(F) \subseteq U\}$, where F is a compact subset of X and U is an open subset of the real line \mathbb{R} . Note that one can similarly define the topology of pointwise convergence, replacing compact subsets by finite ones in the definition of the subbase.

The set-open topology on a family λ of nonempty subsets of the set X (the λ -open topology) is a generalization of the compactopen topology and of the topology of pointwise convergence. This topology was first introduced by Arens and Dugundji [5]. All sets of the form $\{f \in C(X, Y) : f(F) \subseteq U\}$, where $F \in \lambda$ and U is an open subset of Y, form a subbase of the λ -open topology.

Let $G \subseteq C(X)$. A set $A \subseteq X$ is said to be *G*-bounded if f(A) is a bounded subset of \mathbb{R} for each $f \in G$. We say that *A* is bounded in *X* if *A* is *G*-bounded for G = C(X).

If all bounded subsets of the set X are taken as the family λ , the obtained topology is called the bounded-open topology.

The weak set-open topology on a family λ of nonempty subsets of the set X (the λ^* -open topology) is a generalization of the boundedopen topology and of the topology of pointwise convergence. All sets of the form $\{f \in C(X, Y) : \overline{f(F)} \subseteq U\}$, where $F \in \lambda$ and U is an open subset of Y, form a subbase of the λ^* -open topology.

As a result, for a given family λ of subsets of the set X, the following three topologies arise on C(X, Y): the λ -topology, the set-open topology, and the weak set-open topology. In the general case, these topologies are different. McCoy and Ntantu [8] studied the interrelations between the λ -topology and the set-open topology in the case when λ consists of compact subsets of the set X.

In the present paper, we solve the problems of the coincidence of the λ -open topology and the λ -topology as well as the coincidence of the λ^* -open topology and the λ -topology, where λ is an arbitrary family of subsets of the set X.

2. Main definitions and notation

In this paper, we consider the space C(X, Y) of all continuous functions defined on a Tikhonov space X, where Y is a metrizable topological vector space. We denote by λ a family of nonempty subsets of the set X. We use the following notation for various topological spaces on the set C(X, Y):

 $C_{\lambda}(X,Y)$ for the λ -open topology,

 $C_{\lambda^*}(X,Y)$ for the λ^* -open topology,

 $C_{\lambda,\mu}(X,Y)$ for the λ -topology.

The elements of the standard subbases of the λ -open topology, λ^* -open topology, and λ -topology will be denoted as follows:

$$\begin{split} [F, U] &= \{ f \in C(X, Y) : \ f(F) \subseteq U \}, \\ [F, U]^* &= \{ f \in C(X, Y) : \ \overline{f(F)} \subseteq U \}, \\ \langle f, F, \varepsilon \rangle &= \{ g \in C(X, Y) : \ \sup_{x \in F} \rho(f(x), g(x)) < \varepsilon \}, \text{ where } F \in \lambda, \end{split}$$

U is an open subset of Y and $\varepsilon > 0$.

If X and Z are any two topological spaces with the same underlying set, then we use the notation X = Z, $X \leq Z$, and X < Z to indicate, respectively, that X and Z have the same topology, that the topology on Z is finer than or equal to the topology on X, and that the topology on Z is strictly finer than the topology on X.

The closure of a set A will be denoted by \overline{A} ; the symbol \varnothing stands for the empty set. If $A \subseteq X$ and $f \in C(X, Y)$, then we denote by $f|_A$ the restriction of the function f to the set A. As usual, f(A)and $f^{-1}(A)$ are the image and the complete preimage of the set Aunder the mapping f, respectively.

We denote by \mathbb{N} the set of natural numbers, by \mathbb{R} the real line with the natural topology, and by \mathbb{R}^n the *n*-dimensional Euclidean space. The set $C(X) = C(X, \mathbb{R})$ is the set of all continuous realvalued functions on the space X. We recall that a subset of X that is the complete preimage of zero for a certain function from C(X)is called a zero-set.

The remaining notation can be found in [4].

3. \mathbb{R} -compact sets

The following result was obtained in [8, Theorem 1.2.3].

Proposition 3.1. If the family λ consists of compact sets, then $C_{\lambda,u}(X,Y) \ge C_{\lambda}(X,Y)$. If, in addition, λ is hereditarily closed (i.e., along with each of its elements, λ contains all closed subsets of this element), then these topologies coincide.

In the case $Y = \mathbb{R}$, Proposition 3.1 can be strengthened; to this end, we need the following notion introduced by M.O. Asanov in [1].

Definition 3.2. A subset A of a space X is called \mathbb{R} -compact if, for any real-valued function f continuous on X, the set f(A) is compact in \mathbb{R} .

Note that, in the case A = X, the property of the set A to be \mathbb{R} -compact coincides with the pseudocompactness of the space X.

The following results were obtained in [3].

Proposition 3.3. If λ contains only \mathbb{R} -compact sets and it is closed under \mathbb{R} -compact sets then $C_{\lambda,u}(X) = C_{\lambda}(X)$.

Proposition 3.4. If $C_{\lambda}(X) = C_{\lambda,u}(X)$ then, the family λ consists of \mathbb{R} -compact sets and, for any element $A \in \lambda$ and any \mathbb{R} -compact subset B of A, the sets [B, U] and $\langle f, B, \varepsilon \rangle$ are open in these topologies for any set U open in \mathbb{R} , any function $f \in C(X)$, and any $\varepsilon > 0$ (*i.e.*, we can assume that the family λ is closed under \mathbb{R} -compact sets).

Corollary 3.5. Let λ be a family of subsets of a Tikhonov space X. Then, $C_{\lambda}(X) = C_{\lambda,u}(X)$ if and only if there exists a family $\tilde{\lambda} \supseteq \lambda$ of \mathbb{R} -compact sets closed under \mathbb{R} -compact subsets such that $C_{\lambda}(X) = C_{\tilde{\lambda}}(X)$.

Corollary 3.6. Let λ be a maximal family with respect to inclusion among all the families specifying the same set-open topology on C(X). Then, the following conditions are equivalent.

- (1) $C_{\lambda}(X) = C_{\lambda,u}(X);$
- (2) λ is a family of \mathbb{R} -compact sets closed under \mathbb{R} -compact subsets.

Corollary 3.7. Let λ be a family of compact sets maximal with respect to inclusion among all the families specifying the same setopen topology on C(X). Then, the following conditions are equivalent.

- (1) $C_{\lambda}(X) = C_{\lambda,u}(X);$
- (2) λ is hereditarily closed (i.e., along with each of its elements, λ contains all closed subsets of this element).

Corollary 3.8. Let λ be a family of finite sets maximal with respect to inclusion among all the families specifying the same set-open topology on C(X). Then, the following conditions are equivalent.

- (1) $C_{\lambda}(X) = C_{\lambda,u}(X);$
- (2) λ is the family of all finite subsets of a certain subset Z of X.

The propositions and corollaries show that \mathbb{R} -compactness is an important property in the study of problems concerning the coincidence of topologies on spaces of functions.

Let us consider some properties of \mathbb{R} -compact sets.

- (1) Any compact set is \mathbb{R} -compact in any space X.
- (2) Any closed subset of a countably compact space is \mathbb{R} -compact.
- (3) There are R-compact subsets of a compact space that are not closed.

Example 3.9. Let X be the space of all ordinals that are less than or equal to ω_1 , and let A be the subset of all countable ordinals from X. For any function $f \in C(X)$, there exists a countable ordinal α such that $f(\beta) = f(\omega_1)$ for all $\beta > \alpha$. It follows that f(A) = f(X) is a compact set; i.e., A is \mathbb{R} -compact. However, A is not closed in X.

(4) The closure of an \mathbb{R} -compact set is \mathbb{R} -compact.

Example 3.10. Let $X = D(\tau) \cup \{a\}$ be the Aleksandrov compactification of a discrete space $D(\tau)$ of cardinality $\tau > \aleph_0$. Let us show that all uncountable subsets of the space X are \mathbb{R} -compact. Indeed, let A be an uncountable subset of X. Let $f \in C(X)$, and let f(a) = y. Then, for any neighborhood Oy, the set $f^{-1}(\mathbb{R} \setminus Oy)$ is finite; therefore, $f^{-1}(\mathbb{R} \setminus \{y\})$ is at most countable and $y \in f(A)$. In addition, f(X) is a sequence converging to y; therefore, any subset of the set f(X) containing y is a compact set. Therefore, f(A) is a compact set and A is an \mathbb{R} -compact set.

The following examples show that \mathbb{R} -compactness is not preserved by intersections or closed subsets.

Example 3.11. Let $X = D(\tau) \cup \{a\}$ be the Aleksandrov compactification of a discrete space $D(\tau)$ of cardinality $\tau > \aleph_0$; let A and B be uncountable subsets of the set $D(\tau)$ whose intersection is a countable set. The subsets A and B are \mathbb{R} -compact (see Example 3.10). Let $A \cap B = \{x_1, x_2, \ldots, x_n, \ldots\}$. We consider the function $f: X \mapsto \mathbb{R}$ such that $f(x_i) = 1/i$ for all $i \in \mathbb{N}$ and f(x) = 0 if $x \notin A \cap B$. Obviously, f is continuous and $f(A \cap B) = \{1/n\}_{n=1}^{\infty}$ is not compact.

Two countable infinite sets are said to be almost disjoint if their intersection is finite.

Example 3.12. Let $\mathbb{N} = D(\omega_0)$ be a countable discrete space, and let $\{P_s : s \in S\}$ be the maximal family of almost disjoint subsets of \mathbb{N} with respect to inclusion. We set $X = \mathbb{N} \cup \{a_s : s \in S\}$. The topology on X is the following: all points from \mathbb{N} are isolated and a basis neighborhood at a point a_s has the form $\{a_s\} \cup \{P_s \setminus K\}$, where K is an arbitrary finite subset of P_s . We obtain the space known as the Mrówka–Isbell space. This space is pseudocompact (see, for example, [4, 3.6.I]).

The set $A = \{a_s : s \in S\}$ is \mathbb{R} -compact.

Let $B = \{a_{s_i} : i = 1, 2...\}$ be an arbitrary countable subset of A. The set B is closed in X, since the whole set Ais a closed discrete space. However, B is not \mathbb{R} -compact.

- (5) If A is an R-compact subset of X and n is a natural number, then A is also an Rⁿ-compact set (i.e., for any continuous function taking X to Rⁿ, the image of A is a compact subset in Rⁿ).
- (6) If A is an R-compact subset of X, then A is also an R^ω-compact set (i.e., for any continuous function taking X to R^ω, the image of A is a compact subset in R^ω).

(7) The intersection of an R-compact set and a zero-set is an R-compact set.

For more details on the properties discussed above, see [3].

Theorem 3.9. The set A is an \mathbb{R} -compact subset of X if and only if every countable functionally open cover of A has a finite subcover.

Proof. Let A be an \mathbb{R} -compact subset of X and $\{W_i\}_i$ — countable functionally open cover of A, where $W_i = X \setminus f_i^{-1}(0)$ for some $f_i \in C(X)$. Let us consider diagonal function $f = \Delta f_i$ acting from X into $\prod_{i \in N} \mathbb{R}_i = \mathbb{R}^{\omega}$. By property(6), f(A) is compact subset of \mathbb{R}^{ω} . Let us consider open cover $\{W_i \times \prod_{j \neq i} \mathbb{R}_j\}_i$ of f(A). By the compactness, we can choose a finite subcover $\{W_{i_k} \times \prod_{j \neq i_k} \mathbb{R}_j\}_{k=1}^m$. Hence, $\{W_{i_k}\}_{k=1}^m$ is a finite subcover of A.

Now let every countable functionally open cover of A has a finite subcover. Suppose that A is not an \mathbb{R} -compact, so there is $f \in C(X)$ such that f(A) is not a closed set of \mathbb{R} . Let $y \in \overline{f(A)} \setminus f(A)$. Let us consider countable functionally open cover γ of A by $\{f^{-1}(\mathbb{R} \setminus [y-1/n, y+1/n])\}_{n \in \mathbb{N}}$. The cover γ has a finite subcover $\{f^{-1}(\mathbb{R} \setminus [y-1/n_k, y+1/n_k])\}_{k=1}^m$. It follows that $(y-1/n, y+1/n) \cap f(A) = \emptyset$ for every $n > \max_{k=\overline{1,m}} \{n_k\}$.

This contradicts our assumption.

4. Main Results

Theorem 4.1. Let $C_{\lambda}(X,Y) = C_{\lambda,u}(X,Y)$. Then, the family λ consists of \mathbb{R} -compact sets.

Proof. Suppose that there is $A \in \lambda$ which is not \mathbb{R} -compact. Then, there is $f \in C(X, \mathbb{R})$ such that f(A) is unbounded. We can assume that f(A) is not closed. Indeed, let f(A) be closed and unbounded in \mathbb{R} . We take $h(t) = \operatorname{arctg}(t)$. Then, h(f(A)) is not closed.

Let ϕ be an isometric embedding of \mathbb{R} into Y defined as follows: $\phi(t) = t * y_0$, where y_0 is a fixed point from Y. Note that $\phi(f(A))$ is not closed in Y.

Let us consider a point $a \in \overline{\phi(f(A))} \setminus \phi(f(A))$ and the subbasic open set $[A, Y \setminus a]$ which contains the point $\phi \circ f \in C_{\lambda}(X, Y)$.

Since $C_{\lambda}(X,Y) \leq C_{\lambda,u}(X,Y)$, there is an open set $\langle \phi \circ f, B, \epsilon \rangle = \{g : g \in C(X,Y) \text{ and } \rho(\phi(f(x)),g(x)) < \epsilon \text{ for any } x \in B\}$ containing $\phi \circ f$ such that $\phi \circ f \in \langle \phi \circ f, B, \epsilon \rangle \subseteq [A, Y \setminus a]$. Let $S_{\epsilon}(a) = \{y : \rho(a,y) < \epsilon\}$ be an open ball centered at the point a. Since $a \in \overline{\phi(f(A))} \setminus \phi(f(A))$, there exists $x_0 \in f^{-1}(\phi^{-1}(S_{\epsilon}(a))) \cap A$.

Let us define a function h as follows: $h(x) = \phi(f(x)) + a - \phi(f(x_0))$. Note that $\rho(\phi(f(x)), h(x)) = \rho(\phi(f(x)), \phi(f(x)) + a - \phi(f(x_0))) = \rho(\phi(f(x_0)), a) < \epsilon$ for every $x \in X$. Hence, $h \in < \phi \circ f, B, \epsilon >$; however, $h(x_0) = \phi(f(x_0)) + a - \phi(f(x_0)) = a$. Consequently, $h \notin [A, Y \setminus a]$.

This contradicts our assumption.

Theorem 4.2. Let λ be a family of \mathbb{R} -compact sets. Then $C_{\lambda}(X,Y) \leq C_{\lambda,u}(X,Y)$.

Proof. Note that a continuous image of an \mathbb{R} -compact set is an \mathbb{R} -compact set. In normal spaces, \mathbb{R} -compactness coincides with countable compactness (see Theorem 3.9), while, in metrizable spaces, it coincides with compactness.

Let $[A, U] = \{f : f \in C(X, Y) \text{ and } f(A) \subseteq U\}$ be an arbitrary subbasic element of λ -open topology. Since f(A) is a compact set and $f(A) \subseteq U$, there is $S_{\epsilon}(f(A)) = \{y : y \in Y, \rho(y, f(A)) < \epsilon\}$ such that $S_{\epsilon}(f(A)) \subseteq U$. Then, $\langle f, A, \epsilon \rangle = \{g : g \in C(X, Y) \text{ and} \rho(f(x), g(x)) < \epsilon \text{ for any } x \in A\}$ has the property $\langle f, A, \epsilon \rangle \subseteq [A, U].$

Indeed, suppose that $g \in \langle f, A, \epsilon \rangle$ and $x \in A$; then, $g(x) \in S_{\epsilon}(f(a)) \subseteq U$; hence, $g \in [A, U]$.

The theorem is proved.

Theorem 4.3. Let λ be a family of sets such that $C_{\lambda}(X,Y) = C_{\lambda,u}(X,Y)$. Let λ_m be a family maximal with respect to inclusion among all the families specifying the same λ -open topology on C(X,Y). Then, $\overline{A \cap W} \in \lambda_m$ for any $A \in \lambda_m$ and functionally open set W such that $A \cap W \neq \emptyset$.

Proof. According to Theorem 4.1, the family λ_m consists of \mathbb{R} -compact sets. The set $\overline{A \cap W}$ is \mathbb{R} -compact (see [7]).

Let us consider the family $\lambda_1 = \lambda_m \cup \{\overline{A \cap W}\}$. It is clear that $C_{\lambda_m}(X,Y) \leq C_{\lambda_1}(X,Y)$. By Theorem 4.2, we conclude that $C_{\lambda_1}(X,Y) \leq C_{\lambda_1,u}(X,Y)$. It is well known that the uniform topology on elements of a family does not change if one adds to the family any subset of any element of the family.

Therefore, $C_{\lambda_1, u}(X, Y) = C_{\lambda, u}(X, Y)$. By the assumption, $C_{\lambda, u}(X, Y) = C_{\lambda_m}(X, Y)$. We conclude that

$$C_{\lambda_m}(X,Y) \leqslant C_{\lambda_1}(X,Y) \leqslant C_{\lambda_1,\,u}(X,Y) = C_{\lambda,\,u}(X,Y) = C_{\lambda_m}(X,Y);$$

i.e., all four topologies on C(X,Y) coincide. It follows that $\overline{A \cap W} \in \lambda_m$.

This implies the conclusion of the theorem.

Theorem 4.4. Suppose that λ is a family consisting of \mathbb{R} -compact subsets of X such that $\overline{A \cap W} \in \lambda$ for any $A \in \lambda$ and any functionally open set W verifying $A \cap W \neq \emptyset$. Then, $C_{\lambda}(X,Y) = C_{\lambda,u}(X,Y)$.

Proof. The inequality $C_{\lambda}(X,Y) \leq C_{\lambda,u}(X,Y)$ is proved in Theorem 4.2.

Let us prove that $C_{\lambda}(X,Y) \ge C_{\lambda,u}(X,Y)$. Let us take arbitrary $A \in \lambda, \varepsilon > 0$, and $f \in C(X,Y)$. Let us find a neighborhood Of of the function f in the topology $C_{\lambda}(X,Y)$ that is contained in the set $\langle f, A, \varepsilon \rangle$. Note that a continuous image of an \mathbb{R} -compact set is an \mathbb{R} -compact set. Since Y is a metrizable TVS, we conclude that f(A) is a compact set.

The family of balls $\{S_{\epsilon/3}(a) = \{y : y \in Y, \rho(y, a)\} < \epsilon/3\}$ for all $a \in f(A)\}$ is an open cover of f(A). Let us take a finite subcover $\{S_{\epsilon/3}(a_i)\}_{i=1}^n$. Then, the set $f^{-1}(S_{\epsilon/3}(a_i))$, being a continuous preimage of a functionally open set, is functionally open; the set $A_i = \overline{f^{-1}(S_{\epsilon/3}(a_i)) \cap A}$ is \mathbb{R} -compact and, by the assumption, belongs to λ . Then, the set $Of = \bigcap_{i=1}^n [A_i, S_{\epsilon/2}(a_i)]$ is open in the set-open topology.

Let us show that $f \in Of$. Indeed, $f(x) \in S_{\epsilon/2}(a_i)$ for any $i \leq n$ and any $x \in A_i$. Let us show that $Of \subset \langle f, A, \varepsilon \rangle$.

Let $g \in Of$, and let x be an arbitrary point from the set A. Since the family $\{S_{\epsilon/3}(a_i)\}_{i=1}^n$ is a cover of f(A), it follows that $A \subseteq \bigcup_{i=1}^n f^{-1}(S_{\epsilon/3}(a_i))$; hence, $A \subseteq \bigcup_{i=1}^n A_i$. Let us take i such that $x \in A_i$. Since $g \in Of$, we have $g(x) \in g(A_i) \subseteq S_{\epsilon/2}(a_i)$; i.e., $\rho(a_i, g(x)) < \varepsilon/2$. The inequality $\rho(a_i, f(x)) < \varepsilon/2$ is also valid. Then, $\rho(f(x), g(x)) < \varepsilon$; i.e., $g \in \langle f, A, \varepsilon \rangle$.

The theorem is proved.

Let $\overline{\lambda} = \{\overline{A} : A \in \lambda\}$. Note that the same weak set-open topology is obtained if λ is replaced by $\overline{\lambda}$. This is because for each $f \in C(X, Y)$ we have $f(\overline{A}) \subseteq \overline{f(A)}$ and, hence, $\overline{f(\overline{A})} = \overline{f(A)}$. Consequently, $C_{\overline{\lambda^*}}(X) = C_{\lambda^*}(X)$.

Theorem 4.5. Suppose $C_{\lambda^*}(X, Y) = C_{\lambda,u}(X, Y)$. Then, the family λ consists of bounded sets.

Proof. Suppose that there is an unbounded set $A \in \lambda$. Then, there is $f \in C(X, \mathbb{R})$ such that f(A) is unbounded.

Let ϕ be an isometric embedding of \mathbb{R} into Y defined as follows: $\phi(t) = t * y_0$, where $y_0 \in Y$ is such that $0 < \rho(0, y_0) < 1$ (ρ is an invariant metric on Y).

Suppose that, for every $a \in \mathbb{R}$, the ray $[a, +\infty) \not\subseteq f(A)$ (the proof for $(-\infty, a]$ is similar). Then, there is a system of disjoint open intervals $\{(c_i, b_i)\}_{i \in \mathbb{N}}$ such that $(c_i, b_i) \bigcap \overline{f(A)} = \emptyset$ for every i and $\{c_i\}, \{b_i\} \to +\infty$. We conclude that $\overline{f(A)} \subseteq (\mathbb{R} \setminus \bigcup (c_i, b_i))$.

Let us take $h \in C(\mathbb{R})$ such that $h(\mathbb{R} \setminus \bigcup(c_i, b_i)) = \mathbb{N}$. Let us consider $g = \phi \circ h \circ f$ and a neighborhood $[A, W]^*$ of the function gin the weak set-open topology $C_{\lambda^*}(X, Y)$, where $W = \bigcup_{i \in \mathbb{N}} S_{1/i}(a_i)$ and $S_{1/i}(a_i)$ is an open ball centered at the point $a_i = \phi(i)$. By assumption, pick up a neighborhood $V = \langle g, B, \epsilon \rangle$ of the function g in the topology $C_{\lambda,u}(X, Y)$ that is contained in the set $[A, W]^*$.

Note that $A \subset B$. Indeed, if there exists a point $z \in A \setminus B$, then, since the space X is completely regular, there exists a function $p \in C(X, Y)$ such that $p|_B = g|_B$ and $p(z) \notin W$. In this case, we would have $p \in V$; however, $p \notin [A, W]^*$.

Let us consider $q(x) = \phi(h(f(x)) + d)$ such that 0 < d < 1 and $\rho(d * y_0, 0) < \epsilon$. Since $\rho(q(x), g(x)) = \rho((h(f(x)) + d) * y_0, h(f(x)) * y_0) = \rho(d * y_0, 0) < \epsilon$, we have $q \in V$. Note that $g(A) \subseteq \bigcup \{a_i\}$ and $q(A) \subseteq \bigcup \{a_i + d * y_0\}$ then there exists j such that

 $1/j < \min\{\rho(a_j, a_j + d * y_0), \rho(a_{j+1}, a_j + d * y_0)\}$. Therefore, there exists $x_0 \in A$ such that $q(x_0) = a_s + d * y_0$ for some s > j; thus, $q(x_0) \notin W$ and $q \notin [A, W]^*$. This contradicts the fact that $[a, +\infty) \not\subseteq \overline{f(A)}$ for any $a \in \mathbb{R}$. Thus, there is $b \in \mathbb{R}$ such that $[b, +\infty) \subseteq \overline{f(A)}$.

Assume that $\phi \circ f \in [A, U]^*$, where U is an arbitrary open set containing $\overline{\phi(f(A))}$. Then, $[b, +\infty) * y_0 \subseteq U$. Since $C_{\lambda^*}(X,Y) =$ $= C_{\lambda,u}(X,Y)$, the function $\phi \circ f$ has a basic neighborhood $\langle \phi \circ f, D, \epsilon \rangle$ in the topology of uniform convergence such that $\langle \phi \circ f, D, \epsilon \rangle \subseteq [A, U]^*$. The function $\phi \circ f$ also has a basic neighborhood in the weak set-open topology $\bigcap_{i=1}^{n} [A_i, W_i]^*$ such that

$$\bigcap_{i=1}^{n} [A_i, W_i]^* \subseteq \phi \circ f, D, \epsilon >.$$

Note that $A \subseteq \bigcup_{i=1} A_i$ and $A \subseteq D$ (similarly to the above proof of the relation $A \subseteq B$).

As proved above, for any $i \leq n$, the set $\overline{f(A_i)}$ either has an upper bound l_i or contains the ray $[b_i, +\infty)$.

Let $m = \max_{1 \leq i \leq n} \{l_i, b_i\}$, and let y be a point from $[m, +\infty) * y_0$ such that $\rho(\phi(m), y) > \epsilon$. The set $f^{-1} \circ \phi^{-1}(S_{\epsilon}(y))$ is functionally open; hence, we can construct a nonnegative continuous function $v \in C(X)$ such that v(x) = 0 for $x \notin f^{-1} \circ \phi^{-1}(S_{\epsilon}(y))$ and $v(x_a) > \sup \{\phi^{-1}(S_{\epsilon}(y))\}$ for some point $x_a \in f^{-1} \circ \phi^{-1}(y) \cap A$.

The map $\phi(f+v) \in C(X,Y)$ does not belong to $\langle \phi \circ f, D, \epsilon \rangle$. Indeed, $x_a \in A \subset D$ satisfies the relation $\rho(\phi(f(x_a)), \phi(f+v)(x_a)) = \rho(\phi(f(x_a)), \phi(f(x_a)) + \phi(v(x_a))) = \rho(0, \phi(v(x_a))) > \epsilon$.

 $= \rho(\phi(f(x_a)), \phi(f(x_a)) + \phi(v(x_a))) = \rho(0, \phi(v(x_a))) > \epsilon.$ Note that $\phi(f+v) \in \bigcap_{i=1}^{n} [A_i, W_i]^*$. Indeed, let $x \in A_i$. In this case,

if $x \notin f^{-1} \circ \phi^{-1}(S_{\epsilon}(y))$, then $\phi(f+v)(x) = \phi(f(x)) \in W_i$ and, if $x \in f^{-1} \circ \phi^{-1}(S_{\epsilon}(y))$, then $f(x) \in \phi^{-1}(S_{\epsilon}(y)) \subseteq [m, +\infty) \subseteq f(A_i)$, $(f+v)(x) = f(x) + v(x) \in [m, +\infty)$ and $\phi(f+v)(x) \subseteq \phi(f(A_i)) \subseteq W_i$.

Since $\bigcap_{i}^{n} [A_i, W_i]^* \subseteq \langle \phi \circ f, D, \epsilon \rangle$ then this contradicts our assumption.

Therefore, the image f(A) is bounded for any $A \in \lambda$ and for every $f \in C(X)$.

The theorem is proved.

Corollary 4.6. Suppose that $C_{\lambda^*}(X,Y) \leq C_{\lambda,u}(X,Y)$. Then, the family λ consists of sets such that, for any $A \in \lambda$ and any function $f \in C(X)$, the image f(A) is either bounded or contains the ray $[a, +\infty)$ (or the ray $(-\infty, a]$) for some $a \in \mathbb{R}$.

Theorem 4.7. Suppose that λ is a family consisting of bounded subsets of X such that $\overline{A \cap W} \in \lambda$ for any $A \in \lambda$ and any functionally open set W such that $A \cap W \neq \emptyset$. Then, $C_{\lambda^*}(X,Y) = C_{\lambda,u}(X,Y)$.

Proof. For the proof, see Theorem 3.1 and Theorem 3.2 in [2]. \Box

Theorem 4.8. Suppose that $C_{\lambda^*}(X,Y) = C_{\lambda,u}(X,Y)$. Let λ_m be a maximal family with respect to inclusion among all the families specifying the same λ^* -open topology on C(X,Y). Then, $\overline{A \cap W} \in \lambda_m$ for every $A \in \lambda_m$ and any functionally open set W such that $A \cap W \neq \emptyset$.

Proof. By Theorem 4.5, we conclude that the family λ consists of bounded sets.

The set $\overline{A \cap W}$ is bounded for every A (as a subset of the bounded set A).

Let us consider the family $\lambda_1 = \lambda \cup A \bigcap W$. It is clear that $C_{\lambda^*}(X,Y) \leq C_{\lambda^*_1}(X,Y)$. We conclude that $C_{\lambda^*_1}(X,Y) \leq C_{\lambda_1,u}(X,Y)$ (see Theorem 3.1, [7]).

It is well known that the uniform topology on elements of a family does not change if one adds to the family any subset of any element of the family. Therefore, $C_{\lambda_1, u}(X, Y) = C_{\lambda, u}(X, Y)$. By the assumption, we have $C_{\lambda, u}(X, Y) = C_{\lambda^*}(X, Y)$. We conclude that

 $C_{\lambda^*}(X,Y) \leqslant C_{\lambda_1}(X,Y) \leqslant C_{\lambda_1,u}(X,Y) = C_{\lambda,u}(X,Y) = C_{\lambda^*}(X,Y);$

i.e., all four topologies on C(X, Y) coincide.

It follows that $A \cap W \in \lambda_m$.

This implies the conclusion of the theorem.

Remark 4.9. Note that the condition that Y is a metrizable topological vector space can be replaced by the condition that Y contains a closed isometric image of the real line \mathbb{R} .

This work was supported by the Russian Foundation for Basic Research (project no. 09-01-00139-a) and by the Division of Mathematical Sciences of the Russian Academy of Sciences.

References

- M. O. Asanov, Candidate's Dissertation in Physics and Mathematics, (Sverdlovsk, 1980).
- [2] S. Kundu and A. B. Raha, The bounded-open topology and its relatives, Rend. Istit. Mat. Univ. Trieste 27 (1995), 61–77.
- [3] S. E. Nokhrin, A. V. Osipov, On the Coincidence of Set-Open and Uniform Topologies, Proc. Steklov Inst. Math., (2009), Suppl. 3, 184–191.
- [4] R. Engelking, *General Topology*, PWN, Warsaw, (1977); Mir, Moscow, (1986).
- [5] R. Arens and J. Dugundji, *Topologies for function spaces*, Pacific. J. Math. 1, (1951), 5–31.
- [6] R. H. Fox, On topologies for function spaces, Bull. Amer. Math. Soc. 51 (1945), 429–432.
- [7] Z. Frolik, Generalizations of compact and Lindelöf spaces, Czech. Math. J. 9 (1959), 172–217.
- [8] R. A. McCoy and I. Ntantu, *Topological Properties of Spaces of Continuous Functions*, Lecture Notes in Math., Vol. **1315**, Springer-Verlag, Berlin, (1988).

INSTITUTE OF MATHEMATICS AND MECHANICS, EKATERINBURG, RUSSIA *E-mail address*: **DAB@list.ru**