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THE SET-OPEN TOPOLOGY

A. V. OSIPOV

Abstract. The R-compactness property is studied, and
criteria are established for the coincidence of the set-open
topology (the weak set-open topology) and the topology of
uniform convergence on the spaces of continuous functions.

1. Introduction

Let X be a Tikhonov space and let Y be metrizable topological
vector space (TVS). On the set C(X,Y ) of all continuous functions
from X to Y , we consider the following three topologies: topology
of uniform convergence on a family λ of subsets of the set X, set-
open topology, and weak set-open topology.

The topology of uniform convergence is given by a base at each
point f ∈ C(X,Y ). This base consists of all sets

{
g ∈ C(X,Y ) :

ρ(g(x), f(x)) < ε, x ∈ X
}
, where ρ is a metric on Y . The topology

of uniform convergence on elements of a family λ (the λ-topology),
where λ is a fixed family of nonempty subsets of the set X, is
a natural generalization of this topology. All sets of the form
{g ∈ C(X,Y ) : sup

x∈F
ρ(f(x), g(x)) < ε}, where F ∈ λ and ε > 0,

form a base of the λ-topology at a point f ∈ C(X,Y ).
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If all finite subsets of the set X are taken as the family λ, the
obtained topology is called the topology of pointwise convergence;
if all compact subsets of the set X are taken, we obtain the topol-
ogy of uniform convergence on compact sets or the compact-open
topology. The compact-open topology was introduced for the first
time by Fox [6] as the topology whose subbase is formed by all sets
of the form {f ∈ C(X) : f(F ) ⊆ U}, where F is a compact subset
of X and U is an open subset of the real line R. Note that one can
similarly define the topology of pointwise convergence, replacing
compact subsets by finite ones in the definition of the subbase.

The set-open topology on a family λ of nonempty subsets of the
set X (the λ-open topology) is a generalization of the compact-
open topology and of the topology of pointwise convergence. This
topology was first introduced by Arens and Dugundji [5]. All sets
of the form {f ∈ C(X,Y ) : f(F ) ⊆ U}, where F ∈ λ and U is an
open subset of Y , form a subbase of the λ-open topology.

Let G ⊆ C(X). A set A ⊆ X is said to be G-bounded if f(A) is
a bounded subset of R for each f ∈ G. We say that A is bounded
in X if A is G-bounded for G = C(X).

If all bounded subsets of the set X are taken as the family λ, the
obtained topology is called the bounded-open topology.

The weak set-open topology on a family λ of nonempty subsets of
the setX (the λ∗-open topology) is a generalization of the bounded-
open topology and of the topology of pointwise convergence. All
sets of the form {f ∈ C(X,Y ) : f(F ) ⊆ U}, where F ∈ λ and U is
an open subset of Y , form a subbase of the λ∗-open topology.

As a result, for a given family λ of subsets of the set X, the
following three topologies arise on C(X,Y ): the λ-topology, the
set-open topology, and the weak set-open topology. In the general
case, these topologies are different. McCoy and Ntantu [8] studied
the interrelations between the λ-topology and the set-open topology
in the case when λ consists of compact subsets of the set X.

In the present paper, we solve the problems of the coincidence of
the λ-open topology and the λ-topology as well as the coincidence
of the λ∗-open topology and the λ-topology, where λ is an arbitrary
family of subsets of the set X.
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2. Main definitions and notation

In this paper, we consider the space C(X,Y ) of all continuous
functions defined on a Tikhonov space X, where Y is a metrizable
topological vector space. We denote by λ a family of nonempty
subsets of the set X. We use the following notation for various
topological spaces on the set C(X,Y ):

Cλ(X,Y ) for the λ-open topology,
Cλ∗(X,Y ) for the λ∗-open topology,
Cλ,u(X,Y ) for the λ-topology.
The elements of the standard subbases of the λ-open topology,

λ∗-open topology, and λ-topology will be denoted as follows:
[F, U ] = {f ∈ C(X,Y ) : f(F ) ⊆ U},
[F, U ]∗ = {f ∈ C(X,Y ) : f(F ) ⊆ U},
⟨f, F, ε⟩ = {g ∈ C(X,Y ) : sup

x∈F
ρ(f(x), g(x)) < ε}, where F ∈ λ,

U is an open subset of Y and ε > 0.
If X and Z are any two topological spaces with the same under-

lying set, then we use the notation X = Z, X 6 Z, and X < Z to
indicate, respectively, that X and Z have the same topology, that
the topology on Z is finer than or equal to the topology on X, and
that the topology on Z is strictly finer than the topology on X.

The closure of a set A will be denoted by A; the symbol ∅ stands
for the empty set. If A ⊆ X and f ∈ C(X,Y ), then we denote by
f |A the restriction of the function f to the set A. As usual, f(A)
and f−1(A) are the image and the complete preimage of the set A
under the mapping f , respectively.

We denote by N the set of natural numbers, by R the real line
with the natural topology, and by Rn the n-dimensional Euclidean
space. The set C(X) = C(X,R) is the set of all continuous real-
valued functions on the space X. We recall that a subset of X that
is the complete preimage of zero for a certain function from C(X)
is called a zero-set.

The remaining notation can be found in [4].

3. R-compact sets

The following result was obtained in [8, Theorem 1.2.3].
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Proposition 3.1. If the family λ consists of compact sets, then
Cλ,u(X,Y ) > Cλ(X,Y ). If, in addition, λ is hereditarily closed
(i.e., along with each of its elements, λ contains all closed subsets
of this element), then these topologies coincide.

In the case Y = R, Proposition 3.1 can be strengthened; to this
end, we need the following notion introduced by M.O. Asanov in [1].

Definition 3.2. A subset A of a space X is called R-compact if,
for any real-valued function f continuous on X, the set f(A) is
compact in R.

Note that, in the case A = X, the property of the set A to be
R-compact coincides with the pseudocompactness of the space X.

The following results were obtained in [3].

Proposition 3.3. If λ contains only R-compact sets and it is closed
under R-compact sets then Cλ,u(X) = Cλ(X).

Proposition 3.4. If Cλ(X) = Cλ,u(X) then, the family λ consists
of R-compact sets and, for any element A ∈ λ and any R-compact
subset B of A, the sets [B,U ] and ⟨f,B, ε⟩ are open in these topolo-
gies for any set U open in R, any function f ∈ C(X), and any ε > 0
(i.e., we can assume that the family λ is closed under R-compact
sets).

Corollary 3.5. Let λ be a family of subsets of a Tikhonov space X.
Then, Cλ(X) = Cλ,u(X) if and only if there exists a family λ̃ ⊇ λ of
R-compact sets closed under R-compact subsets such that Cλ(X) =
Cλ̃(X).

Corollary 3.6. Let λ be a maximal family with respect to inclu-
sion among all the families specifying the same set-open topology
on C(X). Then, the following conditions are equivalent.

(1) Cλ(X) = Cλ,u(X);
(2) λ is a family of R-compact sets closed under R-compact

subsets.
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Corollary 3.7. Let λ be a family of compact sets maximal with
respect to inclusion among all the families specifying the same set-
open topology on C(X). Then, the following conditions are equiva-
lent.

(1) Cλ(X) = Cλ,u(X);
(2) λ is hereditarily closed (i.e., along with each of its elements,

λ contains all closed subsets of this element).

Corollary 3.8. Let λ be a family of finite sets maximal with respect
to inclusion among all the families specifying the same set-open
topology on C(X). Then, the following conditions are equivalent.

(1) Cλ(X) = Cλ,u(X);
(2) λ is the family of all finite subsets of a certain subset Z of X.

The propositions and corollaries show that R-compactness is an
important property in the study of problems concerning the coin-
cidence of topologies on spaces of functions.

Let us consider some properties of R-compact sets.

(1) Any compact set is R-compact in any space X.

(2) Any closed subset of a countably compact space is R-com-
pact.

(3) There are R-compact subsets of a compact space that are
not closed.

Example 3.9. Let X be the space of all ordinals that
are less than or equal to ω1, and let A be the subset of all
countable ordinals from X. For any function f ∈ C(X),
there exists a countable ordinal α such that f(β) = f(ω1)
for all β > α. It follows that f(A) = f(X) is a compact set;
i.e., A is R-compact. However, A is not closed in X.

(4) The closure of an R-compact set is R-compact.

Example 3.10. Let X = D(τ)∪{a} be the Aleksandrov
compactification of a discrete space D(τ) of cardin-
ality τ > ℵ0. Let us show that all uncountable subsets
of the space X are R-compact. Indeed, let A be an un-
countable subset of X. Let f ∈ C(X), and let f(a) = y.
Then, for any neighborhoodOy, the set f−1(R\Oy) is finite;
therefore, f−1(R \ {y}) is at most countable and y ∈ f(A).
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In addition, f(X) is a sequence converging to y; therefore,
any subset of the set f(X) containing y is a compact set.
Therefore, f(A) is a compact set and A is an R-compact
set.

The following examples show that R-compactness is not
preserved by intersections or closed subsets.

Example 3.11. Let X = D(τ)∪{a} be the Aleksandrov
compactification of a discrete space D(τ) of cardinality τ >
ℵ0; let A and B be uncountable subsets of the set
D(τ) whose intersection is a countable set. The subsets
A and B are R-compact (see Example 3.10). Let A ∩ B =
{x1, x2, . . . , xn, . . . }. We consider the function f : X 7→ R
such that f(xi) = 1/i for all i ∈ N and f(x) = 0 if x /∈ A∩B.
Obviously, f is continuous and f(A∩B) = {1/n}∞n=1 is not
compact.

Two countable infinite sets are said to be almost disjoint
if their intersection is finite.

Example 3.12. Let N = D(ω0) be a countable discrete
space, and let {Ps : s ∈ S} be the maximal family of almost
disjoint subsets of N with respect to inclusion. We set X =
N ∪ {as : s ∈ S}. The topology on X is the following:
all points from N are isolated and a basis neighborhood at
a point as has the form {as} ∪ {Ps \ K}, where K is an
arbitrary finite subset of Ps. We obtain the space known
as the Mrówka–Isbell space. This space is pseudocompact
(see, for example, [4, 3.6.I]).

The set A = {as : s ∈ S} is R-compact.
Let B = {asi : i = 1, 2 . . . } be an arbitrary countable

subset of A. The set B is closed in X, since the whole set A
is a closed discrete space. However, B is not R-compact.

(5) If A is an R-compact subset of X and n is a natural number,
then A is also an Rn-compact set (i.e., for any continuous
function takingX to Rn, the image of A is a compact subset
in Rn).

(6) If A is an R-compact subset of X, then A is also an Rω-
compact set (i.e., for any continuous function taking X to
Rω, the image of A is a compact subset in Rω).
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(7) The intersection of an R-compact set and a zero-set is an
R-compact set.

For more details on the properties discussed above, see [3].

Theorem 3.9. The set A is an R-compact subset of X if and only
if every countable functionally open cover of A has a finite subcover.

Proof. Let A be an R-compact subset of X and {Wi}i — countable
functionally open cover of A, where Wi = X \ f−1

i (0) for some
fi ∈ C(X). Let us consider diagonal function f = △fi acting from
X into

∏
i∈N

Ri = Rω. By property(6), f(A) is compact subset of

Rω. Let us consider open cover {Wi ×
∏
j ̸=i

Rj}i of f(A). By the

compactness, we can choose a finite subcover {Wik ×
∏
j ̸=ik

Rj}mk=1.

Hence, {Wik}mk=1 is a finite subcover of A.

Now let every countable functionally open cover of A has a finite
subcover. Suppose that A is not an R-compact, so there is f ∈
C(X) such that f(A) is not a closed set of R. Let y ∈ f(A) \
f(A). Let us consider countable functionally open cover γ of A by
{f−1(R\ [y−1/n, y+1/n])}n∈N . The cover γ has a finite subcover
{f−1(R \ [y − 1/nk, y + 1/nk])}mk=1. It follows that
(y − 1/n, y + 1/n)

∩
f(A) = ∅ for every n > max

k=1,m
{nk}.

This contradicts our assumption. �

4. Main Results

Theorem 4.1. Let Cλ(X,Y ) = Cλ,u(X,Y ). Then, the family λ
consists of R-compact sets.

Proof. Suppose that there is A ∈ λ which is not R-compact. Then,
there is f ∈ C(X,R) such that f(A) is unbounded. We can assume
that f(A) is not closed. Indeed, let f(A) be closed and unbounded
in R. We take h(t) = arctg(t). Then, h(f(A)) is not closed.

Let ϕ be an isometric embedding of R into Y defined as follows:
ϕ(t) = t ∗ y0, where y0 is a fixed point from Y . Note that ϕ(f(A))
is not closed in Y .

Let us consider a point a ∈ ϕ(f(A)) \ ϕ(f(A)) and the subbasic
open set [A, Y \ a] which contains the point ϕ ◦ f ∈ Cλ(X,Y ).
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Since Cλ(X,Y ) 6 Cλ,u(X,Y ), there is an open set< ϕ◦f,B, ϵ >=
{g : g ∈ C(X,Y ) and ρ(ϕ(f(x)), g(x)) < ϵ for any x ∈ B} con-
taining ϕ ◦ f such that ϕ ◦ f ∈< ϕ ◦ f,B, ϵ >⊆ [A, Y \ a]. Let
Sϵ(a) = {y : ρ(a, y) < ϵ} be an open ball centered at the point a.

Since a ∈ ϕ(f(A))\ϕ(f(A)), there exists x0 ∈ f−1(ϕ−1(Sϵ(a)))
∩

A.
Let us define a function h as follows: h(x) = ϕ(f(x)) +

+a− ϕ(f(x0)). Note that ρ(ϕ(f(x)), h(x)) = ρ(ϕ(f(x)), ϕ(f(x)) +
+a − ϕ(f(x0))) = ρ(ϕ(f(x0)), a) < ϵ for every x ∈ X. Hence,
h ∈< ϕ ◦ f,B, ϵ >; however, h(x0) = ϕ(f(x0)) + a− ϕ(f(x0)) = a.
Consequently, h /∈ [A, Y \ a].

This contradicts our assumption. �
Theorem 4.2. Let λ be a family of R-compact sets. Then
Cλ(X,Y ) 6 Cλ,u(X,Y ).

Proof. Note that a continuous image of an R-compact set is an
R-compact set. In normal spaces, R-compactness coincides with
countable compactness (see Theorem 3.9), while, in metrizable
spaces, it coincides with compactness.

Let [A,U ] = {f : f ∈ C(X,Y ) and f(A) ⊆ U} be an arbitrary
subbasic element of λ-open topology. Since f(A) is a compact set
and f(A) ⊆ U , there is Sϵ(f(A)) = {y : y ∈ Y, ρ(y, f(A)) < ϵ}
such that Sϵ(f(A)) ⊆ U . Then, < f,A, ϵ >= {g : g ∈ C(X,Y ) and
ρ(f(x), g(x)) < ϵ for any x ∈ A} has the property
< f,A, ϵ >⊆ [A,U ].

Indeed, suppose that g ∈< f,A, ϵ > and x ∈ A; then,
g(x) ∈ Sϵ(f(a)) ⊆ U ; hence, g ∈ [A,U ].

The theorem is proved. �
Theorem 4.3. Let λ be a family of sets such that Cλ(X,Y ) =
Cλ,u(X,Y ). Let λm be a family maximal with respect to inclu-
sion among all the families specifying the same λ-open topology
on C(X,Y ). Then, A

∩
W ∈ λm for any A ∈ λm and functionally

open set W such that A
∩

W ̸= ∅.
Proof. According to Theorem 4.1, the family λm consists of R-
compact sets. The set A

∩
W is R-compact (see [7]).

Let us consider the family λ1 = λm ∪ {A
∩

W}. It is clear that
Cλm(X,Y ) 6 Cλ1(X,Y ). By Theorem 4.2, we conclude that
Cλ1(X,Y ) 6 Cλ1, u(X,Y ). It is well known that the uniform topol-
ogy on elements of a family does not change if one adds to the
family any subset of any element of the family.
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Therefore, Cλ1, u(X,Y ) = Cλ, u(X,Y ). By the assumption,
Cλ, u(X,Y ) = Cλm(X,Y ). We conclude that

Cλm(X,Y )6 Cλ1(X,Y )6 Cλ1, u(X,Y )= Cλ, u(X,Y )= Cλm(X,Y );

i.e., all four topologies on C(X,Y ) coincide. It follows that

A
∩

W ∈ λm.
This implies the conclusion of the theorem. �

Theorem 4.4. Suppose that λ is a family consisting of R-compact
subsets of X such that A

∩
W ∈ λ for any A ∈ λ and any func-

tionally open set W verifying A
∩
W ̸= ∅. Then, Cλ(X,Y ) =

Cλ,u(X,Y ).

Proof. The inequality Cλ(X,Y ) 6 Cλ,u(X,Y ) is proved in Theo-
rem 4.2.

Let us prove that Cλ(X,Y ) > Cλ,u(X,Y ). Let us take arbitrary
A ∈ λ, ε > 0, and f ∈ C(X,Y ). Let us find a neighborhood Of
of the function f in the topology Cλ(X,Y ) that is contained in the
set ⟨f, A, ε⟩. Note that a continuous image of an R-compact set is
an R-compact set. Since Y is a metrizable TVS, we conclude that
f(A) is a compact set.

The family of balls {Sϵ/3(a) = {y : y ∈ Y, ρ(y, a)) < ϵ/3} for
all a ∈ f(A)} is an open cover of f(A). Let us take a finite sub-
cover {Sϵ/3(ai)}ni=1. Then, the set f

−1(Sϵ/3(ai)), being a continuous
preimage of a functionally open set, is functionally open; the set
Ai = f−1(Sϵ/3(ai)) ∩A is R-compact and, by the assumption, be-

longs to λ. Then, the set Of =
n∩

i=1
[Ai, Sϵ/2(ai)] is open in the

set-open topology.
Let us show that f ∈ Of . Indeed, f(x) ∈ Sϵ/2(ai) for any i 6 n

and any x ∈ Ai. Let us show that Of ⊂ ⟨f, A, ε⟩.
Let g ∈ Of , and let x be an arbitrary point from the set A.

Since the family {Sϵ/3(ai)}ni=1 is a cover of f(A), it follows that

A ⊆
n∪

i=1
f−1(Sϵ/3(ai)); hence, A ⊆

n∪
i=1

Ai. Let us take i such that

x ∈ Ai. Since g ∈ Of , we have g(x) ∈ g(Ai) ⊆ Sϵ/2(ai); i.e.,
ρ(ai, g(x)) < ε/2. The inequality ρ(ai, f(x)) < ε/2 is also valid.
Then, ρ(f(x), g(x)) < ε; i.e., g ∈ ⟨f, A, ε⟩.

The theorem is proved. �
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Let λ = {A : A ∈ λ}. Note that the same weak set-open topol-
ogy is obtained if λ is replaced by λ. This is because for each

f ∈ C(X,Y ) we have f(A) ⊆ f(A) and, hence, f(A) = f(A).
Consequently, Cλ∗(X) = Cλ∗(X).

Theorem 4.5. Suppose Cλ∗(X,Y ) = Cλ,u(X,Y ). Then, the family
λ consists of bounded sets.

Proof. Suppose that there is an unbounded set A ∈ λ. Then, there
is f ∈ C(X,R) such that f(A) is unbounded.

Let ϕ be an isometric embedding of R into Y defined as fol-
lows: ϕ(t) = t ∗ y0, where y0 ∈ Y is such that 0 < ρ(0, y0) < 1
(ρ is an invariant metric on Y ).

Suppose that, for every a ∈ R, the ray [a,+∞) ̸⊆ f(A) (the
proof for (−∞, a] is similar). Then, there is a system of disjoint

open intervals {(ci, bi)}i∈N such that (ci, bi)
∩

f(A) = ∅ for every i

and {ci}, {bi} → +∞. We conclude that f(A) ⊆ (R \
∪
(ci, bi)).

Let us take h ∈ C(R) such that h(R \
∪
(ci, bi)) = N. Let us

consider g = ϕ◦h◦ f and a neighborhood [A,W ]∗ of the function g
in the weak set-open topology Cλ∗(X,Y ), where W =

∪
i∈N

S1/i(ai)

and S1/i(ai) is an open ball centered at the point ai = ϕ(i). By
assumption, pick up a neighborhood V =< g,B, ϵ > of the function
g in the topology Cλ,u(X,Y ) that is contained in the set [A,W ]∗.

Note that A ⊂ B. Indeed, if there exists a point z ∈ A\B, then,
since the space X is completely regular, there exists a function
p ∈ C(X,Y ) such that p|B = g|B and p(z) ̸∈ W . In this case, we
would have p ∈ V ; however, p ̸∈ [A,W ]∗.

Let us consider q(x) = ϕ(h(f(x)) + d) such that 0 < d < 1 and
ρ(d ∗ y0, 0) < ϵ. Since ρ(q(x), g(x)) = ρ((h(f(x))+ d) ∗ y0, h(f(x)) ∗
y0) = ρ(d ∗ y0, 0) < ϵ, we have q ∈ V . Note that g(A) ⊆

∪
{ai} and

q(A) ⊆
∪
{ai + d ∗ y0} then there exists j such that

1/j < min{ρ(aj , aj + d ∗ y0), ρ(aj+1, aj + d ∗ y0)}. Therefore, there
exists x0 ∈ A such that q(x0) = as + d ∗ y0 for some s > j;
thus, q(x0) ̸∈ W and q ̸∈ [A,W ]∗. This contradicts the fact that

[a,+∞) ̸⊆ f(A) for any a ∈ R. Thus, there is b ∈ R such that

[b,+∞) ⊆ f(A).
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Assume that ϕ ◦ f ∈ [A,U ]∗, where U is an arbitrary open set

containing ϕ(f(A)). Then, [b,+∞) ∗ y0 ⊆ U . Since Cλ∗(X,Y ) =
= Cλ,u(X,Y ), the function ϕ ◦ f has a basic neighborhood
< ϕ ◦ f,D, ϵ > in the topology of uniform convergence such that
< ϕ ◦ f,D, ϵ >⊆ [A,U ]∗. The function ϕ ◦ f also has a basic

neighborhood in the weak set-open topology
n∩

i=1
[Ai,Wi]

∗ such that

n∩
i=1

[Ai,Wi]
∗ ⊆< ϕ ◦ f,D, ϵ >.

Note that A ⊆
n∪

i=1
Ai and A ⊆ D (similarly to the above proof

of the relation A ⊆ B).

As proved above, for any i 6 n, the set f(Ai) either has an upper
bound li or contains the ray [bi,+∞).

Let m = max
16i6n

{li, bi}, and let y be a point from [m,+∞) ∗ y0

such that ρ(ϕ(m), y) > ϵ. The set f−1 ◦ ϕ−1(Sϵ(y)) is function-
ally open; hence, we can construct a nonnegative continuous func-
tion v ∈ C(X) such that v(x) = 0 for x ̸∈ f−1 ◦ ϕ−1(Sϵ(y)) and
v(xa) > sup {ϕ−1(Sϵ(y))} for some point xa ∈ f−1 ◦ ϕ−1(y)

∩
A.

The map ϕ(f + v) ∈ C(X,Y ) does not belong to < ϕ ◦ f,D, ϵ >.
Indeed, xa ∈ A ⊂ D satisfies the relation ρ(ϕ(f(xa)), ϕ(f+v)(xa)) =
= ρ(ϕ(f(xa)), ϕ(f(xa)) + ϕ(v(xa))) = ρ(0, ϕ(v(xa))) > ϵ.

Note that ϕ(f+v) ∈
n∩

i=1
[Ai,Wi]

∗. Indeed, let x ∈ Ai. In this case,

if x ̸∈ f−1 ◦ ϕ−1(Sϵ(y)), then ϕ(f + v)(x) = ϕ(f(x)) ∈ Wi and, if
x ∈ f−1 ◦ ϕ−1(Sϵ(y)), then f(x) ∈ ϕ−1(Sϵ(y)) ⊆ [m,+∞) ⊆ f(Ai),
(f + v)(x) = f(x)+ v(x) ∈ [m,+∞) and ϕ(f + v)(x) ⊆ ϕ(f(Ai)) ⊆
Wi.

Since
n∩
i
[Ai,Wi]

∗ ⊆< ϕ ◦ f,D, ϵ > then this contradicts our as-

sumption.
Therefore, the image f(A) is bounded for any A ∈ λ and for

every f ∈ C(X).
The theorem is proved. �

Corollary 4.6. Suppose that Cλ∗(X,Y ) 6 Cλ,u(X,Y ). Then, the
family λ consists of sets such that, for any A ∈ λ and any function
f ∈ C(X), the image f(A) is either bounded or contains the ray
[a,+∞) (or the ray (−∞, a]) for some a ∈ R.
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Theorem 4.7. Suppose that λ is a family consisting of bounded
subsets of X such that A

∩
W ∈ λ for any A ∈ λ and any func-

tionally open set W such that A
∩

W ̸= ∅. Then, Cλ∗(X,Y ) =
Cλ,u(X,Y ).

Proof. For the proof, see Theorem 3.1 and Theorem 3.2 in [2]. �

Theorem 4.8. Suppose that Cλ∗(X,Y ) = Cλ,u(X,Y ). Let λm be
a maximal family with respect to inclusion among all the families
specifying the same λ∗-open topology on C(X,Y ). Then, A

∩
W ∈

λm for every A ∈ λm and any functionally open set W such that
A
∩

W ̸= ∅.

Proof. By Theorem 4.5, we conclude that the family λ consists of
bounded sets.

The setA
∩
W is bounded for everyA (as a subset of the bounded

set A).

Let us consider the family λ1 = λ ∪ A
∩

W . It is clear that
Cλ∗(X,Y) 6 Cλ∗

1
(X,Y). We conclude that Cλ∗

1
(X,Y) 6 Cλ1, u(X,Y)

(see Theorem 3.1, [7]).
It is well known that the uniform topology on elements of a

family does not change if one adds to the family any subset of any
element of the family. Therefore, Cλ1, u(X,Y ) = Cλ, u(X,Y ). By
the assumption, we have Cλ, u(X,Y ) = Cλ∗(X,Y ). We conclude
that

Cλ∗(X,Y ) 6 Cλ1(X,Y ) 6 Cλ1, u(X,Y ) = Cλ, u(X,Y ) = Cλ∗(X,Y );

i.e., all four topologies on C(X,Y ) coincide.

It follows that A
∩

W ∈ λm.
This implies the conclusion of the theorem. �

Remark 4.9. Note that the condition that Y is a metrizable topolog-
ical vector space can be replaced by the condition that Y contains
a closed isometric image of the real line R.
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