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Abstract. In 1966 Lodato asked for an axiomatization of
the following binary “nearness relation” on the power set of
a set X : there exists an embedding of X into a topological
space Y such that subsets A and B are near in X iff their
closures meet in Y .

Then he gave an answer in terms of what later became
known as Lodato proximity spaces. Afterwards, in 1975,
Bentley generalized this theorem to bunch-determined
nearness spaces. In this regard, recall that each topology
on a set X , given by a closure operator cl , defines a
compatible Leader proximity on X by declaring B to be
near to A , provided B meets the closure of A . In 1964
Doitchinov introduced the notion of supertopological space in
order to construct a unified theory of topological and proxim-
ity spaces. As an application he showed that the compactly
generated Hausdorff-extensions of a given topological space
are closely related to a special class of supertopologies called
“b-supertopologies”. But all structures mentioned above are
special cases of the so-called “b-convergence spaces”; more-
over, uniform convergence structures in the sense of Preuss
can also be handled by this concept. Consequently, the re-
sults mentioned above can be recovered working in the realm
of this new type of space.
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1. Basic concepts

As usual, PX denotes the power set of a set X , and we use
BX ⊆ PX to denote a collection of bounded subsets of X , also
known as B-sets. Moreover, FIL(X × X) denotes the set of all
filters on X ×X , including the nullfilter.

Definition 1.1. For a set X we call a pair (BX , τ) consist-
ing of a B-set BX and a function τ : BX // P (FIL(X × X)) a
b-convergence (on X ), the triple (X,BX , τ) a b-convergence space,
and τ a b-convergence operator (on BX ), if the following axioms
are satisfied:

(bc1) B′ ⊆ B ∈ BX implies B′ ∈ BX ;
(bc2) ∅ ∈ BX ;
(bc3) x ∈ X implies {x} ∈ BX ;
(bc4) x ∈ X implies ẋ× ẋ ∈ τ({x}) ;
(bc5) τ(∅) = {P (X ×X)} ;
(bc6) B ∈ BX , U ∈ τ(B) and U ⊆ V ∈ FIL(X × X) imply

V ∈ τ(B) .

(Here ẋ denotes the filter generated by the set {x} .) In general,
for filters F and G , their cross product is defined by

F × G := {R ⊆ X ×X | ∃F ∈ F ∃G ∈ G. R ⊇ F ×G } .

If U ∈ τ(B) for some B ∈ BX , we say the uniform filter U b-
converges to B .

A b-convergence (BX , τ) on X and the corresponding b-conver-
gence space (X,BX , τ) are called saturated, if

(sat) X ∈ BX

in which case BX coincides with PX .
Given two b-convergence spaces (X,BX , τX) and (Y,BY , τY ) ,

a function f : X // Y is called b-continuous iff it is bounded, which
means

(c1) { f [B] |B ∈ BX } ⊆ BY ,

and f × f preserves b-convergence of uniform filters in the sense
that

(c2) B ∈ BX and U ∈ τX(B) imply (f × f)(U) ∈ τY (f [B]) ,
where

(f × f)(U) := {V ⊆ Y × Y | ∃U ∈ U . V ⊇ (f × f)[U ] } .
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Moreover, we denote the corresponding category by b-CONV ,
and mention here its interesting property of being topological, where
initial and final structures are formed as follows:

For b-convergence spaces (Yi,B
Yi , τi) , i ∈ I , and functions

fi : X // Yi, respectively, gi : Yi // Z, define B-sets on X and
Z by setting

BX = {B ⊆ X | ∀i ∈ I. fi[B] ∈ BYi } and
BZ = {B ⊆ Z | ∃i ∈ I. f−1

i [B] ∈ BYi } .

The corresponding functions τin : BX // P (FIL(X × X)) and
τfin : BZ // P (FIL(Z × Z)) map a nonempty bounded set B to

τin(B) := {U ∈ FIL(X ×X) | ∀i ∈ I. (fi × fi)(U) ∈ τi(fi[B]) }
respectively,

τfin(B) := {U ∈ FIL(Z × Z) | ∃i ∈ I. ∃Ui ∈ τi(g
−1
i [B]).

(gi × gi)(Ui) ⊆ U } ∪ { ż × ż | z ∈ Z }.

Remark 1.2. Let us point out already now that the full subcate-
gory satb-CONV of b-CONV , whose objects are the saturated
b-convergence spaces, contains up to isomorphism all those con-
vergence spaces which are playing important roles in the realm of
Convenient Topology, like semi-uniform convergence spaces, filter-
merotopic spaces, symmetric topological spaces and various spe-
cializations of these.

In a second direction, referred to as a non-symmetric Conve-
nient Topology by Preuss, quasi-uniform convergence spaces such
as quasiuniformities and various generalizations (e.g., preuniform
convergence spaces), but also topological structures and the corre-
sponding generalized spaces, e.g., limit spaces, Kent convergence
spaces etc., can be dealt with.

Remark 1.3. Supertopological spaces, set-convergence spaces, gen-
eralized proximities or grill-defined pre-supernear spaces, respec-
tively, now are subsumed by the broader concept of b-convergence,
in quite simple fashion. Moreover, the corresponding categories
can be described by their defining properties, so that in general a
common concept of convergence is being established.

Remark 1.4. We will now present two fundamental types of these
properties. First, we note that each b-convergence (BX , τ) induces
two underlying pre-topologies, namely
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(i) clτ (A) := {x ∈ X | ∃U ∈ τ({x}). {x} ×A ∈ secU } ,
(ii) clτ (A) := {x ∈ X | ∃F ∈ FIL(X). A ∈ secF ∧ F × F ∈

τ({x}) } ;
where in general for a set system S ⊆ P (X) we have

secS := {T ⊆ X | ∀S ∈ S. T ∩ S ̸= ∅ } .

Now let (X,BX , τ) be a b-convergence space. We will call C ∈
FIL(X) for B ∈ BX a B -Cauchy filter (in τ ) iff C ×C ∈ τ(B) .

Definition 1.5. A b-convergence space (X,BX , τ) is called

(i) a b-filter space, if B ∈ BX and U ∈ τ(B) implies the
existence of a B -Cauchy filter C in τ with C × C ⊆ U ;

(ii) pointed iff B ∈ BX \ {∅} implies

τ(B) =
∪

{ τ({x}) | x ∈ B } .

Remark 1.6. Here we note that every b-filter space (X,BX , τ)
satisfies clτ (A) ⊆ clτ (A) for each A ⊆ X . The full subcate-
gory pb-CONV of b-CONV , whose objects are the pointed
b-convergence spaces, forms a strong topological universe in which
TOP and UNIF can be fully embedded, see [11].

2. Some important isomorphisms

Example 2.1. For a preuniform convergence space (X, JX) the
triple (X,P (X), τJX ) , where

τJX (∅) := {P (X ×X)} ;

τJX (B) := JX for B ∈ P (X) \ {∅} .

is a preuniform b-convergence space. (X,BX , τ) is called preuni-
form, provided (BX , τ) is saturated and steady in the sense that

(st) B,B′ ∈ BX \ {∅} implies τ(B) = τ(B′) .

Conversely, for a uniform b-convergence space (X,BX ,Ω) setting
IΩX := Ω(X) yields a preuniform convergence space (X, IΩX) .

Theorem 2.2. The full subcategory ub-CONV of b-CONV ,
whose objects are the preuniform b-convergence spaces, is isomor-
phic to the category PUCONV of preuniform convergence spaces
and uniformly continuous maps in the sense of [14].
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Example 2.3. Let (X,BX , N) be a pre-supernear space, i.e., BX

is a B-set and N : BX // P (P (P (X))) is a function satisfying the
following conditions

(SN1) N(∅) = {∅} and ∀B ∈ BX . BX /∈ N(B) ;
(SN2) N2 << N1 ∈ N(B) implies N2 ∈ N(B) , where N2 << N1

iff ∀F2 ∈ N2 ∃F1 ∈ N1. F2 ⊇ F1 ;
(SN3) x ∈ X implies {{x}} ∈ N({x}) ;
that in addition is grill-defined in the sense that

(G) N ∈ N(B) implies the existence of a grill G ∈ GRILL(X)
such that N ⊆ G and G ∈ N(B) .

Then we obtain a b-filter space (X,BX , τN ) with

τN (∅) := {P (X ×X)};
τN (B) := {U ∈ FIL(X ×X) | ∃G ∈ GRILL(X).G ∈ N(B)

∧ secG × secG ⊆ U } for B ∈ BX \ {∅} .

Conversely, for a b-filter space (X,BX ,Ω) setting

MΩ(∅) := {∅} ;
MΩ(B) := { G ∈ GRILL(X) | secG × secG ∈ Ω(B) }

for B ∈ BX \ {∅} ,
yields a grill-defined pre-supernear space (X,BX ,M) .

Remark 2.4. For the rest of the paper we introduce the following
terminology: b-CAU denotes the full subcategory of b-CONV ,
whose objects are the b-filter spaces. PSN denotes the cate-
gory of pre-supernear spaces and nearness-preserving maps, while
G-PSN • stands for the category of grill-defined pre-supernear
spaces and grill-continuous maps. Concretely, a bounded func-
tion f : X // Y is called grill-continuous from (X,BX , N) to
(Y,BY ,M) , if

(gc) B ∈ BX and G ∈ N(B) implies sec f(secG) ∈ M(f [B]) .

Note that grill-continuous functions are always sn-maps.

Theorem 2.5. b-CAU and G-PSN • are isomorphic.

Remark 2.6. In this context we should mention the closely related
category PNEAR of prenearness spaces and nearness preserving
maps. A prenearness structure on a set X is a subset of ξ ⊆
P (P (X)) subject to the following axioms:
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(N1) ∅ ∈ ξ and {∅} /∈ ξ ;
(N2) N2 << N1 ∈ ξ implies N2 ∈ ξ ;
(N3) F ∈ P (X) and

∩
F ̸= ∅ implies F ∈ ξ .

Example 2.7. For a filter (merotopic) space (X,Γ) we obtain a
merotopical b-convergence space (X,P (X), τΓ) by setting

τΓ(∅) := {P (X ×X)} and

τΓ(B) := {U ∈ FIL(X ×X) | ∃F ∈ Γ. F × F ⊆ U ∧ B ∈ secF }
for each B ∈ P (X) \ {∅} ,

where a saturated b-convergence space (X,BX ,Ω) , which is iso-
tone, i.e., B2 ⊆ B1 ∈ BX implies Ω(B2) ⊆ Ω(B1) , is called mero-
topical, provided

• B ∈ BX \{∅} and U ∈ Ω(B) imply the existence of C ∈ γΩ
such that C × C ⊆ U and B ∈ sec C , where

γΩ :=
{
F ∈ FIL(X) | F × F ∈

∩
{Ω(F ) | F ∈ secF }

}
.

Note that a merotopical b-convergence space is always a b-filter
space.

Theorem 2.8. The full subcategory mb-CONV of b-CAU ,
whose objects are the the merotopical b-convergence spaces, is iso-
morphic to FIL .

Remark 2.9. Since FIL and GRILL are isomorphic, it follows
that mb-CONV is isomorphic to GRILL as well.

Example 2.10. For a set-convergence space (X,MX, q) (in Wyler’s
terminology) setting

τq(B) := {U ∈ FIL(X ×X) | ∃F ∈ FIL(X). F q B ∧ F ×F ⊆ U }
for each B ∈ BX ,

yields a set-pointed b-filter space (X,MX , τq) . A b-convergence
space (X,MX ,Ω) is called set-pointed, if

(sp) B ∈ BX implies Ḃ × Ḃ ∈ τ(B) .

Conversely, for a set-pointed b-filter space (X,BX ,Ω) we set

F pΩB iff F × F ∈ Ω(B) .
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Theorem 2.11. The full subcategory SETb-CAU of bCAU ,
whose objects are the set-pointed b-filter spaces is isomorphic to the
category SET -CONV of set-convergence spaces.

Example 2.12. Any superneighborhood space (X,MX , ϑ) in the
sense of [17] induces a centric set-pointed b-filter space (X,MX , τϑ)
by setting

τϑ(B) := {U ∈ FIL(X×X)|ϑ(B)×ϑ(B) ⊆ U } for each B ∈ BX .

Here, a b-convergence space (X,BX ,Ω) is called centric, provided

(c) B ∈ BX implies
∩

τ(B) ∈ τ(B) .

Conversely, for a centric set-pointed b-filter space (X,BX ,Ω) we
set

ΘΩ(B) := {F ⊆ X | F × F ∈
∩

Ω(B) } .

Theorem 2.13. The full subcategory censetb-CAU of SETb -
CAU , whose objects are the centric set-pointed b-filter spaces,
is isomorphic to the category PRESTOP of superneighborhood
spaces and corresponding maps.

Definition 2.14. A centric uniform b-convergence space is called
∆-uniform.

Theorem 2.15. The full subcategory ∆- ub-CONV of ub -
CONV , whose objects are the ∆-uniform b-convergence spaces,
is isomorphic to the category ∆-UNIF of ∆ - uniform spaces
(X,U) (every U ∈ U contains the diagonal ∆ ⊆ X × X ) and
uniformly continuous maps.

Example 2.16. Given a g-proximity space (X,BX , p) (a general-
ized proximity space in the sense of Tozzi and Wyler), we obtain a
proximal b-filter space (X,BX ,Ωp) by setting

Ωp(∅) := {P (X ×X)} ;

Ωp(B) := {U ∈ FIL(X ×X) | sec p(B)× sec p(B) ⊆ U }
for B ∈ BX \ {∅} , where p(B) := {A ⊆ X |B pA } .

An isotone (see Example 2.7) and centric b-filter space (X,BX , τ)
is called proximal, provided

(p) B ∈ BX implies sec δτ (B)× sec δτ (B) =
∩

τ(B) , where

B δτ A iff ∃F ∈ FIL(X). A ∈ secF ∧ F × F ∈ τ(B) .
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Note that an isotone centric b-filter space is always set-pointed.

Theorem 2.17. The full subcategory PROXb-CAU of b-CAU ,
whose objects are the proximal b-filter spaces, is isomorphic to the
category g -PROX of generalized proximity spaces and correspond-
ing maps.

Remark 2.18. Note that g -PROX is isomorphic to a full subcat-

egory of G-PSN • . Moreover, if (BX , τ) is saturated, then the
definition of δτ leads us to the well-known proximities on PX in
the sense of [17].

Example 2.19. Given a pretopological closure space (X, )̄ , we
obtain a pretopological b-filter space (X,P (X),Ω−) by setting

Ω−(B) := {U ∈ FIL(X ×X) | ∃F ∈ FIL(X).F × F ⊆ U ∧ B ∈
sec {M̄ |M ∈ secF }} for all B ⊆ X .

A saturated proximal b-filter space (X,BX , τ) is called pretopo-
logical, provided

(prt) U ∈ τ(B) implies ∃F ∈ FIL(X). F × F ⊆ U ∧ B ∈
sec { clτ (M) |M ∈ secF } .

Theorem 2.20. The full subcategory PRTOPb-CAU of b-CAU,
whose objects are the pretopological b-filter spaces, is isomorphic to
the category PRTOP .

Definition 2.21. Let (X,BX , τ) be a b-convergence space. For
B ∈ BX a B -Cauchy filter C ∈ FIL(X) is called τ -dense, pro-
vided

• A ⊆ X and clτ (A) ∈ sec C implies A ∈ sec C .

Definition 2.22. A b-convergence space (X,BX , τ) is called dense,
provided

(d) B ∈ BX and U ∈ τ(B) implies the existence of a τ -dense
B -Cauchy filter C ∈ FIL(X) with C × C ⊆ U .

Corollary 2.23. For a dense b-convergence space (X,BX , τ) the
underlying closure operator clτ is topological.

Definition 2.24. A dense pretopological b-filter space (X,BX , τ)
is called topological.
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Theorem 2.25. The full subcategory TOPb-CAU of b-CAU ,
whose objects are the topological b-filter spaces, is isomorphic to the
category TOP .

Proof. For a given topological b-filter space (X,BX , τ) it is easy to
verify that clτ as described in Remark 1.4(ii) constitutes a topo-
logical closure operator on X .

Conversely, for a topological space (X, )̄ specified by a Kuratow-
sky-closure operator ¯ on X , consider the triple (X,P (X),Ω−)
where Ω− is defined as in Example 2.19.

Clearly, (X,P (X),Ω−) is a proximal b-filter space. In order to
see that it is pretopological, it suffices to show Ā coincides with
clΩ−(A) for any A ⊆ X (see Example 2.19).

For x ∈ clΩ−(A) by Remark 1.4(ii) we find F ∈ FIL(X) with
A ∈ secF and F × F ∈ Ω−({x}) . By definition of the later
there exists F ′ ∈ FIL(X) with F × F ⊆ F ′ × F ′ and {x} ∈
sec {M̄ | M ∈ secF ′ } , in other words, x ∈

∩
{ M̄ | M ∈ secF ′ } .

As secF ′ ⊆ secF , we obtain x ∈ Ā .
Conversely, for x ∈ Ā the filter F := sec {F ⊆ X | x ∈ F̄ } has

the property that M ∈ secF implies x ∈ M̄ , hence in particular
A ∈ secF . In order to show F × F ∈ Ω−({x}) , we observe that
M ∈ secF implies x ∈ M̄ and thus {x} ∈ sec { M̄ |M ∈ secF } .
Therefore F × F ∈ Ω−({x}) , which shows x ∈ clΩ−(A) .

It remains to show that (X,P (X),Ω−) is dense. For B ⊆ X
and U ∈ Ω−(B) there exists some F ∈ FIL with F × F ⊆ U
and B ∈ sec { M̄ | M ∈ secF } . Setting F ′ := {F ⊆ X | B ∩
F̄ ̸= ∅ } yields a B -Cauchy filter in Ω− with F ′ × F ′ ⊆ F × F ,
since secF ⊆ secF ′ . In order to establish that F ′ is Ω− -dense,
observe that A ⊆ X and clΩ−(A) ∈ secF ′ imply Ā ∈ secF ′ ,

and consequently B ∩ ¯̄A ̸= ∅ . Since ¯ is topological and hence
idempotent, we get B∩Ā ̸= ∅ , which shows A ∈ secF ′ , as desired.

The desired bijection between topological b-filter spaces and topo-
logical spaces now follows, if we can prove Ωclτ = τ .

For B ⊆ X consider U ∈ Ωclτ (B) . There exists some F ∈
FIL(X) with F × F ⊆ U and B ∈ sec { clτ (M) | M ∈ secF } .
In view of Example 2.16 we need to show sec δτ (B) ⊆ F . This
inclusion holds iff secF ⊆ δτ (B) . But M ∈ secF implies B ∩
clτ (M) ̸= ∅ . Choose x in this intersection. There exists F ′ ∈
FIL(X) with M ∈ secF ′ and F ′ × F ′ ∈ τ({x}) . Since τ is
isotone, we also get F ′×F ′ ∈ τ(B) , which shows M ∈ δτ (B) . By
hypothesis we now get U ∈ τ(B) .
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Conversely, let U be an element of τ(B) . By axiom (prt) we
can find F ∈ FIL(X) with F×F ⊆ U and B ∈ sec { clτ (M)|M ∈
secF } , hence U ∈ Ω|clτ (B) .

At last, consider topological spaces (X, ¯
X
) and (Y, ¯

Y
) and

a function f : X // Y . We need to establish the equivalence of the
following assertions:

(i) f is continuous from (X, ¯
X
) to (Y, ¯

Y
) ;

(ii) f is b-continuous from (X,P (X),Ω−X) to (Y, P (Y ),Ω−Y).

(i)⇒ (ii): U ∈ Ω−X(B) implies the existence of F ∈ FIL(X) with
F×F ⊆ U and B ∈ sec { M̄X |M ∈ secF } . Then f(F) ∈ FIL(Y )
satisfies f(F)× f(F) = (f × f)(F × F) ⊆ (f × f)(U) .

Now for an element M ∈ sec f(F) we have to verify f [B]∩M̄Y ̸=
∅ . But f−1[M ] ∈ secF implies B ∩ f−1[M ]

X ̸= ∅ , and therefore

∅ ̸=f [B∩f−1[M ]
X
] ⊆ f [B]∩f [f−1[M ]

X
] ⊆ f [B]∩f [f−1[M ]]

Y
⊆ f [B]∩M̄Y

which had to be shown.
(ii)⇒ (i): For A ⊆ X and x ∈ ĀX we have to verify f(x) ∈
f [A]

Y
. But ĀX = clΩ−X

(A) implies the existence of F ∈ FIL(X)
with A ∈ secF and F × F ⊆ Ω−X({x}) . By hypothesis we
get f(F) × f(F) = (f × f)(F × F) ∈ Ω−Y ({f(x)}) and f [A] ∈
f(secF) ⊆ sec f(F) . Choose F ′ ∈ FIL(Y ) with F ′ ⊆ f(F) and
f(x) ∈

∩
{ M̄Y | M ∈ secF ′ } . From sec f(F) ⊆ secF ′ it follows

that f(x) ∈ f [A]
Y
, as desired.

Figure 1 displays the relationships among the categories men-
tioned in this Section.

3. Topological extensions

By TEXT we denote the category, whose objects (e,BX , Y )
are specified by topological spaces X = (X, clX) and Y = (Y, clY )
(given by closure operators), a B-set BX and a function e : X // Y
that satisfies the following conditions:

(E1) A ⊆ X implies clX(A) = e−1[clY (e[A])] , where e−1 de-
notes the inverse image under e ;

(E2) clY (e[X]) = Y , which means that the image of X under
e is dense in Y ;
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PSNb-CONV

PNEARb-CAU ∼= G-PSN•satb-CONV

FIL ∼= GRILLg-PROX

SETCONV PUCONV

G-CONV

STOPKENT-CONV

ULIM

PROXTOP

UNIF__???????????

OO77oooooooooooooooo

ggOOOOOOOOOOOOOOO

__??????????

OO__?????????????????????????

WW///////////////////

OO

OO

OO ??����������

jjTTTTTTTTTTTTTTTTTTTTTTTT

ggOOOOOOOOOOOOOOOOO

??����������

__?????????????????????????

OO

__???????????

OOWW////////////////////

77ooooooooooooooooo

OO

__???????????

Figure 1. Embeddings among some categories
mentioned above.

Morphisms in TEXT have the form

(f, g) : (e,BX , Y ) // (e′,BX′
, Y ′)

where f : X // X ′, g : Y // Y ′ are continuous maps such that f
is bounded, and the following diagram commutes:

(3.1) X
e //

f
��

Y

g

��
X ′

e′
// Y ′

If (f, g) : (e,BX , Y ) // (e′,BX′
, Y ′) and (f ′, g′) : (e′,BX′

, Y ′) //

(e′′,BX′′
, Y ′′) are TEXT -morphisms, they can be composed com-

ponent-wise, i.e., (f ′, g′) ◦ (f, g) = (f ′ ◦ f, g′ ◦ g) .
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Remark 3.1. The continuity of e follows from (E1), if e : X // Y
is a topological embedding.

Moreover, X is allowed to carry an arbitrary B-set that can be
different from the power set PX .

Finally, we mention that such an extension is called strict iff
{ clY (e[A])|A ⊆ X } is a base for the closed subsets of Y . STEXT
denotes the full subcategory of TEXT , whose objects are the
strict topological extensions.

Lemma 3.2. For a TEXT -object (e,BX , Y ) we obtain a pointed
b-filter space (X,BX , τe) with clX = clτe by setting

τe(∅) := {P (X ×X)} ;

τe(B) := {U ∈ FIL(X ×X) | ∃F ∈ FIL(X)∃x ∈ B. F × F ⊆ U

∧ e(x) ∈
∩

{ clY (e[A]) |A ∈ secF }}

for all B ∈ BX \ {∅} .
Proof. It is easy to verify that τe defines a pointed b-filter operator
on BX . Now we will show that the corresponding closure operators
agree.

≥ x ∈ clτe(A) implies the existence of F ∈ FIL(X) with
A ∈ secF and F × F ∈ τe({x}) . Choose C ∈ FIL(X)
such that C × C ⊆ F × F and e(x) ∈

∩
{ clY (e[A]) | A ∈

sec C } , hence A ∈ sec C and e(x) ∈ clY (e[A]) follows.
Consequently, x ∈ e−1[clY (e[A])] , which shows that x ∈
clX(A) , as required by (E1).

≤ Conversely, x∈clX(A) implies e(x)∈e[clX(A)] ⊆clY (e[A]),
since e is continuous (see (E1)). We set

F := sec {T ⊆ X | e(x) ∈ clY (e[T ]) } .

Then F ∈ FIL(X) with A ∈ secF and F ×F ∈ τe({x}) ,
because F ∈ secF implies e(x) ∈ clY (e[F ]) , and therefore
e(x) ∈

∩
{ clY (e[F ]) | F ∈ secF } , which shows that x ∈

clτe(A) .

Definition 3.3. For a set X , we call a pointed b-filter convergence
(BX , τ) a LEADER b-convergence, and the triple (X,BX , τ) a
LEADER b-convergence space, provided

(LE1) x ∈ X implies xτ × xτ ∈ τ({x}) , where xτ := sec {T ⊆
X | x ∈ clτ (T ) } ;
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(LE2) B ∈ BX \ {∅} and U ∈ τ(B) implies the existence of a
B -Cauchy filter M in τ that satisfies M×M ⊆ U and
is B -marginal in the sense that

(ma0) secM ̸= ∅ ;
(ma1) M is τ -dense;
(ma2) M is B -sected, which means B ∈ sec { clτ (A) | A ∈

secM} .
Remark 3.4. We point out that a LEADER b-convergence space is
dense, hence its underlying closure operator is topological.

Proposition 3.5. The pointed b-filter space (X,BX , τe)constructed
in Lemma 3.2 is in fact a LEADER b-convergence space.

Proof.

(LE1) Since xτe∈FIL(X), and for A∈secxτe we have x∈clτe(A)=
clX(A) , which implies e(x) ∈ e[clX(A)] ⊆ clY (e[A]) , con-
dition (LE1) is satisfied.

(LE2) B ∈ BX \{∅} and U ∈ τe(B) implies the existence of some
F ∈ FIL(X) and some x ∈ B such that F × F ⊆ U and
e(x) ∈

∩
{ clY (e[A]) |A ∈ secF } . The filter

Mx := sec {T ⊆ X | e(x) ∈ clY (e[T ]) }
satisfies Mx ⊆ F , because of secF ⊆ secMx . Conse-
quently, Mx ×Mx ⊆ U , since by definition Mx ×Mx ∈
τe(B) .

(ma0) By construction, secMx ̸= ∅ .
(ma1) Consider A ⊆ X with clτe(A) ∈ secMx . Then

e(x)∈ clY (e[clτe(A)])=clY (e[clX(A)])⊆ clY (clY (e[A]))⊆ clY (e[A]) ,

which implies that (ma1) is satisfied.
(ma2) A ∈ secMx implies e(x) ∈ clY (e[A]) , hence we get

x ∈ e−1[clY (e[A])] . According to (E1) we then have
x ∈ clX(A) = clτe(A) .
Since x ∈ B , the hypothesis shows B ∩ clτe(A) ̸=
∅ , which implies B ∈ sec { clτe(F ) | F ∈ secMx } .
Therefore Mx is B -sected.

Theorem 3.6. Let LEb-CONV denote the full subcategory of

b-CONV , whose objects are the LEADER b-convergence spaces.

We obtain a functor F : TEXT // LEb-CONV by setting

(a) F (e,BX , Y ) := (X,BX , τe) ;
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(b) F (f, g) := f for a TEXT -morphism (f, g) : (e,BX , Y ) //

(e′,BX′
, Y ′).

Proof. Consider a TEXT -morphism

(f, g) : (e,BX , Y ) // (e′,BX′
, Y ′).

We must establish the b-continuity of

f : (X,BX , τe) // (X ′,BX′
, τe′).

By hypothesis, f is already bounded. Now for B ∈ BX \ {∅} and
U ∈ τe(B) choose F ∈ FIL(X) and x ∈ B such that F ×F ⊆ U
and e(x) ∈

∩
{ clY (e[A])|A ∈ secF } . Now x′ := f(x) ∈ f [B] , and

F ′ := f(F) ∈ FIL(X ′) satisfies F ′ × F ′ ⊆ (f × f)(U) . Moreover,
if A′ ∈ secF ′ , then A′ ∈ sec f(F) and hence f−1[A′] ∈ secF ′ .

By hypothesis we have e(x) ∈ clY (e[f
−1[A′]]) . Since g is con-

tinuous, we obtain

e′(x′)= e′(f(x))= g(e(x)) ∈ g[clY (e[f
−1[A′]])] ⊆ clY ′(g[e[f−1[A′]]])

= clY ′(e′[f [f−1[A′]]]) ⊆ clY ′(e′[A′])

due to the commutativity of Diagram 3.1.

Lemma 3.7. For a LEADER b-convergence space (X,BX , τ) and
for each x ∈ X , ×τ is {x}-marginal in τ with the property that
×τ × xτ is minimal in τ({x}) ordered by inclusion.

Proof. We first note that xτ is a {x}-Cauchy filter, since (BX , τ)
satisfies axiom (LE1) and clτ is a closure operator on X .

By definition, secxτ ̸= ∅ and xτ is {x}-sected.
To show that xτ is τ -dense, observe that clτ (A) ∈ secxτ im-

plies x ∈ clτ (clτ (A)) ⊆ clτ (A) . But since clτ is topological,
A ∈ secxτ follows.

Now for U ∈ τ({x}) with U ⊆ xτ ×xτ choose an {x}-marginal
M in τ with M×M ⊆ U . By construction, this satisfies M ⊆
xτ , which implies secxτ ⊆ secM . On the other hand, A ∈ secM
implies x ∈ clτ (A) , since M is {x}-sected, which means A ∈
secxτ .

Hence M = xτ , and therefore U = xτ × xτ .
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4. LEADER b-convergences and strict topological
extensions

In the previous section we have found a functor F : TEXT //

LEb-CONV . Now we are going to introduce a related functor from

LEb-CONV to TEXT .

Lemma 4.1. Let (X,BX , τ) be a LEADER b-convergence space.
we put

X̂ := {M ∈ FIL(X) | ∃B ∈ BX \ {∅}. M is B -marginal in τ } ,

and for each Â ⊆ X̂ we set clX̂(Â) := {M ∈ X̂ |∆(Â) ⊆ secM} ,
where

∆(Â) := {F ⊆ X | ∀C ∈ Â. F ∈ sec C }.

Then clX̂ is a topological closure operator on X̂ .

Proof. Assume clX̂(∅) ̸= ∅ and choose a B -marginal M in τ
with PX = ∆(∅) ⊆ secM . Since ∅ ∈ secM and B ̸= ∅ , we get
∅ = B ∩ clτ (∅) ̸= ∅ , a contradiction. Therefore clX̂(∅) = ∅ .

Now consider M ∈ Â and F ∈ ∆(Â) , which implies F ∈ secM
and hence M ∈ clX̂(Â) .

For Â1 ⊆ Â2 and M ∈ clX̂(Â1) we have ∆(Â2) ⊆ ∆(Â1) ⊆
secM , which shows M ∈ clX̂(Â2) .

M ∈ clX̂(Â1∪ Â2) implies ∆(Â1∪ Â2) ⊆ secM . Assume M /∈
clX̂(Â1) ∪ clX̂(Â2) , hence ∆(Â1) ̸⊆ secM and ∆(Â2) ̸⊆ secM .

Choose F1 ∈ ∆(Â1) \ secM and F2 ∈ ∆(Â2) \ secM .
We claim that both X \ F1 and X \ F2 belong to M . From

X \ (F1 ∪F2) = X \F1 ∩X \F2 ∈ M we see F1 ∪F2 /∈ secM . By

hypothesis choose C ∈ Â1 ∪ Â2 with F1 ∪ F2 /∈ sec C . If C ∈ Â1 ,
then F1 ∈ ∆(Â1) implies F1 ∈ sec C , and hence F1 ∪ F2 ∈ sec C ,

a contradiction. By symmetry, C ∈ Â2 leads to a contradiction as
well. Thus we have clX̂(Â1 ∪ Â2) = clX̂(Â1) ∪ clX̂(Â2) .

M ∈ clX̂(clX̂(Â)) implies ∆(clX̂(Â)) ⊆ secM . We need to

show ∆(Â) ⊆ secM . F /∈ secM implies F /∈ sec C for some C ∈
clX̂(Â) , hence we get ∆(Â) ⊆ sec C . Consequently, F /∈ ∆(Â) ,
which establishes the claim.
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Theorem 4.2. For LEADER b-convergence spaces (X,BX , τ) and
(Y,BY ,Ω) let f : X // Y be a b-continuous map. Define a function

f̂ : X̂ // Ŷ by setting

f̂(M) := sec {D ⊆ Y | f−1[clΩ(D)] ∈ secM} for each M ∈ X̂ .

Then the following statements are valid:

(i) f̂ is a continuous map from (X̂, clX̂) to (Ŷ , clŶ ) ;

(ii) The composites f̂ ◦ eX and eY ◦ f coincide, where eX :

X // X̂ denotes the function defined by eX(x) := xτ for
each x ∈ X .

Proof. If M ∈ X̂ , then M×M ∈ τ(B) for some B ∈ BX \ {∅} .
We have to show that f̂(M) × f̂(M) ∈ Ω(f [B]) . By hypothesis
we have f(M)×f(M) = (f ×f)(M×M) ∈ Ω(f [B]) , hence there
exists an f [B]-marginal F in Ω with F × F ⊆ f(M)× f(M) .

It remains to verify sec f̂(M) ⊆ secF . To this end, it suf-

fices to prove clΩ(D) ∈ secF , provided D ∈ sec f̂(M) . Now in
this case any F ∈ F satisfies F ⊇ f [M ] for some M ∈ M ,
hence f−1[clΩ(D)] ∈ secM . Consequently, f−1[clΩ(D)] ∩M ̸= ∅ .
Choose x ∈ M with f(x) ∈ clΩ(D) . Then we get f(x) ∈ F , which

implies F ∩clΩ(D) ̸= ∅ . But now f̂(M)× f̂(M) is a f [B]-Cauchy

filter in Ω , and f̂(M) ̸= ∅ by definition. Moreover, f̂(M) is Ω-

dense, as clΩ(A) ∈ sec f̂(M) implies f−1[clΩ(clΩ(A))] ∈ secM ,

which shows A ∈ sec f̂(M) .

It remains to show that f̂(M) is f [B]-sected, which means

that f [B] ∈ sec { clΩ(A) | A ∈ sec f̂(M) } . By hypothesis, A ∈
sec f̂(M) implies B ∩ clτ (f

−1[clΩ(A)]) ̸= ∅ , consequently x ∈
clτ (f

−1[clΩ(A)]) for some x ∈ B . Then

f(x) ∈ f [clτ (f
−1[clΩ(A)])] ⊆ clΩ(f [f

−1[clΩ(A)]]) ⊆ clΩ(clΩ(A)) ⊆ clΩ(A)

follows, which shows f [B] ∩ clΩ(A) ̸= ∅ .
(i) For Â ⊆ X̂ we must show f̂ [clX̂(Â)] ⊆ clŶ (f̂ [Â]) . Given

M ∈ clX̂(Â) , assume f̂(M) /∈ clŶ (f̂ [Â]) . Choose G ∈
∆(f̂ [Â]) with G /∈ sec f̂(M) , hence f−1[clΩ(G)] /∈ secM .

By hypothesis there exists C′ ∈ Â with f−1[clΩ(G)] /∈
sec C′ , hence f̂(C′) ∈ f̂ [Â] , which implies G ∈ sec f̂(C′) .
But on the other hand, f−1[clΩ(G)] ∈ sec C′ , which is a

contradiction. Therefore f̂(M) ∈ clŶ (f̂ [Â]) is valid.
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(ii) For x ∈ X we will establish the inclusion f̂(xτ ) ⊆ f(x)Ω .

To this end it satisfies to verify sec f(x)Ω ⊆ sec f̂(xτ ) .
Now M ∈ sec f(x)Ω implies f(x) ∈ clΩ(M) , hence x ∈
f−1[clΩ(M)] ⊆ clτ (f

−1[clΩ(M)]) follows, which means

f−1[clΩ(M)] ∈ sec f(xτ ) . But now we have M ∈ sec f̂(Xτ ) .

Since f̂(xτ ) × f̂(xτ ) ∈ Ω({f(x)}) , we get that f(x)Ω ×
f(x)Ω is minimal in (Ω({f(x)}),⊆) . Hence f̂(xτ )× f̂(xτ )

coincides with f(x)Ω×f(x)Ω , which shows f̂(xτ ) = f(x)Ω ,

and hence f̂ ◦ eX = eY ◦ f , as desired.

Theorem 4.3. We obtain a functor G : LEb-CONV // STEXT
by setting

(a) G(X,BX , τ) := (eX ,BX , X̂) with X = (X, clX) and X̂ =

(X̂, clX̂) ;

(b) G(f) = (f, f̂) for a b-continuous map f : (X,BX , τ) //

(Y,BY ,Ω)

Proof. By earlier arguments we know that clX and clX̂ are topo-

logical closure operators on their defining sets X and X̂ , respec-
tively. Moreover, eX : X // X̂ defined by eX(x) = xτ for each

x ∈ X is a function from X to X̂ . Now we will establish the
axioms for being a topological extension:

(E1) For A ⊆ X we have to show clτ (A) = e−1
X [clX̂(eX [A])] .

First, we note that

∆(eX [A]) = ∆({xτ | x ∈ A }) = {F ⊆ X |A ⊆ clτ (F ) } =: AC .

If x ∈ clτ (A) , then secxτ = {x}C ⊇ ∆(eX [A]) , which
means that eX(x) = xτ ∈ clX̂(eX [A]) . But then x ∈
e−1
X [clX̂(eX [A])] follows. Conversely, from x ∈ e−1

X [clX̂(eX [A])]

we conclude xτ = eX(x) ∈ clX̂(eX [A]) , which implies A ∈
AC = ∆(eX [A]) ⊆ secxτ , and hence x ∈ clτ (A) .

(E2) We must show clX̂(eX [X]) = X̂ . For M ∈ X̂ assume

M /∈ clX̂(eX [X]) , hence XC = ∆(eX [X]) ̸⊆ secM . Choose

F ∈ XC with F /∈ secM . Then we have X ⊆ clτ (F ) .
Furthermore, X ∈ secM implies clτ (F ) ∈ secM . But
since M is τ -dense, we conclude F ∈ secM , a contradic-
tion.
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At last we identify { clX̂(eX [A]) |A ⊆ X } as a basis for the closed

subsets of X̂ . If Â ̸= X̂ is closed in X̂ , we can find some M ∈
X̂ \ clX̂(Â) , which in turn satisfies ∆(Â) ̸⊆ secM . Hence there

exists F ∈ ∆(Â) with F /∈ secM . As C ∈ Â implies F ∈ sec C ,

we obtain the inclusion ∆(eX [F ]) ⊆ sec C , and therefore Â ⊆
clX̂(eX [F ]) .

On the other hand we have M /∈ clX̂(eX [F ]) , since F ̸∈ secM
implies ∆(eX [F ]) ̸⊆ secM . This shows clX̂(eX [F ]) ⊆ Â as de-
sired.

Theorem 4.4. Let F : TEXT // LEb-CONV and

G : LEb-CONV // STEXT be the functors
defined above. Then F ◦G = 1 LEb−CONV .

Proof. First we show that F (G(X,BX , τ)) = (X,BX , τ) is an
isomorphism for any LEb-CONV -object (X,BX , τ) . Since

F (G(X,BX , τ) = F (eX ,BX , X̂) = (X,BX , τeX ) , we need to check
whether τeX (B) = τ(B) for B ∈ BX \ {∅} .

Now U ∈ τeX (B) implies the existence of a filter F ∈ FIL(X)
and some x ∈ X with xτ = eX(x) ∈

∩
{ clX̂(A) | A ∈ secF } and

F × F ⊆ U . Since τ is pointed and in particular satisfies (LE1),
we get xτ ×xτ ∈ τ({x}) ⊆ τ(B) . It remains to show that xτ ⊆ F .
But any F ∈ secF by hypothesis satisfies xτ ∈ clX̂(eX [F ]) , hence
we have ∆(eX [F ]) ⊆ secxτ , which implies F ∈ secxτ . This proves
the claim. We now conclude xτ ×xτ ⊆ U , which shows U ∈ τ(B) .

Conversely, given U ∈ τ(B) , since τ is pointed, we get U ∈
τ({x}) for some x ∈ B . Choose a {x}-marginal M in τ with
M×M ⊆ U , hence {x} ∈ sec { clτ (F ) | F ∈ secM} . Moreover,
we have xτ = eX(x) ∈ eX [B] . It remains to prove that

xτ ∈
∩

{clX̂(eX [F ]) | F ∈ secM} .

For F ∈ secM consider M ∈ ∆(eX [F ]) . Since clτ (M) ⊇ F and
by hypothesis x ∈ clτ (F ) , we have x ∈ clτ (clτ (M)) ⊆ clτ (M) ,
which establishes M ∈ secxτ . Consequently, x ∈ clX̂(eX [F ]) , as
desired.

Since F ◦G maps any LEb-CONV -morphism

f : (X,BX , τ) // (Y,BY ,Ω)

to itself, the assertion is proved.
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Remark 4.5. Note that in case of having a separated LEADER
b-convergence space (X,BX , τ) , (which means that xτ = zτ im-

plies x = z ), the corresponding function eX : X // X̂ is a topolog-
ical embedding.

Corollary 4.6. For a pointed b-filter space (X,BX , τ) the follow-
ing statements are equivalent:

• (X,BX , τ) is a separated LEADER b-convergence space.
• There exists a topological space (Y, clY ) into which X can
be densely topologically embedded in such a way that a uni-
form filter U on X b-converges to B ̸= ∅ iff there exists
a filter F ∈ FIL(X) with F×F ⊆ U and

∩
{ clY (A) |A ∈

secF } ∩B ̸= ∅ .

Remark 4.7. As a consequence it follows that all separated LE-
proximity spaces (X, δ) can be characterized by such an embedding
into a topological space (Y, clY ) with B δ A iff B ∩ clY (A) ̸= ∅ .

Remark 4.8. We also note that the category STOP can be em-
bedded into b-LEPROX , the category of bounded LEADER
proximity spaces (e.g., for a supertopological space (X,BX , ϑ) we
consider the relation pϑ ⊆ BX × P (X) defined by B pϑA iff
A ∈ secϑ(B) ). Then, according to our main result, (separated)
b-LEADER proximity spaces essentially are determined by their
corresponding LEb -convergence spaces, which in particular are
pointed. But as shown in [11], the full subcategory pb-CONV ,
whose objects are the pointed b-convergence spaces, constitutes a
strong topological universe, in which the categories mentioned above
can be embedded.

Figure 2 displays the full embeddings among the categories men-
tioned in this Section.
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Figure 2. Full embeddings into the strong topo-
logical universe pb-CONV .
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