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METRIC REPRESENTATIONS OF CATEGORIES OF

CLOSURE SPACES

RALPH KOPPERMAN, F. MYNARD, AND PETER RUSE

Abstract. In this paper we modify the generalized quasi-
metric representation of topological spaces of [21], by weak-
ening the properties required of the set of positive elements,
to obtain a similar representation of the category of neigh-
borhood spaces and its subcategories of closure, and of pre-
topological spaces. Thus we show how these notions also arise
from generalized metrics.

1. Introduction

Students first meet topology through metrics, and spaces arising
from “good” metrics have useful properties: completely metrizable
spaces are Baire, and contractions from a complete metric space to
itself have unique fixed points.

The latter result in its classical form is a key step in a proof
of the inverse function theorem of multivariate calculus. It also
can be extended to so-called partial metric spaces (defined later
in this paper), where its interpretation becomes that certain types
of algorithms that begin with partial knowledge of an object (e.g.,
that a number to be found is in a given interval), will converge
toward complete knowledge of the object; see [24].
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As a result, there is a long tradition of obtaining generalized
metric representations of topological spaces; such work goes back
to early last century (see [28]); a thorough history of the subject is
given in [23]. In this paper we are interested in the axiomatization
in [21], where each topology is shown to arise from a “quasimetric”
into a generalization V of [0,∞], with a subset P of V that satisfies
certain natural “positivity” axioms that hold for (0,∞] ⊆ [0,∞].
Here we show that weakening these positivity axioms, again in nat-
ural ways, yields a similar representation of the category of neigh-
borhood spaces (in terminology due to [20], also called generalized

topology by Á. Császár) and its subcategories of closure, and of
pretopological spaces, showing how these notions also arise from
generalized metrics.

To be a bit more precise, we generalize the definition of metric
closure: for a metric d : X ×X → [0,∞) we say x ∈ cld(A) if for
each positive r there is a y ∈ A so that d(x, y) ≤ r (equivalently if
for each positive r, Nr(x)∩A ̸= ∅, where Nr(x)= {y : d(x, y)≤ r}).
Our representation is functorial: if (X, dX), (Y, dY ) are metric
spaces, then f : X → Y is a closure preserving map (that is, for
each A ⊆ X, f [ cl(A)] ⊆ cl(f [A])) if and only if, for each positive
r and x ∈ X there is a positive s such that if dX(x, y) ≤ s then
dY (f(x), f(y)) ≤ r. Two key problems, most easily discussed in
the subclass of topological spaces, must be overcome:

(1) If we insist on the usual conventions that d is valued in [0,∞)
and that r is positive means r > 0, then for each x ∈ X, {N1/n(x) :
n ∈ IN} forms a countable base about x. We avoid such cardinal
restrictions by allowing a class of other objects in which our metrics
can take values, and defining positivity in each object.

(2) If we insist that d be symmetric (for each x, y, d(x, y) =
d(y, x)), it then turns out that the topology arising from d must be
completely regular (as shown in [21]), so we must drop some metric
axioms.

To take care of (1), the type of codomain for our “generalized
metrics”, or metric substitutes, is chosen to allow as many of the
usual constructions as possible; so [0,∞], [0, 1] (with truncated ad-
dition) and {0, 1}, and their powers should be among the objects
in which our metrics can take values. We also need to have limits
in this space of values (to allow completions of generalized met-
ric spaces – where the distance between limits is the limit of the
distances); it is useful for such an object to be a complete lattice
(unlike [0,∞)).
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We choose to have our metric go into what we call a value lattice.
(Other possibilities are given in the “Concluding remarks” section).
Before we can define these, we must first define a continuous lattice:
it is a complete lattice V (that is, all subsets have suprema, thus
infima as well), and for each element q ∈ V, ⇓ q = {p ≪ q} is
directed, and q is its supremum, where p ≪ q means: if q ≤

∨
D

and D is directed, then for some r ∈ D, p ≤ r. Continuous lattices
are discussed in detail in [18] and in [1]. A value lattice is a system
(V,+,≤, 0,∞), such that:

(V,≤) is a poset with least element 0 and greatest ∞,
(V,≥) is a continuous lattice,
(V,+) is a commutative semigroup with identity 0, and
for each r ∈ V and S ⊆ V, r +

∧
S =

∧
{r + s : s ∈ S}.

Among value lattices are [0, 1] and {0, 1}, and products of value
lattices are value lattices.

As a result of its preservation of infima, + is order preserving: if
a ≤ b then for each c, c+a = c+

∧
{a, b} =

∧
{c+a, c+ b} ≤ c+ b.

In particular for each c, a ∈ V, c = c + 0 ≤ c + a ≤ c + ∞ = ∞
(this last equality is due to the fact that ∞ is the largest element
of V, so ∞ = 0 +∞ ≤ c+∞ ≤ ∞).

Now we get to the central issue of positivity. Given a poset
(V,≤), we must carefully consider the properties of subset P of
positive elements of V (that is, “x ∈ P” means “x is positive”).
A generalized metric and value lattice do not by themselves give
rise to a closure operator. The use of “r > 0” in the definition of
metric closure is subtle, and the facts r > 0 ⇒ (∃t > 0)(t + t ≤ r)
and r, s > 0 ⇒ (∃t > 0)(t ≤ r&t ≤ s) are central to many metric
arguments in topology, but it turns out, not for anologous ones
involving neighborhood spaces. We now list some properties of the
set of positive numbers that are needed for the usual arguments:

Given a poset (V,≤), a subset P ⊆ V is an upper subset if p ≤ q
and p ∈ P ⇒ q ∈ P ; an upper subset of a value lattice is separating
if whenever a, b ∈ V and a ≤ b+ r for each r ∈ P then a ≤ b. The
set P is filtered if whenever p, q ∈ P , there is an r ∈ P such that
r ≤ p & r ≤ q, and P and has halves if for each t ∈ P there is an
s ∈ P such that s + s ≤ t. The set P is called a set of positives if
it is a filtered upper set which has halves.

Next we consider (2). The usual metric axioms are:
(id) d(x, x) = 0,
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(tri) d(x, z) ≤ d(x, y) + d(y, z),
(sym) d(x, y) = d(y, x),
(t0) d(x, y) = 0 ⇒ x = y.

Below let V be a value lattice; we drop the requirements of
symmetry and (t0) to concentrate on V-quasimetrics: functions
q : X ×X → V that satisfy (tri) and (id). A V-quasimetric space
is a quadruple X = (X,V, P, q) where X is a set, q : X ×X → V
is a V-quasimetric, and P is a separating upper subset of V. Also,
a generalized quasimetric space is a V-quasimetric space for some
value lattice, V.

In [21] the usual definition of metric topology was generalized: a
set T is open in the generalized quasimetric space X = (X,V, P, q),
if for each x ∈ T there is an r ∈ P such that Nr(x) ⊆ T ; the
collection of open sets is denoted TX . It is then shown that if P
is a set of positives, then TX is a topology on X, and that each
topology arises from a generalized quasimetric space X in which P
is a set of positives. (The terminology there is a bit different; [21]
used “value semigroups” in place of value lattices, but all the value
semigroups that were needed there were powers of [0,∞], and so
were value lattices as well.)

It was shown in [21] that a topology T is completely regular if
and only if it is TX for some X such that q satisfies (sym), and
that T is T0 if and only if q satisfies the quasimetric version of (t0):
q(x, y) = q(y, x) = 0 ⇒ x = y. Therefore, these axioms have
special roles and are not part of the definition of our categories of
generalized quasimetric spaces.

A continuous function from a generalized quasimetric space
(X,VX , PX , qX) to another, (Y,VY , PY , qY ) is an f : X → Y such
that for each x ∈ X and s ∈ PY , there is an r ∈ PX such that

qX(x, y) ≤ r ⇒ qY (f(x), f(y)) ≤ s.

Below, we are interested in four categories:
The first is QM, the category of all generalized quasimetric

spaces and continuous maps.
The others are full subcategories of QM, (recall that a full sub-

category D of a category C, is one such that each object of D is
an object of C, the D-maps between two objects D are precisely
their C-maps). Thus the maps of the following categories are the
continuous maps, and their objects are now described:
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the objects of QMFil are the generalized quasimetric spaces such
that P is filtered,

the objects of QM 1
2
are the generalized quasimetric spaces such

that P has halves, and
the objects of QMFil, 1

2
are the generalized quasimetric spaces

with P a set of positives.
We also discuss some other representations below. For example,

certain generalized quasimetric spaces come from generalized par-
tial metrics, which have been developed by Steve Matthews (see
[24]) to model the partial nature of knowledge produced by a com-
puter program in finite time. In [22] it is shown that all topologies
arise from generalized partial metric into value lattices. This option
is further discussed in the “Concluding remarks” section.

Thus for topological spaces, generalized quasimetrizability be-
comes a unifying property; special properties hold for some topo-
logical spaces and maps because they satisfy special conditions in
terms of generalized quasimetrics.

2. Categories of spaces with closure operators and
of generalized quasimetric spaces

giving rise to spaces with closure operators

We say that a categoryC has generalized quasimetric representa-
tion if there is a full subcategory S of QM that is category equiva-
lent toC, i.e., there exists a functor F : S → C that is full and faith-
ful (that is, for each pair A,B ∈ S, F : H(A,B) → H(F (A), F (B))
is 1-1 and onto) and such that for every C-object C, there exists
an S-object S such that F (S) is isomorphic to C.

The goal of this note is to give generalized quasimetric rep-
resentations for several categories of spaces with a closure oper-
ator. Specifically, let NGB denote the category whose objects
are neighborhood spaces: pairs, (S, clS), S a set, with a function
clS : 2S → 2S , satisfying the following:

clS is increasing: A ⊆ B ⇒ clSA ⊆ clSB
clS is expansive: each A ⊆ clSA, and
clS is grounded: clS∅ = ∅.
Any clS : 2S → 2S , satisfying these rules is called a closure

operator. The morphisms f : (X, clX) → (Y, clY ) of NGB are the
closure preserving functions:
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∀A ⊆ X : f [ clXA] ⊆ clY (f [A]), equivalently,

∀B ⊆ Y : f−1[ clY B] ⊆ clX(f−1[B]).

Let CLS denote the full subcategory of NGB whose objects
are closure spaces, that is, sets with closure operators (S, clS) that
are idempotent: ( clS)

2 = clS . Let PRT be the full subcategory
of NGB whose objects are pretopological spaces, that is, sets with
closure operators (S, clS) that are additive: for every A,B ∈ 2X ,
cl(A ∪B) = clA ∪ clB. Let TOP be the full subcategory of NGB
whose objects are topological spaces, that is, sets with idempotent
and additive closure operators. Thus TOP = PRT ∩ CLS. [20]
covers the basics on neighborhood spaces. The generalized topolo-
gies of Á. Császár are equivalent to neighborhood spaces, except
that they need not be grounded. He extensively studied these struc-
tures and their role in topology. Therefore a wealth of information
on neighborhood spaces can be found in the papers [3]–[16]. [17] is
a good source for an introduction on closure spaces and their use.
Examples of how such general closures (equivalently, generalized
topology) come into play in theoretical chemistry and biology can
be found in e.g., [25], [26], [27].

Consider QN : QM → NGB defined on objects by
QN((X,V, P, q)) = (X, clq,P ) where x ∈ clq,PA if for every r ∈ P ,
q(x, y) ≤ r for some y ∈ A.

It is often useful to think in terms of interiors of sets, where these
are defined by int(A) = X \ cl(X \ A). Of course, x ∈ intq,P (A) if
and only if, for some r ∈ P , Nr(x) ∩ (X \ A) = ∅, that is, if and
only if, for some r ∈ P , Nr(x) ⊆ A.

Lemma 2.1. QN takes values in NGB, and the restrictions of
QN to QMFil, to QM 1

2
, and to QMFil, 1

2
take values in PRT,

CLS and TOP respectively.

Proof. If (X,V, P, q) is a generalized quasimetric space then clq,P :

2X → 2X is surely grounded and expansive, and it is increasing
because for each a ∈ X, r ∈ P, q(a, a) = 0 ≤ r.

If moreover P is filtered, then clq,P is additive. Indeed, for every
V-quasimetric space, since QN((X, qX)) is a neighborhood space
and A,B ⊆ A ∪ B, clq,PA ∪ clq,PB ⊆ clq,P (A ∪ B) is true. For
the reverse set inclusion, assume that x /∈ clq,PA ∪ clq,PB. Then
there are r, s ∈ P such that Nr(x) ∩ A = ∅ and Ns(x) ∩ B = ∅.
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Since P is filtered, for some t ∈ P, t ≤ r, s, and so Nt(x)∩(A∪B) ⊆
(Nr(x)∩A)∪ (Ns(x)∩B) = ∅. Thus x /∈ clq,P (A∪B). In this case,
QN((X, qX)) is additive.

If P has halves, then clq,P is idempotent. Indeed, if x ∈
clq,P ( clq,PA) then for every r ∈ P, find s ∈ P so that s + s ≤ r.
Then Ns(x) ∩ clq,PA ̸= ∅. Hence there is y ∈ clq,PA such that
q(x, y) ≤ s. Moreover, there is a ∈ A such that q(y, a) ≤ s. Hence
q(x, a) ≤ q(x, y) + q(y, a) ≤ s + s ≤ r. Hence Nr(x) ∩ A ̸= ∅ so
x ∈ clq,PA. Thus if P has halves, QN((X, qX)) is a closure space,
and if this P is also filtered then QN((X, qX)) is a topological
space. �

The map QN extends naturally to a concrete functor; that is, all
objects are SET-based, and the functor leaves both the sets and
SET-maps unchanged. To see this, note that if y ∈ f( clqXA) then
there is x ∈ clqXA such that y = f(x). If s ∈ PY , by continuity of
f, there is an r ∈ PX such that qX(x, z) ≤ r ⇒ qY (f(x), f(z)) ≤ s.
Since x ∈ clqXA, there exists z ∈ Nr(x) ∩ A ̸= ∅. Then f(z) ∈
Ns(y) ∩ f(A), showing y ∈ clqY (f(A)). Hence continuous maps
are closure preserving. Composition is also preserved, because a
composition of closure preserving maps is closure preserving.

Lemma 2.2. QN : QM → NGB is a full and faithful functor.
Moreover, its restrictions QN : QMFil → PRT, QN : QM 1

2
→

CLS and QN : QMFil, 1
2
→ TOP are full and faithful.

Proof. Let f ∈ HomNGB(QN(X), QN(Y )). Since QN preserves
the SET-map of a morphism, we only need to check that f :
(X,VX , PX , qX) → (Y,VY , PY , qY ) is continuous if f : QN(X) →
QN(Y ) is closure preserving. But if f is not continuous there
are x0 ∈ X, s0 ∈ PY such that for every r ∈ PX there is
xr ∈ Nr(x0) so that f(xr) /∈ Ns0(f(x0)). Let A = {xr : r ∈ PX}.
By definition, x0 ∈ clQN(X)A. But f(A) ∩ Ns0(f(x0)) = ∅, so
f(x0) /∈ clQN(Y )(f(A)). Hence f : QN(X) → QN(Y ) is not clo-
sure preserving.

The categories QMFil, QM 1
2
and QMFil, 1

2
are full subcate-

gories of QM and the categories PRT, CLS and TOP are full
subcategories of NGB, so the restrictions of QN considered in the
statement are also full and faithful. �
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3. Quasimetric representation of categories of spaces
with closure operators

By the previous section, to show that QN : QM → NGB, QN :
QMFil → PRT, QN : QM 1

2
→ CLS and QN : QMFil, 1

2
→ TOP

are equivalences of categories, we only need to show that each neigh-
borhood (pretopological, closure, topological respectively) space is
the image under QN of a generalized quasimetric space (such that
P is filtered, has halves, or is filtered and has halves, respectively).
To perform these constructions, we need to introduce some machin-
ery.

The pretopological space 3 is the set 3 = {0, 1, 2} with the
additive closure operator cl3 defined for nonempty sets, by cl3(A) =
{x ∈ 3 : x ≤ max(A)+1}. Its subspace 2 = {0, 2} is identified with
the Sierpiński space (the Sierpiński space is usually considered to
be the set {0, 1} with the topology in which {0} is the only non-
trivial closed set). Finally, the pretopological space 3∗ is the set 3
with the additive closure operator cl3∗ defined for nonempty sets
by cl3∗(A) = {x ∈ 3 : x ≥ min(A)− 1}.

Define −̇ : 3 × 3∗ → 3 by −̇ (a, b) = max{a − b, 0}; we
usually write a −̇ b for −̇ (a, b). Certainly for each x, y, z ∈,
x −̇ x = 0 and x −̇ z ≤ (x −̇ y) + (y −̇ z). Also, −̇ is separately
continuous. To see continuity in the first variable, if x ∈ cl3(A)
then x ≤ max(A) + 1, so x −̇ y ≤ max(A −̇ {y}) + 1, that is,
x −̇ y ∈ cl3(A −̇ {y}); continuity in the second variable is shown
similarly.

Recall that a subcategory R of a category D is reflective if for
every D-object there is a reflection map rX : X → rX where rX
is an R-object such that every D-morphism f : X → Y between
a D-object X and a R-object Y factors uniquely through rX , that
is, there is a unique morphism f̂ : rX → Y so that f̂ ◦ rX = f .
By associating to each D-morphism f : X → Y the R-morphism
R(f) : rX → rY defined by R(f) = rY ◦ f̂ , we define a functor
R : D → R called reflector. The reflectors we will use are concrete,
that is, rX and X have the same underlying set and rX is the set-
theoretic identity. As a result, rX defines the finest R-structure on
the underlying set of X which is coarser than X, and for each map,
f and R(f) have the same underlying SET-map.
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Dually, a subcategory C of D is coreflective if for each D-object
there is a coreflection map cX : cX → X where cX is a C-object
such that every D-morphism f : X → Y between a D-object X
and a C-object Y factors uniquely through cX . As before, this
defines the coreflector functor C : D → C in such a way that
C(f) : cX → cY is a C-morphism whenever f : X → Y is a D-
morphism. The coreflectors we will use are also concrete so cX
defines the coarsest C-structure on the underlying set of X which
is finer than X.

The next lemma contains many of the categorical facts we find
useful. They are well known, and we include proofs only for the
convenience of the reader. In particular, the fact that PRT is core-
flective in NGB and that CLS is reflective in NGB can be found
in [20]. It is also observed there that the restrictions of the corre-
sponding coreflector and reflector to CLS and PRT respectively
define a coreflector and reflector onto TOP.

Lemma 3.1. For each subset C of X, we define wC : X → 3 by

wC(x) =

0 x∈ C
1 x∈ clXC \ C
2 x ̸∈ clXC

.

(a) Let X be a neighborhood space. Then for each subset C of
X, wC is continuous. Also, if Z is any neighborhood space and
f : Z → X any function, then f is continuous if and only if wCf :
Z → 3 is continuous for each C.

(b) Let X be a closure space. Then a subset C of X is closed if
and only if wC : X → 2 is continuous. Also, if Z is a closure space
and f : Z → X any function, then f is continuous if and only if
wCf : Z → 2 is continuous for each closed C.

(c) The category PRT is a coreflective subcategory of NGB
and TOP is a coreflective subcategory of CLS. In each case,
given any object X, the closure operator on cX is: clcX(A) =∩
{
∪n

i=1 clX(Ai) : A ⊆
∪n

i=1Ai, n ∈ IN}.
(d) The category CLS is a reflective subcategory of NGB and

TOP is a reflective subcategory of PRT. In each case, for any ob-
ject X, the closure in rX of any set is the smallest closed set in X
containing it, that is: clrX(A) =

∩
{C : A ⊆ C = clX(C)}. Fur-

ther, a function f : X → Y , X ∈ NGB, Y ∈ CLS is continuous
if and only if, f−1[D] is closed for each set D closed in Y .
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Proof. (a) To see that wC is continuous, note that as for any func-
tion, wC [ clX∅] = ∅ = cl3wC [∅]; if A ⊆ C then wC [ clXA] ⊆
wC [ clXC] = {0, 1} = cl3wC [A] and otherwise, wC [ clXA] =
{0, 1, 2} = cl3wC [A].

Now suppose f : Z → X is any function. Certainly if f is
continuous then each wCf is continuous, since wC is. Conversely,
if f is not continuous then there is a D ⊆ Z such that f [ clZ(D)] ̸⊆
clX(f [D]). Thus wf [D]f [ clZ(D)] = {0, 1, 2}, while cl3(wf [D]f [D]) =
{0, 1} ̸⊇ wf [D]f [ clZ(D)].

(b) First note that if C is closed then wC(x) cannot take on the
value 1. The continuity of wC was shown in the proof of (a) and
thus again if f : Z → X is continuous, so is each wCf . But if f
is not continuous, there is a closed D ⊆ X such that f−1[D] is not
closed in Z. But then for A = f−1[D], f [ clZ(A)] ̸⊆ D = clX [D], so
wD[ clZ(A)] = {0, 2} ̸⊆ {0} = cl2(wDf [A]).

(c) The function clcX is easily seen to be a closure operator since
clX is one. Also, for A,B ⊆ X, whenever A ⊆

∪n
i=1Ai, n ∈ IN

and B ⊆
∪m

j=1Bj , m ∈ IN, then A ∪ B ⊆
∪n

i=1Ai ∪
∪m

i=j Bj , so

clcX(A∪B) ⊆
∪n

i=1 clX(Ai)∪
∪m

j=1 clX(Bj). By the arbitrary nature

of the Ai, Bj , this shows clcX(A ∪ B) ⊆ clcX(A) ∪ clcX(B). This
shows that clcX is additive, so cX ∈ PRT whenever X ∈ NGB
and cX ∈ TOP whenever cX ∈ CLS.

Recall that for all these categories, the morphisms are the con-
tinuous maps. Also if f : X → Y , is continuous, and clX is additive
then f : X → Y is continuous as well. Indeed, for each B ⊆ Y ,
clX(f−1[B]) ⊆ f−1[ clcY B]. To see this, consider subsets Bi of Y

such that B ⊆
∪i=n

i=1 Bi. Then f−1[
∪i=n

i=1 clY Bi] =
∪i=n

i=1 f
−1[ clY Bi]

and by continuity of f : X → Y , clX(f−1[Bi]) ⊆ f−1[ clY Bi]. More-
over, by additivity of clX ,

clX(f−1[

i=n∪
i=1

Bi]) = clX(

i=n∪
i=1

f−1[Bi]) =

i=n∪
i=1

clX(f−1[Bi]).

Because clX(f−1[B]) ⊆ clX(f−1[
∪i=n

i=1 Bi]), we obtain that

clX(f−1[B]) ⊆ f−1[
∪i=n

i=1 clY Bi], thus clX(f−1[B]) ⊆ f−1[ clcY B].
This shows that in both cases, cX is our coreflection.

(d) The function clrX is easily seen to be a closure operator
since clX is one. Also, clrX is idempotent, for if A ⊆ X then
clrX( clrX(A)) = clrX(

∩
{C : A ⊆ C = clX(C)}) ⊆

∩
{ clrX(C) :

A ⊆ C = clX(C)} = clrX(A).
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For each continuous map f : X → Y, X, Y ∈ NGB, if D ⊆ Y
is closed then f [ clX(f−1[D])] ⊆ clY (f [f

−1[D]]) ⊆ clY (D) = D, so
clX(f−1[D])] ⊆ f−1[D], therefore f−1[D] is closed. Thus if clY is
idempotent then for any A, clY (f [A]) is closed, so A is a subset of
the closed set f−1[ clY (f [A])]. As a result, f−1[ clY (f [A])] contains
the smallest closed set containing A, clcX(A), and it follows that
clrX(A) ⊆ clY (f [A]), so f : rX → Y is continuous as well, and the
case X ∈ PRT is a special case. Thus in both cases, rX is our
reflection.

On the characterization of continuity, we showed in the first sen-
tence of the last paragraph that even more generally, f−1[D] is
closed for closed D ⊆ Y . Conversely, if Y ∈ CLS and f−1[D]
is closed for each closed D ⊆ Y , let A ⊆ X: then clY (f [A]) is
closed so f−1[ clY (f [A])] is closed in X and clearly contains A, thus
clX(A) ⊆ f−1[ clY (f [A])], so f [ clX(A)] ⊆ clY (f [A]), showing f to
be continuous. �

For any index set I, V = [0,∞]I is a value lattice, as a power
of the value lattice [0,∞]. Let I ⊆ 2X ; and for C ∈ I, de-
fine qC(x, y) = max{wC(x) − wC(y), 0}. Then let q : X × X →
V = [0,∞]I be defined by q(x, y)(C) = qC(x, y). Certainly
by corresponding facts for −̇ , qC(x, x) = 0, and qC(x, z) ≤
qC(x, y) + qC(y, z) for each x, y, z ∈ X; as a result, for any sep-
arating upper subset P of V, q is a V-quasimetric.

For C ∈ I and t ∈ [0,∞], we define rC,t ∈ V by rC,t(C) = t
and rC,t(D) = ∞ if D ̸= C. We also define four upper subsets
of V: PNGB = {rC,t ∈ V : t ≥ 1.5}, PPRT = {r ∈ V : (∃n ∈
IN, r1, ..., rn ∈ PNGB)(r = r1 ∧ ... ∧ rn)}, that is, PPRT is the filter
generated by PNGB; PCLS = {rC,t ∈ V : t > 0}, and PTOP = {r ∈
V : (∃n ∈ IN, r1, ..., rn ∈ PCLS)(r = r1 ∧ ... ∧ rn)}. Note that all
these are upper sets, PCLS has halves, PPRT is filtered, and PTOP

has halves and is filtered, so it is a set of positives.

Theorem 3.2. (a) For each neighborhood space, X, there is a gen-
eralized quasimetric space X = (X,V, P, q), such that clq,P = clX .
Thus QN : QM → NGB is an equivalence of categories.

(b) For each pretopological space, X, there is a generalized quasi-
metric space (X,V, P, q), such that P is filtered and clq,P = clX .
Thus QN : QMFil → PRT is an equivalence of categories.
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(c) For each closure space, X, there is a generalized quasimetric
space (X,V, P, q), such that P has halves and clq,P = clX . Thus
QN : QM 1

2
→ CLS is an equivalence of categories.

(d) For each topological space, X, there is a generalized quasimet-
ric space (X,V, P, q), so that P is a set of positives and clq,P = clX .
Thus QN : QMFil, 1

2
→ TOP is an equivalence of categories.

Proof. We showed when V, q, were defined in the paragraph just be-
fore this theorem, that V is a value lattice and q is a V-quasimetric.
By Lemma 3.1, we need only show that each of the four restrictions
of QN is onto:

(a) Let I = 2X and P = PNGB. To see that for each C ⊆
X, clX(C) = clq,P (C), note that if x ̸∈ clX(C) then wC(x) = 2, so
NrC,1.5(x) ∩ C = ∅. On the other hand, if for some r ∈ P, Nr(x) ∩
C = ∅, then r = rA,t for some A ⊆ X, t ≥ 1.5. But this means
that wA(x) = 2 and wA[C] = {0}, so C ⊆ A and x ̸∈ clX(A), thus
x ̸∈ clX(C). This shows clX(C) = clq,P (C) for each C ⊆ X, so
clX = clq,P .

(b) First note that for each X ∈ NGB, if clX = clq,P
then its PRT-coreflection is (X, clq,F(P )), where for an upper set

P, F(P ) = {s : ∃n, r1, ..., rn ∈ P,
∧n

i=1 ri ≤ s}, the filter generated
by P . For: x ∈ intcX(A) ⇔

(∃n, A1, ..., An ⊆ X)(x ∈
∩n

i=1 intX(Ai) and
∩n

i=1Ai ⊆ A)
⇔ (∃n, r1, ..., rn ∈ P )(Nri(x) ⊆ Ai) and

∩n
i=1Ai ⊆ A)

⇔ (∃n, r1, ..., rn ∈ P )(
∩n

i=1Nri(x) ⊆ A)
⇔ (∃n, r1, ..., rn ∈ P )(N∧n

i=1ri
(x) ⊆ A) ⇔ (∃r ∈ F(P )(Nr(x) ⊆A),

and these equivalences show x ∈ intcX(A) ⇔ x ∈ intq,F(P )(A).
Thus clcX = clq,F(P ) so in particular, if also X ∈ PRT and clX =
clq,P then cX = X so clX = clq,F(P ), and F(P ) is filtered.

(c) In general, x ∈ intq,PNGB
(A) if and only if, for some C,

NrC,1.5(x) ⊆ A. Note that

NrC,1.5(x) = {y : qC(x, y) ≤ 1} =

{
X x∈ clX(C)
X\C otherwise

.

Since X is open in each neighborhood space, we assume with no
loss of generality that A ̸= X; then by the previous line,
NrC,1.5(x) ⊆ A⇔X/C⊆A⇒ X\ clX(C) ⊆ A ⇔ Nr clX (C),1.5

(x) ⊆ A.

If X ∈ CLS then clX(C) is always closed, thus wC : X → 2
is continuous, so for each t > 0, Nr clX (C),1.5

(x) = Nr clX (C),t
(x).
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Thus in this case, x ∈ intq,PNBD
(A) if and only if for some closed

D ⊆ X and t > 0, NrD,t(x) ⊆ A. Now let I = C, the collection
of closed sets in X, and define q′ by q′(x, y) = q(x, y)|I; then the
above says that x ∈ intq,PNBD

(A) if and only if x ∈ intq′,Q(A),

where Q = P I
CLS , which has halves.

(d) This follows from (c) by the argument of (b), observing in
the last sentence that if X ∈ TOP then X ∈ CLS, so P can be
assumed to have halves. �

4. Concluding Remarks

Here we discuss some topics related to our characterizations of
the above categories of closure spaces. We first outline an alternate
(more structural) proof of Theorem 3.2, and later give another rep-
resentation in terms of generalized partial metrics.

The alternative proof is based on a variant of the classical em-
bedding lemma (e.g., [19], p.115). In the classical case, we use the
fact that a space X can be represented as a subspace of a power
of a standard space. Here, roughly speaking, we will not require
that X embeds into such a power but only that it carries the initial
structure induced by a subspace of such a power. Let us explain
this idea in more detail.

A common feature of the four categories TOP, PRT, CLS and
NGB is that they are simple, that is, each contains an initially
dense object. An object C of a category C is initially dense if for
every object B of C, there is an initial source I ⊆ H(B,C) such
that for each function g : D → B, D any object of C, g ∈ H(D,B)
if and only if hg ∈ H(D,C) for each h ∈ I. In our context this
means that each object B ofC carries the coarsest structure making
each h ∈ I continuous. The pretopological space 3 is initially dense
in PRT (e.g., [2]) as well as in NGB (Lemma 3.1 (a)) while the
topological space 2 is initially dense in TOP and in CLS (Lemma
3.1 (b)).

Let C denote one of these four categories and let C0 denote the
corresponding initially dense object. Note that

3 = QN(X3) and 2 = QN(X2),

where X3 = ({0, 1, 2},3, {1, 2}, e) and X2 = ({0, 2},2, {2}, e). Here
3 is considered as a value lattice and 2 carries the value lattice
structure induced by that of 3. In 3, the operation + is defined by
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a+b = (a⊕b)∧2 where ⊕ is the usual addition of real numbers, the
identity is 0, its absorbing element is 2 and the order is the usual
linear order. Finally e : 3× 3 → 3 and its restriction e : 2× 2 → 2
define generalized quasimetrics via e(x, y) = x −̇ y. Note that in 3,
the set {1, 2} is filtered and in 2, the set {2} is a set of positives.

In other words, if QMC denotes the subcategory of QM cor-
responding to C as in Lemma 2.1, there is Y in QMC such
that QN(Y ) = C0. Moreover, if X is an object of C, then
(f : X → C0)f∈C(X,C0) is an initial source. Equivalently, the map

i : X →
∏C

f∈C(X,C0)
C0 defined by i(x)(f) = f(x) is initial (where∏C denotes the product in C).

Moreover,
C∏

f∈C(X,C0)

C0 =

C∏
f∈C(X,C0)

QN(Y ) = QN(

QMC∏
f∈C(X,C0)

Y ),

where
∏QMC denotes the product in QMC . Indeed, an inspection

of the product structures reveals that QN : QMC → C commutes
with products (see for instance [20] for products in the four in-

stances of C). Hence i : X → QN(
∏QMC

f∈C(X,C0)
Y ) is initial in C.

Let (Z,V, P, d) denote the object
∏QMC

f∈C(X,C0)
Y of QMC . It is now

a simple verification that the V-quasimetric q : X × X → V de-
fined by q(x, y) = d(i(x), i(y)) is such that QN((X,V, P, q)) = X
because i is initial.

Next we consider characterizations in terms of generalized partial
metrics into value lattices which are parallel to those above. A
partial metric on a set X is a function p : X ×X → [0,∞) which
satisfies:

p(x, x) ≤ p(x, y) (small self-distance, corresponding to d(x, y) ≥
0),

if p(x, x) = p(x, y) = p(y, y) then x = y (t0),
p(x, y) = p(y, x) (sym), and
p(x, z) ≤ p(x, y) + (p(y, z)− p(y, y)) (tri).

These were introduced by S. G. Matthews (see [24]), a computer sci-
entist; the key difference between metrics and partial metrics is that
p(x, x) > 0 is possible for the latter. It is natural in computing to in-
clude both objects we are trying to compute and results of the com-
putation so far in a single space, and if a program has determined at
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a certain point the first n places x0.x1...xn of a number, x, then we
know so far only the distance between x and any other number to
within 10−n, so it is natural to set p(x0.x1...xn, x0.x1...xn) = 10−n.
Note that a partial metric space in which p(x, x) = 0 for each x, is a
metric space. In [22] this definition was extended to allow general-
ized partial metrics into value quantales, and it was shown, among
other things, that each topology arises from a generalized partial
metric.

To be more precise, given a V-partial metric on X, and x ∈
X, r ∈ V, define Nr(x) = {y : p(x, y) ≤ p(x, x) + r}; also, the
topology induced by p, τp is the one in which a set T is open if for
each x ∈ T there is an r ∈ P, Nr(x) ⊆ T . But if we define qp(x, y) =
p(x, y) −̇ p(x, x); then qp is easily seen to be a V-quasimetric, and
the following are clear:

• Nr(x) = {y : qp(x, y) ≤ r},
• (X, τp) is the topological space in which clqp,P = clX .
But reconsidering the definitions before Theorem 3.2, for I ⊆

2X ; C ∈ I, define pC(x, y) = max{wC(x), wC(y)} and let p : X ×
X → [0,∞]I by p(x, y)(C) = pC(x, y). It is then easy to check that
p is a generalized partial metric and that for each C ∈ I, x, y ∈
X, qC(x, y) = pqC (x, y). As a result, qp = q : X × X → [0,∞]
so clqp,P = clq,P , so defining clp,P = clqp,P , each characterization
in Theorem 3.2 with “quasimetric” replaced by “partial metric”
follows from the original.
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