
Volume 38, 2011

Pages 1–15

http://topology.auburn.edu/tp/

Classification of Continuous 𝑛-Valued

Function Spaces and Free Periodic
Topological Groups for Ordinals

by

L. V. Genze, S. P. Gul’ko, and T. E. Khmyleva

Electronically published on June 30, 2010

Topology Proceedings

Web: http://topology.auburn.edu/tp/
Mail: Topology Proceedings

Department of Mathematics & Statistics
Auburn University, Alabama 36849, USA

E-mail: topolog@auburn.edu
ISSN: 0146-4124

COPYRIGHT c⃝ by Topology Proceedings. All rights reserved.



TOPOLOGY
PROCEEDINGS
Volume 38 (2011)
Pages 1-15

http://topology.auburn.edu/tp/

E-Published on June 30, 2010

CLASSIFICATION OF

CONTINUOUS 𝑛-VALUED FUNCTION SPACES

AND FREE PERIODIC TOPOLOGICAL GROUPS

FOR ORDINALS

L. V. GENZE, S. P. GUL’KO, AND T. E. KHMYLEVA

Abstract. This paper contains a generalization of the au-
thors’ earlier classifications of 2-valued continuous function
spaces and free Boolean topological groups to the case 𝑛 > 2.

1. Introduction

It is well known that a countable compact space is homeomorphic
to some segment [1, 𝛼] of countable ordinals [12]. C. Bessaga and
A. Pel̷czyński [1] found necessary and sufficient conditions on count-
able ordinals 𝛼 and 𝛽 for the Banach spaces 𝐶[1, 𝛼] and 𝐶[1, 𝛽] to
be linearly homeomorphic. Z. Semadeni [17] proved that 𝐶[1, 𝜔1]
is not linearly homeomorphic to its own square. Combining the
results of Bessaga-Pel̷czyński and Semadeni, we obtain a classifica-
tion of 𝐶[1, 𝛼] when 1 ≤ 𝛼 < 𝜔1 ⋅𝜔. The complete linear topological
classification of Banach spaces 𝐶[1, 𝛼] for arbitrary ordinals 𝛼 was
given in [8] and, independently, in [10].

2010 Mathematics Subject Classification. Primary 54C35, 54H11, 22A05;
Secondary 46E10, 54G12, 03F15.

Key words and phrases. classification, continuous 𝑛-valued functions space,
dual space, free and free abelian topological groups of period 𝑛.

The first and second authors were supported in part by Russian Science and
Innovations Federal Agency under contract No 02.740.11.0238.

c⃝2010 Topology Proceedings.

1



2 L. V. GENZE, S. P. GUL’KO, AND T. E. KHMYLEVA

Theorem 1.1 ([8], [10]). Let 𝛼 and 𝛽 be infinite ordinals, 𝛼 ≤ 𝛽.
Then the Banach spaces 𝐶[1, 𝛼] and 𝐶[1, 𝛽] are linearly homeomor-
phic if and only if one of the following mutually exclusive conditions
is fulfilled.

(1) There exists an ordinal 𝛾 which is different from any initial
regular cardinal and such that

𝜔𝜔𝛾 ≤ 𝛼 ≤ 𝛽 < 𝜔𝜔𝛾+1
.

(2) 𝜆 ⋅ 𝜎 ≤ 𝛼 ≤ 𝛽 < 𝜆 ⋅ 𝜎+, where 𝜆 is a regular cardinal, 𝜎
is an arbitrary cardinal, 𝜎 < 𝜆, and 𝜎+ is the immediate
successor of 𝜎.

(3) 𝜆2 ≤ 𝛼 ≤ 𝛽 < 𝜆𝜔, where 𝜆 is a regular cardinal.

Importantly, we understand multiplication in the sense of ordi-
nals and, therefore, 𝜔𝜆 = 𝜆 for any uncountable cardinal 𝜆 (we iden-
tify cardinals with the initial ordinals of given cardinality). In par-
ticular, we may rewrite condition (1) in the form 𝜆 ≤ 𝛼 ≤ 𝛽 < 𝜆𝜔

for any singular cardinal 𝜆.
We may formulate this theorem in another way. We refer to

the class of ordinals Δ𝐵𝑃 = {𝜔𝜔𝛾
; 𝛾 ≥ 0} as the class of Bessaga-

Pel̷czyński and to the class Δ𝑆 of all ordinals of type 𝜆 ⋅ 𝜎, where
𝜆 is a regular infinite cardinal and 𝜎 is a (probably finite) cardinal,
1 ≤ 𝜎 ≤ 𝜆, as Semadeni’s class. The ordinals from Δ𝐵𝑃 ∪ Δ𝑆

separate the ray of all ordinals into subintervals and we will call
them (telegraph) posts. The above theorem may be formulated as
follows.

Theorem 1.2. Let 𝛼 and 𝛽 be infinite ordinals, 𝛼 ≤ 𝛽. Then the
Banach spaces 𝐶[1, 𝛼] and 𝐶[1, 𝛽] are linearly homeomorphic if and
only if there is no separating post 𝛿 ∈ Δ𝐵𝑃 ∪ Δ𝑆 between 𝛼 and 𝛽,
i.e., such that 𝛼 < 𝛿 ≤ 𝛽.

M. I. Graev [5] gave a classification of free topological groups
and free Abelian topological groups of countable metrizable com-
pact spaces with respect to topological isomorphism. We already
mentioned that countable metric compact spaces can be identified
with countable ordinals [12]. Having compared Graev’s classifica-
tion of countable ordinals with Bessaga-Pel̷czyński’s classification,
one can see that both classifications completely coincide. This is
not an accidental fact, as was proved in [6] and first published in
[7]. The main result in [7] is the following theorem.
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Theorem 1.3 ([7]). For any infinite ordinals 𝛼 and 𝛽 the following
conditions are equivalent.

(1) 𝐶[1, 𝛼] and 𝐶[1, 𝛽] are linearly homeomorphic.
(2) 𝐶𝑝[1, 𝛼] and 𝐶𝑝[1, 𝛽] are linearly homeomorphic.
(3) 𝐴[1, 𝛼] and 𝐴[1, 𝛽] are topologically isomorphic.
(4) 𝐹 [1, 𝛼] and 𝐹 [1, 𝛽] are topologically isomorphic.
(5) Between 𝛼 and 𝛽 there is no separating post from Δ𝐵𝑃∪Δ𝑆.

Here, by 𝐶𝑝[1, 𝛼], we understand that the space of all continu-
ous functions on [1, 𝛼] with the topology of pointwise convergence
𝐹 [1, 𝛼] is the free topological group of [1, 𝛼], and 𝐴[1, 𝛼] denotes
the free Abelian topological group of [1, 𝛼].

In [4], we gave a complete classification of the free Boolean topo-
logical groups 𝐵[1, 𝛼] of ordinals and of the spaces 𝐶𝑝([1, 𝛼], {0, 1})
of all continuous two-valued functions.

Theorem 1.4 ([4]). For any infinite ordinals 𝛼 and 𝛽 the following
conditions are equivalent.

(1) 𝐶𝑝([1, 𝛼], {0, 1}) and 𝐶𝑝([1, 𝛽], {0, 1}) are linearly homeo-
morphic.

(2) 𝐵[1, 𝛼] and 𝐵[1, 𝛽] are topologically isomorphic.
(3) Between 𝛼 and 𝛽 there is no a separating post from Δ𝑆.

Of course, in (1) we consider 𝐶𝑝([1, 𝛼], {0, 1}) as a {0, 1}–vector
space. It is useful also to have in mind that any Boolean group is
always Abelian.

In this paper we apply our methods to 𝑛-valued continuous func-
tion spaces and to the corresponding type of free topological groups.

2. Notation and terminology

We use the symbols 𝛼, 𝛽, 𝛾, and 𝛿 for ordinals and 𝜆, 𝜎, and
𝜏 for cardinals; 𝜆 is always an infinite cardinal, while 𝜎 may be
finite. We identify cardinals with initial ordinals. All arithmetic
operations including raising to a power will be understood in the
ordinal sense; see [9]. The symbol 𝜎+ denotes the successor cardinal
of 𝜎. The cardinality of an ordinal 𝛼 we denote by ∣𝛼∣. All ordinals
are supposed to be endowed with the order topology. The symbol
⊕𝜆𝑋 denotes the discrete sum of 𝜆 copies of a topological space 𝑋.

For any Tychonoff spaces 𝑋 and 𝑌 , the symbol 𝐶(𝑋,𝑌 ) means
the set of all continuous mappings 𝑓 : 𝑋 → 𝑌 . If 𝑌 is the real line,
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we write simply 𝐶(𝑋). If this space is endowed with the pointwise
topology, we write 𝐶𝑝(𝑋,𝑌 ) and 𝐶𝑝(𝑋).

A group 𝐺 is called 𝑛-periodic if 𝑔𝑛 = 𝑒 for any 𝑔 ∈ 𝐺, where 𝑒
is the neutral element of 𝐺. The class of all 𝑛-periodic topological
groups is closed under taking Cartesian products, subgroups, and
quotient groups. It follows from the general theorems of Sidney A.
Morris [13, Theorem 2.6 and Theorem 2.9] that for any Tychonoff
space 𝑋 this class contains a free object which we call the free 𝑛-
periodic topological group of 𝑋 (in the sense of Markov) and denote

by 𝐹
[𝑛]
𝑀 (𝑋). It is the unique topological group with the following

properties:

(1) 𝑋 is a subspace of 𝐹
[𝑛]
𝑀 (𝑋);

(2) 𝐹
[𝑛]
𝑀 (𝑋) is algebraically generated by 𝑋;

(3) any continuous mapping of 𝑋 to an 𝑛-periodic topological
group 𝐺 can be extended to a continuous homomorphism

of 𝐹
[𝑛]
𝑀 (𝑋) to 𝐺.

The construction of 𝐹
[𝑛]
𝑀 (𝑋) for an ordinal space 𝑋 = [1, 𝛼] is rather

easy. Indeed, let {𝑓𝑖, 𝑖 ∈ 𝐼} be the set of all continuous mappings of
𝑋 to 𝑛-periodic topological groups 𝐺𝑖 of cardinality ∣𝐺𝑖∣ ≤ ∣𝑋∣ (we
identify the pairs (𝑓𝑖, 𝐺𝑖) and (𝑓𝑗 , 𝐺𝑗) if there exists a topological
isomorphism 𝜋 : 𝐺𝑗 → 𝐺𝑖 such that 𝑓𝑖 = 𝜋 ⋅ 𝑓𝑗). This family
separates the points of [1, 𝛼]; it is enough to consider the subfamily
of all continuous mappings 𝑓 : [1, 𝛼] → 𝑍𝑛 with 𝑓([1, 𝛼]) ⊂ {0, 1}
(𝑍𝑛 = {0, 1, ⋅ ⋅ ⋅ , 𝑛− 1} with the discrete topology). It follows that
the diagonal product Δ𝑖∈𝐼𝑓𝑖 is a homeomorphic embedding of 𝑋
in Π𝑖∈𝐼𝐺𝑖. The last product is a topological group with respect
to coordinatewise algebraic operations and the standard Tychonoff
topology. Let ⟨𝑋⟩ be a minimal subgroup of Π𝑖∈𝐼𝐺𝑖 which contains
𝑋. It is evident that ⟨𝑋⟩ satisfies conditions (1) and (2). Condition
(3) is also true since any continuous mapping 𝑓 of 𝑋 to an 𝑛-
periodic topological group 𝐺 can be identified with some 𝑓𝑖. So,

the existence of the group 𝐹
[𝑛]
𝑀 ([1, 𝛼]) is proved.

In more detail, the set 𝐹 [𝑛](𝑋) can be considered as the set of all
words 𝑥𝜀11 . . . 𝑥𝜀𝑙𝑙 , where 𝑥𝑖 ∈ 𝑋 and 𝜀𝑖 ∈ {1, . . . , (𝑛−1)} for every 𝑖.
The number 𝑙 is called the length of the given word. The product
of words 𝑥𝜀11 . . . 𝑥𝜀𝑙𝑙 and 𝑦𝜃11 . . . 𝑦𝜃𝑚𝑚 is equal to 𝑥𝜀11 . . . 𝑥𝜀𝑙𝑙 𝑦

𝜃1
1 . . . 𝑦𝜃𝑚𝑚 .

All pairs of the form 𝑥 ⋅ 𝑥−1 and 𝑥−1 ⋅ 𝑥 and also subwords equal
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to (𝑥𝑦 ⋅ ⋅ ⋅ 𝑧)𝑛 must be deleted. Let 𝐹
[𝑛]
𝑘 (𝑋) denote the subset of

all words with length ≤ 𝑘, then 𝐹 [𝑛](𝑋) = ∪𝑘∈𝑁𝐹
[𝑛]
𝑘 (𝑋). The set

𝑋 is identified with the set of all words of length 1 and degree 1,
and it is a set of generators of 𝐹 [𝑛](𝑋). For 𝑋 = [1, 𝛼], the Markov
topology coincides with the topology of the inductive limit of the

increasing sequence of 𝐹
[𝑛]
𝑘 ([1, 𝛼]), 𝑘 = 1, 2, ⋅ ⋅ ⋅ . The topology of

𝐹
[𝑛]
𝑘 ([1, 𝛼]) is the natural quotient topology which is generated by

the respective finite power of 𝑋.
Analogous to the general case of free topological groups, we can

define free topological groups of period 𝑛 in the sense of Graev, and

we denote this object by 𝐹
[𝑛]
𝐺 (𝑋). It is well known that the Markov

free topological group 𝐹𝑀 (𝑋) is topologically isomorphic to the
Graev free topological group 𝐹𝐺(𝑋⊕{∗}), where ∗ is a point not in
𝑋. We now define the Graev analog of the free periodic topological

group 𝐹
[𝑛]
𝐺 (𝑋). We will see below that 𝐹

[𝑛]
𝑀 (𝑋) is topologically

isomorphic to 𝐹
[𝑛]
𝐺 (𝑋 ⊕{∗}), where ∗ /∈ 𝑋. As a rule, 𝑋 will be an

infinite space of ordinals; therefore, 𝑋⊕{∗} is homeomorphic to 𝑋.

This means that 𝐹
[𝑛]
𝑀 (𝑋) ∼= 𝐹

[𝑛]
𝐺 (𝑋). Hence, we may speak about

free topological groups of period 𝑛, no matter Markov or Graev.
Below, we will always understand 𝐹 [𝑛](𝑋) as a Graev group (his
construction is more convenient for us).

Definition 2.1. Let 𝑋 be a Tychonoff space and 𝑥0 be a fixed
point of 𝑋, then the free topological group of period 𝑛 (in the sense
of Graev) of the space 𝑋 with distinguished point 𝑥0 is defined as

a topological group 𝐹 [𝑛](𝑋,𝑥0) with the following properties:

(1) 𝑋 is a subspace of 𝐹 [𝑛](𝑋,𝑥0);

(2) 𝐹 [𝑛](𝑋,𝑥0) is algebraically generated by 𝑋∖{𝑥0} and 𝑥0 is
its neutral element;

(3) any continuous mapping of 𝑋 to a topological group 𝐺 of
period 𝑛, which sends 𝑥0 into the neutral element of 𝐺 can
be extended to a continuous homomorphism of 𝐹 [𝑛](𝑋,𝑥0)
to 𝐺.

Here the term “period 𝑛” means that 𝑥𝑛 is the neutral element
of 𝐺.

Additional information on free topological groups may be found
in the articles [11], [5], and [19].
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If topological groups 𝐺 and 𝐻 are topologically isomorphic, then
we write 𝐺 ∼= 𝐻. If 𝑈 is a topological isomorphism of 𝐹 [𝑛](𝑋,𝑥0)

onto 𝐹 [𝑛](𝑌, 𝑦0), then we write ∥𝑈∥ ≤ 𝑘 if and only if 𝑈(𝑋) ⊂
𝐹

[𝑛]
𝑘 (𝑌, 𝑦0) and 𝑈−1(𝑌 ) ⊂ 𝐹

[𝑛]
𝑘 (𝑋,𝑥0). Note that there may exist

an isomorphism 𝑈 for which any inequality ∥𝑈∥ ≤ 𝑘 does not hold;
see Remark 4.6 below. We refer to ∥𝑈∥ as the norm of 𝑈 .

We also naturally define the free Abelian group 𝐴[𝑛](𝑋,𝑥0) of
period 𝑛 as the set of all sums 𝑚1 ⋅ 𝑥1 + . . . + 𝑚𝑘 ⋅ 𝑥𝑘, where 𝑚𝑖

are integers with ∣𝑚𝑖∣ < 𝑛, and we assume that 𝑛 ⋅ 𝑥 = 0 for every
𝑥 ∈ 𝑋 (we identify 𝑥0 with zero). A free Abelian topological group
of period 𝑛 is defined as in Definition 2.1 where all constituents are
supposed to be Abelian.

Consider 𝑍𝑛 = {0, 1, ⋅ ⋅ ⋅ , 𝑛 − 1} as a discrete Abelian group
(= all naturals mod 𝑛). The space 𝐶𝑝(𝑋,𝑍𝑛) is a topological mod-
ule, which is a linear space for prime 𝑛. Everywhere below we use
the linear terminology for all 𝑛 and use the terms “linear space” for
all 𝑍𝑛–modules under consideration and “linear mapping” for the
corresponding maps. The reader can see that this does not lead to
any incorrectness.

Let 𝐿𝑝(𝑋,𝑍𝑛) denote the dual space (module!) for 𝐶𝑝(𝑋,𝑍𝑛),
i.e., the set of all continuous linear maps 𝜙 : 𝐶𝑝(𝑋,𝑍𝑛) → 𝑍𝑛,
and endow it with the smallest 𝑍𝑛–module topology for which each
mapping 𝜙 7→ 𝜙(𝑓) is continuous for every 𝑓 ∈ 𝐶𝑝(𝑋,𝑍𝑛). Evi-
dently, 𝐶𝑝(𝑋,𝑍𝑛) = 𝑍𝑛 for any connected space 𝑋. We are going
to consider 𝑋 exclusively as an infinite ordinal space and, there-
fore, for different points 𝑥1 and 𝑥2 of 𝑋, there exists a function 𝑓
from 𝐶𝑝(𝑋,𝑍𝑛) with 𝑓(𝑥1) ∕= 𝑓(𝑥2), so 𝐶𝑝(𝑋,𝑍𝑛) well separates
points of 𝑋. Note that all evaluation functionals 𝑓 7→ 𝑓(𝑥), where
𝑥 ∈ 𝑋, belong to 𝐿𝑝(𝑋,𝑍𝑛) and they constitute the set of genera-
tors. Moreover, every element of 𝐿𝑝(𝑋,𝑍𝑛) can be represented as
𝑚1 ⋅ 𝑥1 + . . .+𝑚𝑘 ⋅ 𝑥𝑘, and its value at 𝑓 ∈ 𝐶𝑝(𝑋,𝑍𝑛) has the form
𝑚1 ⋅ 𝑓(𝑥1) + . . . + 𝑚𝑘 ⋅ 𝑓(𝑥𝑘).

Note that algebraically the sets 𝐴[𝑛]([0, 𝛼], 0) (we add the point
0 to the segment [1, 𝛼]) and 𝐿𝑝([1, 𝛼], 𝑍𝑛) are identical, but their
topologies are different.

Note also that the dual of 𝐿𝑝([1, 𝛼], 𝑍𝑛) can be identified with
𝐶𝑝([1, 𝛼], 𝑍𝑛), so between these two spaces there exists a natural
duality.
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Below we define Graev’s type of function spaces 𝐶𝑝(𝑋,𝑍𝑛); i.e.,
we fix some point 𝑥0 in 𝑋 and put 𝑓(𝑥0) = 0 for every 𝑓 ∈
𝐶𝑝(𝑋,𝑍𝑛). Also, we suppose that its dual space 𝐿𝑝(⋅, 𝑍𝑛) con-
tains 𝑥0 as 0. Usually it will be a remainder point in some natural
Alexandroff compactification appearing in the context.

3. Method of decomposition of free topological groups

Lemma 3.1. If 𝑈 and 𝑉 are isomorphisms of free topological
groups of finite period and with finite norms, then ∥𝑈 ⋅ 𝑉 ∥ ≤ ∥𝑈∥ ⋅
∥𝑉 ∥.

This lemma can be applied to a restricted number of isomor-
phisms. Indeed, we will see below in Remark 4.6 that, in general,
an isomorphism of groups 𝐹 [𝑛](𝑋,𝑥0) or 𝐴[𝑛](𝑋,𝑥0) does not nec-
essarily have finite norm.

Let 𝐾 be a closed subspace of 𝑋, and let 𝑋/𝐾 denote the space
obtained from 𝑋 by collapsing 𝐾 to a point and endowing the
obtained set 𝑋/𝐾 with the strongest topology under which the
natural mapping 𝑝 : 𝑋 → 𝑋/𝐾 is continuous. If 𝑋 is normal, then
𝑋/𝐾 is the usual quotient of 𝑋. It is easy to see that the continuity
of 𝑓 ⋅ 𝑝 for some mapping 𝑓 : 𝑋/𝐾 → 𝑌 implies the continuity of
𝑓 . The following lemma is evident.

Lemma 3.2. Let 𝑋 be a compact Hausdorff space and 𝐾 be its
closed subspace. Then the quotient space 𝑋/𝐾 is homeomorphic to
the Alexandroff one-point compactification of 𝑋∖𝐾 (we will denote
it by 𝑎(𝑋∖𝐾)).

In Banach space theory there is a standard scheme of construc-
tion of linear homeomorphisms between given spaces. It is con-
nected with the notion of complemented subspace and decomposi-
tion of a given Banach space into a Cartesian product of its closed
linear subspaces. For details see, for example, [16]. Complemented
subspaces may appear in a continuous function space 𝐶(𝑋) as a
consequence of the existence of retractions of 𝑋. An analogous
scheme may also be used for free topological groups (see, for exam-
ple, [14]). Below we represent it in the form convenient for us.

Theorem 3.3. Let 𝐾 be a retract of 𝑋 and let 𝑦0 = 𝑝(𝐾), where
𝑝 : 𝑋 → 𝑋/𝐾 is the natural projection. Let also 𝑋+ = 𝑋 ⊕ {∗},



8 L. V. GENZE, S. P. GUL’KO, AND T. E. KHMYLEVA

where ∗ /∈ 𝑋. Then there exists a topological isomorphism 𝑈 :
𝐹 [𝑛](𝑋+, ∗) → 𝐹 [𝑛]((𝑋/𝐾) ⊕𝐾, 𝑦0) such that ∥𝑈∥ ≤ 2.

Proof: Let 𝑟 be a retraction of 𝑋 onto 𝐾. We define a mapping
𝑔 : 𝑋+ → 𝐹 [𝑛]((𝑋/𝐾) ⊕𝐾, 𝑦0) by the formula

𝑔(𝑥) =

{
𝑦0 , 𝑥 = ∗ ,

𝑝(𝑥) ⋅ 𝑟(𝑥) , 𝑥 ∈ 𝑋.

As 𝑝(𝑥) ∈ 𝑋/𝐾 and 𝑟(𝑥) ∈ 𝐾, the mapping 𝑔 is well defined.
It is continuous because 𝑝, 𝑟, and multiplication are continuous.
Consider the mapping

ℎ(𝑦) =

{
𝑦 , 𝑦 ∈ 𝐾,

𝑥 ⋅ (𝑟(𝑥))−1 , 𝑦 ∈ 𝑋/𝐾, 𝑦 = 𝑝(𝑥).

The definition of ℎ is correct since if 𝑦 ∕= 𝑦0, then there exists 𝑥 ∈ 𝑋
with 𝑦 = 𝑝(𝑥), and if 𝑦 = 𝑦0 and 𝑦 = 𝑝(𝑥), then 𝑥 ∈ 𝐾 and therefore
𝑟(𝑥) = 𝑥 and ℎ(𝑦0) = ∗. The mapping ℎ is evidently continuous

on 𝐾. At other points, consider the mapping 𝑓 : 𝑋 → 𝐹 [𝑛](𝑋+, ∗)
defined as 𝑓(𝑥) = ∗ ⋅ 𝑥 ⋅ (𝑟(𝑥))−1. It is continuous and 𝑓 = ℎ ∘ 𝑝.

Since 𝐹 [𝑛](𝑋+, ∗) is a Tychonoff space, then ℎ is continuous at any
point from 𝑋/𝐾. Let 𝐹 (𝑔) and 𝐹 (ℎ) be the continuous homomor-
phisms which are continuous extensions of 𝑔 and ℎ, respectively. A
simple calculation shows that the homomorphisms 𝐹 (𝑔) and 𝐹 (ℎ)
are mutually inverse. We need only to put 𝑈 = 𝐹 (𝑔). □
Corollary 3.4. Let 𝑋 be homeomorphic to 𝑋⊕{∗}, where ∗ /∈ 𝑋.

Then 𝐹 [𝑛](𝑋,𝑥1) ∼= 𝐹 [𝑛](𝑋,𝑥2) with norm of isomorphism ≤ 4 for
arbitrary points 𝑥1 and 𝑥2 in 𝑋 .

Proof: Let 𝐾 = {𝑥} be a one-point subset of 𝑋 and let 𝑦 be the
same point 𝑥, but considered as a point of the space 𝑋/𝐾. Then the
pair ((𝑋/𝐾) ⊕𝐾, 𝑦) is homeomorphic to the pair (𝑋,𝑥). We take

now 𝐾1 = {𝑥1} and 𝐾2 = {𝑥2}. By Theorem 3.3, 𝐹 [𝑛](𝑋,𝑥1) ∼=
𝐹 [𝑛](𝑋⊕{∗}, ∗) and 𝐹 [𝑛](𝑋,𝑥2) ∼= 𝐹 [𝑛](𝑋⊕{∗}, ∗), and both norms
of isomorphisms ≤ 2. We need only to apply Lemma 3.1. □
Remark 3.5. Theorem 3.3 and Corollary 3.4 can be considered
as an analogue of the well-known method of Cartesian product
decomposition of Banach spaces (ascending to Banach and Borsuk;
see, for instance, [2] and [17]). O. G. Okunev [14] was the first who
used this method for free topological group.



PERIODIC SPACES AND GROUPS ON ORDINALS 9

4. Main result

The main result of this article is the following theorem.

Theorem 4.1. For any two infinite segments [1, 𝛼] and [1, 𝛽] of
ordinals, the following conditions are equivalent.

(1) The free topological groups 𝐹 [𝑛][1, 𝛼] and 𝐹 [𝑛][1, 𝛽] are iso-
morphic.

(2) The free Abelian topological groups 𝐴[𝑛][1, 𝛼] and 𝐴[𝑛][1, 𝛽]
are isomorphic.

(3) The continuous function spaces 𝐶𝑝([1, 𝛼], 𝑍𝑛) and
𝐶𝑝([1, 𝛽], 𝑍𝑛) are linearly homeomorphic.

(4) The spaces 𝐿𝑝([1, 𝛼], 𝑍𝑛) and 𝐿𝑝([1, 𝛽], 𝑍𝑛) are linearly
homeomorphic.

(5) Between 𝛼 and 𝛽, there is not a separating post from Δ𝑆.

We begin with the following simple statement.

Proposition 4.2. A linear operator 𝑇 : 𝐶𝑝([1, 𝛼], 𝑍𝑛) →
𝐶𝑝([1, 𝛽], 𝑍𝑛) is continuous if and only if the adjoint operator 𝑇 ∗ :
𝐿𝑝([1, 𝛽], 𝑍𝑛) → 𝐿𝑝([1, 𝛼], 𝑍𝑛), defined by 𝑇 ∗(𝜙)(𝑓) = 𝑓(𝑇𝜙), where
𝜙 ∈ 𝐿𝑝([1, 𝛽], 𝑍𝑛) and 𝑓 ∈ 𝐶𝑝([1, 𝛼], 𝑍𝑛), is continuous.

In particular, 𝐶𝑝([1, 𝛼], 𝑍𝑛) and 𝐶𝑝([1, 𝛽], 𝑍𝑛) are linearly home-
omorphic if and only if 𝐿𝑝([1, 𝛼], 𝑍𝑛) and 𝐿𝑝([1, 𝛽], 𝑍𝑛) are linearly
homeomorphic. This gives us the equivalence (3) ⇔ (4).

It is well known that an isomorphism of free topological groups
implies an isomorphism of free Abelian topological groups. This
fact is true for our case (compare with [5]).

Theorem 4.3. If 𝐹 [𝑛](𝑋,𝑥0) ∼= 𝐹 [𝑛](𝑌, 𝑦0), then 𝐴[𝑛](𝑋,𝑥0) ∼=
𝐴[𝑛](𝑌, 𝑦0).

So, we have (1) ⇒ (2).

Let 𝐶𝑝(𝑋,𝑥0, 𝑍𝑛) denote the set of all continuous functions 𝑓 :
𝑋 → 𝑍𝑛 such that 𝑓(𝑥0) = 0.

Theorem 4.4. If 𝐴[𝑛](𝑋,𝑥0) ∼= 𝐴[𝑛](𝑌, 𝑦0), then 𝐶𝑝(𝑋,𝑥0, 𝑍𝑛) is
linearly homeomorphic to 𝐶𝑝(𝑌, 𝑦0, 𝑍𝑛).

Proof: We identify 𝐴[𝑛](𝑋,𝑥0) with 𝐴[𝑛](𝑌, 𝑦0) and consider 𝑋
and 𝑌 as a set of its generators. According to the definition of
the free periodic topological group, any continuous function 𝑓 ∈
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𝐶𝑝(𝑋,𝑥0, 𝑍𝑛) can be uniquely extended to a continuous homomor-

phism 𝑓 : 𝐴[𝑛](𝑋,𝑥0) → 𝑍𝑛. Then the formula 𝑇 (𝑓) = 𝑓 ∣𝑌 defines a
linear continuous mapping of 𝐶𝑝(𝑋,𝑥0, 𝑍𝑛) into 𝐶𝑝(𝑌, 𝑦0, 𝑍𝑛). The
operator 𝑇−1 is defined analogously. It is routine to check that 𝑇
and 𝑇−1 are mutually inverse. □

This theorem proves (2) ⇒ (3). We pass to the most complicated
implication (5) ⇒ (1)

Below ∞ will denote the only point of the remainder of the
Alexandroff compactification of a locally compact space 𝑋. If 𝑋 is
a compact space, then we will consider ∞ as an additional isolated
point. So, always ∞ /∈ 𝑋.

Lemma 4.5. Let {𝑋𝑖; 𝑖 ∈ 𝐼} and {𝑌𝑖; 𝑖 ∈ 𝐼} be discrete fami-

lies of locally compact Hausdorff spaces such that 𝐹 [𝑛](𝑎(𝑋𝑖),∞) ∼=
𝐹 [𝑛](𝑎(𝑌𝑖),∞) for every 𝑖 ∈ 𝐼. Then 𝐹 [𝑛](𝑎(⊕𝑖∈𝐼𝑋𝑖),∞) ∼=
𝐹 [𝑛](𝑎(⊕𝑖∈𝐼𝑌𝑖),∞).

Proof: The isomorphism is defined in a natural way: Every let-
ter 𝑥 ∈ 𝑋𝑖 corresponds to its image under the isomorphism 𝐹 [𝑛]

(𝑎(𝑋𝑖),∞) ∼= 𝐹 [𝑛](𝑎(𝑌𝑖),∞). This mapping naturally extends to
words. □

Remark 4.6. A similar statement in [7] contains a restriction on
the norm of the isomorphism 𝐹 (𝑎(𝑋𝑖),∞) ∼= 𝐹 (𝑎(𝑋𝑖),∞) (its ana-
log for the case of Banach spaces can be found in [1]). Namely,
this norm is required to be bounded by some absolute constant. It
is this fact that leads to the appearance of the Bessaga-Pel̷czyński
posts Δ𝐵𝑃 . So there is a deep difference between the general case
of free topological groups and the current one.

The following lemma is easy to prove and well known; see, for
example, [3].

Lemma 4.7. Every closed subspace of a segment of ordinals is its
retract.

Lemma 4.8. If 𝛼 is an infinite ordinal, then [1, 𝛼] is homeomorphic
to [1, 𝜔𝜉 ⋅𝑚] for some ordinal 𝜉 and natural 𝑚.

Proof: This statement is a well-known theorem of S. Mazurkiewicz
and W. Sierpiński [12] and see also [18, Proposition 8.6.5]). □
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Lemma 4.9. Let 𝐾 be a closed cofinal subset of a segment [1, 𝛼]
which is homeomorphic to a segment [1, 𝛽] and let ℎ : [1, 𝛽] → 𝐾
be the corresponding homeomorphism. Suppose also that min𝐾 is
an infinite ordinal > 𝛽. Then 𝐹 [𝑛][1, 𝛼] ∼= 𝐹 [𝑛](𝑎([1, 𝛽)⊕ [1, ℎ(1))⊕
⊕𝛾∈𝐾 [ℎ(𝛾), ℎ(𝛾 + 1))),∞).

Proof: By Lemma 4.7, 𝐾 is a retract of [1, 𝛼]. Therefore, 𝐹 [𝑛][1, 𝛼]

is topologically isomorphic to 𝐹 [𝑛]([1, 𝛼]/𝐾 ⊕ 𝐾, 𝑦0) by Theorem
3.3. Moreover, we may put 𝑦0 = ∞, where ∞ is an abstract
new point (see Corollary 3.4). Lemma 3.2 allows us to replace
the quotient space [1, 𝛼]/𝐾 by the Alexandroff compactification of
[1, ℎ(1))⊕⊕𝛾∈𝐾 [ℎ(𝛾), ℎ(𝛾+1)). It remains to apply Lemma 4.5. □

Lemma 4.10. Let 𝛼 be an infinite ordinal and 𝜆 = ∣𝛼∣. Then

(1) if 𝛼 ≥ 𝜆2, then 𝐹 [𝑛]([1, 𝛼] ∼= 𝐹 [𝑛](𝑎(⊕𝜆[1, 𝜆]),∞);

(2) if 𝜆 ⋅ 𝜎 ≤ 𝛼 < 𝜆 ⋅ 𝜎+, where 1 ≤ 𝜎 < 𝜆, then 𝐹 [𝑛][1, 𝛼] ∼=
𝐹 [𝑛](𝑎(⊕𝜎[1, 𝜆]),∞).

Proof: (1) Let 𝛼 = 𝜆2. We denote 𝐾 = {𝜆𝜎;𝜎 is a cardinal, 1 ≤
𝜎 ≤ 𝜆}. This is a closed subset of [1, 𝜆2] homeomorphic to [1, 𝜆].

By Lemma 4.9, 𝐹 [𝑛][1, 𝜆2] ∼= 𝐹 [𝑛](𝑎([1, 𝜆2]∖𝐾) ⊕ 𝐾,∞). The set
[1, 𝜆2]∖𝐾 is the discrete union [1, 𝜆) ⊕ ⊕1≤𝜎<𝜆(𝜆 ⋅ 𝜎, 𝜆 ⋅ 𝜎+). Note
that the one-point compactification of the interval (𝜆 ⋅ 𝜎, 𝜆 ⋅ 𝜎+)
is homeomorphic to the segment [1, 𝜆]. All these facts prove the
statement.

Now let 𝛼 ≥ 𝜆2. By Lemma 4.8, we may assume 𝛼 = 𝜔𝛽 ⋅
𝑚. Since 𝜆 is a cardinal, then 𝜆 = 𝜔𝜆 (see [9]), and therefore
𝜆2 = 𝜔𝜆⋅2. From 𝛼 = 𝜔𝛽 ⋅ 𝑚 ≥ 𝜆2 = 𝜔𝜆⋅2, we conclude that
𝛽 ≥ 𝜆 ⋅ 2. Suppose that the theorem is already proved for all
ordinals 𝛽, 𝛽 < 𝛾, and set 𝑚 = 1. Consider the closed subset
𝐾 = {𝜔𝛽 ; 𝜆 ⋅ 2 ≤ 𝛽 ≤ 𝛾} in the segment [1, 𝜔𝛾 ]. From Lemma 4.9,

it follows that 𝐹 [𝑛][1, 𝜔𝛾 ] ∼= 𝐹 [𝑛](𝑎(⊕𝜆[1, 𝜆]),∞). Suppose now that
for 𝛼 = 𝜔𝛽 ⋅𝑚 and for every ordinal 𝜔𝛽 ⋅𝑘 with 𝑘 < 𝑚 the statement
is already proved. Let 𝐾 = {𝜔𝛽 ⋅ (𝑚− 1) + 𝛾; 1 ≤ 𝛾 ≤ 𝜔𝛽}. Again,

by Lemma 4.9, it follows that the group 𝐹 [𝑛][1, 𝜔𝛽 ⋅𝑚] is isomorphic

to 𝐹 [𝑛](𝑎(⊕∣𝜔𝛽 ∣[1, 𝜔𝛽 ⋅ (𝑛 − 1)]),∞), which can be identified with

𝐹 [𝑛](𝑎(⊕𝜆[1, 𝜆]),∞) by the induction hypothesis.

(2) In this case, 𝛼 = 𝜆 ⋅ 𝜎 + 𝛽. It is easy to see that [1, 𝜆 ⋅
𝜎 + 𝛽] is homeomorphic to [1, 𝜆 ⋅ 𝜎]. Take 𝐾 = {𝜆 ⋅ 𝛽; 1 ≤ 𝛽 ≤
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𝜆}. By Lemma 4.9, we obtain an isomorphism 𝐹 [𝑛][1, 𝜆 ⋅ 𝜎] ∼=
𝐹 [𝑛](𝑎(⊕𝜎[1, 𝜆]),∞). □

Lemma 4.11. If 𝐹 [𝑛](𝑋) ∼= 𝐹 [𝑛](𝑎(⊕𝜆𝑋)), then 𝐹 [𝑛](𝑋) ∼= 𝐹 [𝑛]

(𝑎(⊕𝜎𝑋)) for every cardinal 𝜎, 1 ≤ 𝜎 < 𝜆.

Proof. This is evident since ∣𝜆∣ ⋅ ∣𝜎∣ = ∣𝜆∣. □
The following statement is also evident

Lemma 4.12. If 𝐹 [𝑛](𝑋) ∼= 𝐹 [𝑛](𝑎(⊕𝑖∈𝐼𝑋𝑖)) and 𝐹 [𝑛](𝑋𝑖) ∼= 𝐹 [𝑛]

(𝑎(⊕𝜎𝑋𝑖)) for each 𝑖 ∈ 𝐼, then 𝐹 [𝑛](𝑋) ∼= 𝐹 [𝑛](𝑎(⊕𝜎𝑋)).

Lemma 4.13. Let 𝜆 be a singular cardinal. Then 𝐹 [𝑛][1, 𝜆] ∼=
𝐹 [𝑛](𝑎(⊕𝜆[1, 𝜆]),∞).

Proof: We first prove that 𝐹 [𝑛][1, 𝜆] ∼= 𝐹 [𝑛](𝑎(⊕𝜎[1, 𝜆]),∞) for
every 𝜎 < 𝜆. Let 𝛼 = 𝑐𝑓𝜆, then 𝛼 is less than 𝜆 by singularity of 𝜆.
There exists a transfinite sequence {𝜆𝛽 ;𝛽 < 𝛼} with the properties

(1) 𝜆1 ≥ 𝜎,
(2) 𝜆1 > 𝛼,
(3) 𝜆𝛽 < 𝜆 for every 𝛽 < 𝛼, and
(4) 𝜆 = sup𝛽<𝛼 𝜆𝛽 .

Note that the sequence 𝜆2
𝛽 is cofinal with 𝜆𝛽 and its upper bound

is 𝜆. Let 𝐾 = {𝜆2
𝛽 ; 𝛽 < 𝛼} ∪ {𝜆}. By Lemma 4.9, 𝐹 [𝑛][1, 𝜆]

is isomorphic to 𝐹 [𝑛](𝑎(𝐾 ⊕ ⊕0≤𝛽<𝛼𝑋𝛽),∞), where 𝑋0 = [1, 𝜆2
1)

and 𝑋𝛽 = [𝜆2
𝛽 + 1, 𝜆2

𝛽+1) for 𝛽 ≥ 1. It is evident that 𝐾 ⊕ 𝑋0 is

homeomorphic to 𝑋0. The space 𝑋𝛽 is homeomorphic to [1, 𝜆2
𝛽+1)

for 𝛽 ≥ 0. By Lemma 4.10(1), 𝐹 [𝑛](𝑎(𝑋𝛽),∞) is isomorphic to

𝐹 [𝑛](𝑎(⊕𝜆𝛽
[1, 𝜆𝛽)),∞) and it is isomorphic to 𝐹 [𝑛](𝑎(⊕𝜎[1, 𝜆𝛽),∞)

by Lemma 4.11. This fact, combined with Lemma 4.12, implies
𝐹 [𝑛][1, 𝜆] = 𝐹 [𝑛](𝑎(⊕𝜎[1, 𝜆]),∞). In particular, we can take 𝜎 =

∣𝛼∣ = 𝑐𝑓𝜆. Now we represent 𝐹 [𝑛][1, 𝜆] in the last formula as

𝐹 [𝑛](𝑎(⊕𝜆𝛽
[1, 𝜆]),∞), where 1 ≤ 𝛽 < 𝛼. So by Lemma 4.12, we

have 𝐹 [𝑛][1, 𝜆] = 𝐹 [𝑛](𝑎(⊕𝛽<𝛼⊕𝜆𝛽
[1, 𝜆]),∞) = 𝐹 [𝑛](𝑎(⊕𝜆[1, 𝜆]),∞).

□
So, we proved the implication (5) ⇒ (1).

Remark 4.14. Lemmas 4.5–4.13 have their analogs for every ob-
ject considered above: 𝐴[𝑛](⋅), 𝐶𝑝(⋅, 𝑍𝑛), and 𝐿𝑝(⋅, 𝑍𝑛). We omit
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the formulations and the proof but we use them in the theorem
below. We believe that this will not confuse the reader.

We need only to establish (4) ⇒ (5). We prove, however, a more
general fact.

Theorem 4.15. Let 𝜆 be a regular uncountable cardinal and 𝜎
and 𝜏 be cardinals with 1 ≤ 𝜎 < 𝜏 ≤ 𝜆. Then there is no linear
continuous operator from 𝐿𝑝([1, 𝜆 ⋅ 𝜎], 𝑍𝑛) onto 𝐿𝑝([1, 𝜆 ⋅ 𝜏 ], 𝑍𝑛).

Proof: Suppose that there exists a linear continuous surjection 𝑇
of 𝐿𝑝([1, 𝜆 ⋅𝜎], 𝑍𝑛) onto 𝐿𝑝([1, 𝜆 ⋅𝜏 ], 𝑍𝑛). The space 𝐿𝑝([1, 𝜆 ⋅𝜎], 𝑍𝑛)
is linearly homeomorphic to 𝐿𝑝((𝑎(⊕𝜎[1, 𝜆]), 𝑍𝑛),∞) and 𝐿𝑝([1, 𝜆 ⋅
𝜏 ], 𝑍𝑛) is linearly homeomorphic to 𝐿𝑝((𝑎(⊕𝜏 [1, 𝜆]), 𝑍𝑛),∞). For
every ordinal 𝛼, let 𝑃𝛼 (𝑄𝛼, respectively) denote the set of all ele-
ments in 𝐿𝑝((𝑎(⊕𝜎[1, 𝜆]), 𝑍𝑛),∞) (𝐿𝑝((𝑎(⊕𝜏 [1, 𝜆]), 𝑍𝑛),∞), respec-
tively) which are represented by points from 𝑎(⊕𝜎[1, 𝛼]) (𝑎(⊕𝜏 [1, 𝛼]),
respectively) only. We establish the existence of a closed cofinal
subset 𝐴 of [1, 𝜆) such that 𝑇 (𝑃𝛼) = 𝑄𝛼 for every 𝛼 ∈ 𝐴. To
this end, for every infinite ordinal 𝛽 in [𝜎, 𝜆), we must find 𝛼 ∈ 𝐴
such that 𝛼 > 𝛽 and ∣𝛼∣ = ∣𝛽∣. Let 𝛾1 = 𝛽. If the ordinal 𝛾𝑘
is already defined, we select 𝛾𝑛+1 to be equal to the supremum of
those ordinals which are contained in the expression of 𝑇 (𝑥) for
some 𝑥 ∈ 𝑄𝛾𝑛+1 . This sequence is nondecreasing and contains sets
with the same cardinality. For 𝛼 = sup 𝛾𝑛, we have 𝛼 ∈ 𝐴 by
construction.

We proved that 𝐴 is a non-empty cofinal set in [1, 𝜆). As the
operator 𝑇 is continuous, 𝐴 is closed.

Now take a strongly increasing sequence 𝛼1 < 𝛼2 < . . . and set
𝛼∞ = sup𝛼𝑛. We have 𝛼∞ ∈ 𝐴 since 𝐴 is closed. We also have
𝑇 (𝑃𝛼𝑛) = 𝑄𝛼𝑛 for 𝑛 = 1, 2, ⋅ ⋅ ⋅ by the definition of 𝐴. This implies
𝑇 (𝑃𝛼∞∖ ∪∞

𝑛=1 𝑃𝛼𝑛) = 𝑄𝛼∞∖ ∪∞
𝑛=1 𝑄𝛼𝑛 . But the last formula is

impossible because 𝑃𝛼∞∖∪∞
𝑛=1𝑃𝛼𝑛 has cardinality 𝜎, but 𝑄𝛼∞∖∪∞

𝑛=1

𝑄𝛼𝑛 has cardinality 𝜏 and 𝜏 > 𝜎. □

Acknowledgment. We thank the referee for comments and sug-
gestions.
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