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FIBERWISE COMPACTNESS AND

QUASI-UNIFORMITIES

MASAKI IWAMOTO, YOSHIFUMI KONAMI, AND TAKUO MIWA

Abstract. In this paper, first, we study the relationship be-
tween fiberwise compactness and uniformities, and correct the
result of I. M. James. Next, we introduce a new notion of
fiberwise quasi-uniform spaces over a topological space 𝐵, and
study the basic properties of fiberwise quasi-uniform spaces
and fiberwise quasi-uniformizability of fiberwise spaces. Last,
we prove two main theorems of fiberwise quasi-uniform spaces
which are extended versions of theorems in both fiberwise
compact spaces (as fiberwise uniform spaces) and quasi-uniform
spaces.

1. Introduction

Our motivation of this study is the common extension of fiberwise
compact spaces (as fiberwise uniform spaces [3]) and quasi-uniform
spaces [2].

Throughout this paper, we use the following notation and ter-
minology. Let 𝐵 be a fixed topological space (as the base space)
with a topology 𝜏 . We will use the abbreviation nbd(s) for neigh-
borhood(s). For 𝑏 ∈ 𝐵, 𝑁(𝑏) is the family of all open nbds of 𝑏.

First, in section 2, we consider the relationship between fiberwise
compactness and fiberwise uniformities.
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I. M. James obtained the following proposition in [3, Chapter 3].

Proposition 17.1. Let 𝑋 be a fiberwise compact
and fiberwise regular space over 𝐵, with 𝐵 regular.
Then there exists a unique fiberwise uniform struc-
ture Ω on 𝑋, compatible with the fiberwise topol-
ogy, in which the members of Ω are the nbds of the
diagonal.

This proposition is false in a strict sense of the definition of “fiber-
wise uniform structure.” In this section, we remedy this proposition
in the form of Theorem 3.

In section 3, we introduce a new notion of fiberwise quasi-uniform
spaces which is a common extension of both fiberwise uniform
spaces [5] and quasi-uniform spaces [2]. We investigate the ba-
sic properties of fiberwise quasi-uniform spaces. In section 4, we
investigate the fiberwise quasi-uniformizability of fiberwise spaces.

Last, in section 5, we prove the main theorems. We begin here
with a little background of these theorems.

Theorem 1 is a common extension of Theorem 3 and the following
theorem.

Theorem 1.20 [2]. Let (𝑋, 𝜏𝑋) be a compact Haus-
dorff space and let 𝐺 be a closed partial order on
𝑋. There exists exactly one quasi-uniformity 𝒰 on
𝑋 such that

∩𝒰 = 𝐺 and 𝜏(𝒰∗) = 𝜏𝑋 .

Theorem 1. Let (𝑋, 𝜏𝑋) be a fiberwise space 𝑋 with a topology
𝜏𝑋 , and 𝐵 a regular space. Let 𝑋 be a fiberwise compact fiberwise
Hausdorff space over 𝐵 and 𝐺 be a relation on 𝑋 such that 𝐺 =∪

𝑏∈𝐵 𝐺𝑏, where 𝐺𝑏 = 𝐺 ∩ 𝑋2
𝑏 for each 𝑏 ∈ 𝐵, and 𝐺𝑏 is a closed

partial order on 𝑋𝑏. Then there is exactly one fiberwise quasi-
uniformity 𝒰 on 𝑋 such that 𝜏(𝒰∗) = 𝜏𝑋 and (

∩𝒰) ∩𝑋2
𝑏 = 𝐺𝑏.

Theorem 2 is a common extension of Theorem 4 (see page 87)
(cf. [3, Corollary 17.2]) and the following theorem.

Theorem 1.21 [2]. Let (𝑋,𝒰) and (𝑌,𝒱) be quasi-
uniform spaces and suppose that (𝑋, 𝜏(𝒰∗)) is a
compact Hausdorff space. If 𝑓 : 𝑋 → 𝑌 is 𝜏(𝒰)-
𝜏(𝒱) continuous and 𝜏(𝒰−1)-𝜏(𝒱−1) continuous, then
𝑓 : (𝑋,𝒰) → (𝑌,𝒱) is quasi-uniformly continuous.
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Theorem 2. Let (𝑋,𝒰) and (𝑌,𝒱) be fiberwise quasi-uniform spaces
over 𝐵, with 𝐵 regular, and (𝑋, 𝜏(𝒰∗)) be the fiberwise compact and
fiberwise Hausdorff space over 𝐵. If for projections 𝑝 : 𝑋 → 𝐵 and
𝑞 : 𝑌 → 𝐵, a fiberwise function 𝑓 : 𝑋 → 𝑌 (i.e., 𝑝 = 𝑞 ∘𝑓) is 𝜏(𝒰)-
𝜏(𝒱) continuous and 𝜏(𝒰−1)-𝜏(𝒱−1) continuous, then 𝑓 : (𝑋,𝒰) →
(𝑌,𝒱) is fiberwise quasi-uniformly continuous.

For a set𝑋, a function 𝑝 : 𝑋 → 𝐵, 𝑊 ⊂ 𝐵 and 𝑏 ∈ 𝐵, 𝑝−1(𝑊 ) =
𝑋𝑊 , 𝑝−1(𝑏) = 𝑋𝑏, 𝑋𝑊 ×𝑋𝑊 = 𝑋2

𝑊 and 𝑋×𝑋 = 𝑋2. For 𝐷,𝐸 ⊂
𝑋2, 𝐷 ∘ 𝐸 = {(𝑥, 𝑧)∣∃𝑦 ∈ 𝑋 such that (𝑥, 𝑦) ∈ 𝐷, (𝑦, 𝑧) ∈ 𝐸},
𝐷−1 = {(𝑦, 𝑥)∣(𝑥, 𝑦) ∈ 𝐷}, and 𝐷[𝑥] = {𝑦∣(𝑥, 𝑦) ∈ 𝐷}. For a
quasi-uniformity 𝒰 on 𝑋, let 𝒰−1 = {𝑈−1∣𝑈 ∈ 𝒰}, and 𝒰∗ be the
fiberwise quasi-uniformity generated by {𝑈 ∩ 𝑈−1∣𝑈 ∈ 𝒰}. For a
(fiberwise) quasi-uniform space (𝑋,𝒰), 𝜏(𝒰), 𝜏(𝒰−1), and 𝜏(𝒰∗)
are (fiberwise) topologies induced by 𝒰 , 𝒰−1, and 𝒰∗, respectively.

For a map 𝑝 : 𝑋 → 𝐵, 𝑋 is said to be a fiberwise 𝑇0-space
(fiberwise Hausdorff space, respectively) if for any different points
𝑥, 𝑦 ∈ 𝑋 with 𝑝(𝑥) = 𝑝(𝑦), at least one of the points 𝑥, 𝑦 has a
nbd in 𝑋 not containing the other point (the points 𝑥 and 𝑦 have
disjoint nbds in 𝑋, respectively). Further, a fiberwise 𝑇0-space 𝑋
is said to be fiberwise regular if for any point 𝑥 ∈ 𝑋 and a closed
subset 𝐹 of 𝑋 such that 𝑥 ∕∈ 𝐹 there exists a nbd 𝑊 ∈ 𝑁(𝑝(𝑥))
such that 𝑥 and 𝐹 ∩𝑋𝑊 have disjoint nbds in 𝑋𝑊 .

In this paper, we assume that all maps are continuous. For other
terminology and definitions in the topological category 𝑇𝑂𝑃 and
the fiberwise category 𝑇𝑂𝑃𝐵, one can consult [1] and [3], respec-
tively, and for quasi-uniform spaces, see [2].

2. Fiberwise compactness and uniformities

In this section, we discuss the difference of fiberwise uniformities
in [3] and [5] and show that the assertion of Proposition 17.1 in [3]
is false in the strict sense of its definition and relieve its difficulty
by using the notion of “fiberwise entourage uniformity” in [5].

We begin with the definition of fiberwise uniform structure.

Definition 2.1 ([3, Section 12]). Let 𝑋 be a fiberwise set over 𝐵.
By a fiberwise uniform structure on 𝑋, we mean a filter Ω on 𝑋2

satisfying three conditions, as follows.

(FU1) Each 𝐷 ∈ Ω contains the diagonal Δ of 𝑋.
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(FU2) For any 𝐷 ∈ Ω and 𝑏 ∈ 𝐵, there exist 𝑊 ∈ 𝑁(𝑏) and 𝐸 ∈ Ω
such that 𝑋2

𝑊 ∩ 𝐸 ⊂ 𝐷−1.
(FU3) For any 𝐷 ∈ Ω and 𝑏 ∈ 𝐵, there exist 𝑊 ∈ 𝑁(𝑏) and 𝐸 ∈ Ω

such that (𝑋2
𝑊 ∩ 𝐸) ∘ (𝑋2

𝑊 ∩ 𝐸) ⊂ 𝐷.

Now we can construct the following example.

Example 2.2. Let 𝑋 = 𝐵 be the set of all positive real numbers
with the usual topology, and let 𝑝 : 𝑋 → 𝐵 be the identity map.
Then 𝑋 is a fiberwise compact and fiberwise regular space over 𝐵.
Let ℬ1 and ℬ2 be two families of 𝑋2 constructed as follows:

ℬ1 = {𝑈𝜖∣𝑈𝜖 = {(𝑥, 𝑦)∣𝑥− 𝜖 < 𝑦 < 𝑥+ 𝜖}, 𝜖 > 0},
ℬ2 = {𝑈𝜖,𝑎∣𝑈𝜖,𝑎 = {(𝑥, 𝑦)∣𝑥− 𝜖 < 𝑦 <

√
𝑥2 + 𝑎}, 𝜖 > 0, 𝑎 > 0}.

Let Ω1 and Ω2 be the filters on 𝑋2 generated by ℬ1 and ℬ2,
respectively, and let Ω be the filter on 𝑋2 which contains all nbds
of the diagonal. Then it is easy to see that Ω1, Ω2, and Ω are
different from each other.

On the other hand, in [5], we introduced a notion of slightly
stronger fiberwise uniformity (called fiberwise entourage uniformity)
in order to discuss the relationship between the fiberwise uniformi-
ties by using entourages and coverings. This notion of fiberwise
entourage uniformity seems to relieve the difficulty in the above.

Definition 2.3 ([5]). Let 𝑋 be a fiberwise set over 𝐵. By a fiber-
wise entourage uniformity on 𝑋, we mean a filter Ω on 𝑋2 satisfy-
ing four conditions: (FU1), (FU2), and (FU3), above, and

(FU4) If 𝐷 ⊂ 𝑋2 satisfies that for each 𝑏 ∈ 𝐵, there exist 𝑊 ∈
𝑁(𝑏) and 𝐸 ∈ Ω such that 𝑋2

𝑊 ∩ 𝐸 ⊂ 𝐷, then 𝐷 ∈ Ω.

We call 𝑋 with Ω a fiberwise entourage uniform space, denoted by
(𝑋,Ω).

It is easily verified that, in Example 2.2, Ω1 and Ω2 are fiberwise
uniform structures but not fiberwise entourage uniformities on 𝑋,
and Ω is a fiberwise entourage uniformity on 𝑋.

To remedy Proposition 17.1 in [3], we shall introduce some no-
tions.

For a fiberwise entourage uniformity Ω on 𝑋, a subfamily ℬ of
Ω is said to be a fiberwise uniform base (briefly, fiberwise u-base) if
ℬ is a filter-base and satisfies the conditions (FU1), (FU2), (FU3),
in Definition 2.1, and the following:
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For each 𝐷 ∈ Ω and 𝑏 ∈ 𝐵, there exist 𝑊 ∈ 𝑁(𝑏)
and 𝐸 ∈ ℬ such that 𝑋2

𝑊 ∩ 𝐸 ⊂ 𝐷.

A subfamily 𝒮 of Ω is said to be a fiberwise uniform subbase
(briefly, fiberwise u-subbase) if 𝒮 is a filter-base and the family of
all finite intersections of members of 𝒮 is a fiberwise u-base of Ω.

A family 𝒢 of subsets of 𝑋2 is said to be a fiberwise uniform
germ (briefly, fiberwise u-germ) if 𝒢 is a filter-base and satisfies
the conditions (FU1), (FU2), and (FU3). A family 𝒮 of subsets of
𝑋2 is said to be a fiberwise uniform subgerm (briefly, fiberwise u-
subgerm) if 𝒮 is a filter-base and the family of all finite intersections
of members of 𝒮 is a fiberwise u-germ.

It is clear that, for a fiberwise u-germ 𝒢, the family
Ω = {𝐷∣∀𝑏 ∈ 𝐵,∃𝐸 ∈ 𝒢 such that 𝑋2

𝑊 ∩ 𝐸 ⊂ 𝐷}
is a fiberwise entourage uniformity on 𝑋. Then it is clear that 𝒢
is a fiberwise u-base of Ω. (Ω is said to be the fiberwise entourage
uniformity generated by 𝒢.)

In Example 2.2, Ω1 and Ω2 are fiberwise u-germs and the fiber-
wise entourage uniformities generated by Ω1 and Ω2 are equal to
the fiberwise entourage uniformity Ω.

We can remedy Proposition 17.1 and Corollary 17.2 in [3] in the
following theorems. The fiberwise uniform topology is the fiberwise
topology induced by the (entourage) uniformity (cf. [3, Section 13]
and [5, Section 3]). Proofs of the theorems are omitted because
these are almost all the same as those in [3].

Theorem 3. Let 𝑋 be a fiberwise compact and fiberwise regular
space over 𝐵, with 𝐵 regular. Then there exists a unique fiber-
wise entourage uniformity Ω on 𝑋, compatible with the fiberwise
topology, in which the members of Ω are the nbds of the diagonal.

Theorem 4. Let 𝑓 : 𝑋 → 𝑌 be a fiberwise function, where 𝑋 and
𝑌 are fiberwise entourage uniform spaces over 𝐵, with 𝐵 regular.
Suppose that 𝑋 is fiberwise compact over 𝐵 in the fiberwise uniform
topology. If 𝑓 is continuous in the fiberwise uniform topology, then
𝑓 is fiberwise uniformly continuous.

3. Fiberwise quasi-uniform spaces and basic properties

In this section, we define a new notion of fiberwise quasi-uniform
spaces, some related notions, and study some basic properties. We
begin with the following definition.
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Definition 3.1. Let 𝑋 be a fiberwise set over 𝐵. By a fiberwise
quasi-uniformity on 𝑋, we mean a filter 𝒰 on 𝑋2 satisfying condi-
tions (FU1), (FU3) in Definition 2.1 and (FU4) in Definition 2.3.

By a fiberwise quasi-uniform space (𝑋,𝒰), we mean a fiberwise
set 𝑋 with a fiberwise quasi-uniformity 𝒰 .

Fiberwise quasi-uniform spaces over a point can be regarded as
quasi-uniform spaces in the ordinary sense. If 𝒰 is a fiberwise quasi-
uniformity, then 𝒰−1 is also a fiberwise quasi-uniformity and is
called the conjugate of 𝒰 .

Further, note that our definition of fiberwise quasi-uniformity
is an extended version of a fiberwise entourage uniformity (Defini-
tion 2.3) but is not an extended one of fiberwise uniform structure
(Definition 2.1).

It is easily verified that for a fiberwise quasi-uniformity 𝒰 on 𝑋
the filter 𝒰∗ is a fiberwise entourage uniformity on 𝑋.

For a fiberwise quasi-uniformity 𝒰 on 𝑋, a subfamily ℬ of 𝒰 is
said to be a fiberwise quasi-uniform base (briefly, fiberwise qu-base)
if ℬ is a filter-base and satisfies the conditions (FU1), (FU3), and
the following:

For each 𝑈 ∈ 𝒰 and 𝑏 ∈ 𝐵, there exist 𝑊 ∈ 𝑁(𝑏)
and 𝑉 ∈ ℬ such that 𝑋2

𝑊 ∩ 𝑉 ⊂ 𝑈 .

A subfamily 𝒮 of 𝒰 is said to be a fiberwise quasi-uniform subbase
(briefly, fiberwise qu-subbase) if 𝒮 is a filter-base and the family of
all finite intersections of members of 𝒮 is a fiberwise qu-base of 𝒰 .

A family 𝒢 of subsets of𝑋2 is said to be a fiberwise quasi-uniform
germ (briefly, fiberwise qu-germ) if 𝒢 is a filter-base and satisfies
the conditions (FU1) and (FU3). A family 𝒮 of subsets of 𝑋2 is
said to be a fiberwise quasi-uniform subgerm (briefly, fiberwise qu-
subgerm) if 𝒮 is a filter-base and the family of all finite intersections
of members of 𝒮 is a fiberwise qu-germ.

It is clear that, for a fiberwise qu-germ 𝒢, the family
𝒰 = {𝑈 ∣∀𝑏 ∈ 𝐵,∃𝑊 ∈ 𝑁(𝑏)∃𝑉 ∈ 𝒢 such that 𝑉 ∩𝑋2

𝑊 ⊂ 𝑈}
is a fiberwise quasi-uniformity on 𝑋. Then it is clear that 𝒢 is
a fiberwise qu-base of 𝒰 . (𝒰 is said to be the fiberwise quasi-
uniformity generated by 𝒢.)

If 𝒰1 and 𝒰2 are fiberwise quasi-uniformities on a fiberwise set 𝑋
over 𝐵, 𝒰1 is finer than 𝒰2 (or 𝒰2 coarser than 𝒰1) if each member
of 𝒰2 contains a member of 𝒰1.
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If 𝒰 is a fiberwise quasi-uniformity on 𝑋, then the family {𝑈 ∩
𝑈−1 ∣ 𝑈 ∈ 𝒰} is a fiberwise qu-germ and generates the fiberwise
entourage uniformity 𝒰∗, which is the coarsest fiberwise entourage
uniformity containing 𝒰 .

Let {𝒰𝑖 ∣ 𝑖 ∈ 𝐴} be a family of fiberwise quasi-uniformities on
a fiberwise set 𝑋 over 𝐵. The supremum of {𝒰𝑖 ∣ 𝑖 ∈ 𝐴} is the
coarsest fiberwise quasi-uniformity on 𝑋 that is finer than every 𝒰𝑖.
The infimum of {𝒰𝑖 ∣ 𝑖 ∈ 𝐴} is the finest fiberwise quasi-uniformity
on 𝑋 that is coarser than every 𝒰𝑖. We denote the supremum and
the infimum of {𝒰𝑖 ∣ 𝑖 ∈ 𝐴} by sup{𝒰𝑖} and inf{𝒰𝑖}, respectively.

The following proposition holds.

Proposition 3.2. Let {𝒰𝑖 ∣ 𝑖 ∈ 𝐴} be a family of fiberwise quasi-
uniformities on a fiberwise set 𝑋 over 𝐵. The supremum and the
infimum always exist.

Proof: Let ℬ =
∪
𝑖∈𝐴

𝒰𝑖 and ℬ′ = {𝑈1 ∩ ⋅ ⋅ ⋅ ∩ 𝑈𝑛 ∣ 𝑈𝑗 ∈ ℬ, 𝑗 ∈

{1, ⋅ ⋅ ⋅ , 𝑛}, 𝑛 ∈ ℕ}. Then it is easy to see that ℬ′ is a fiberwise
qu-germ of 𝑋, and that the fiberwise quasi-uniformity generated
by ℬ′ is sup{𝒰𝑖}.

For the existence of the infimum of {𝒰𝑖 ∣ 𝑖 ∈ 𝐴}, let 𝒰 =∩
𝑖∈𝐴

𝒰𝑖. Then it is easy to see that 𝒰 is the required fiberwise quasi-

uniformity. □
Definition 3.3. Let (𝑋,𝒰) and (𝑌,𝒱) be fiberwise (quasi-, respec-
tively) uniform spaces. A fiberwise function 𝑓 : 𝑋 → 𝑌 is fiberwise
(quasi-, respectively) uniformly continuous if for each 𝑉 ∈ 𝒱 and
each point 𝑏 ∈ 𝐵, there exist 𝑊 ∈ 𝑁(𝑏) and 𝑈 ∈ 𝒰 such that
𝑈 ∩𝑋2

𝑊 ⊂ (𝑓 × 𝑓)−1(𝑉 ).

For fiberwise quasi-uniform spaces (𝑋,𝒰) and (𝑌,𝒱), let ℬ𝒰 and
ℬ𝒱 be fiberwise qu-bases for 𝒰 and 𝒱, respectively. Then it is easy
to see that a fiberwise function 𝑓 : 𝑋 → 𝑌 is fiberwise quasi-
uniformly continuous if and only if, for 𝑉 ∈ ℬ𝒱 and 𝑏 ∈ 𝐵, there
exist 𝑈 ∈ 𝒰 and 𝑊 ∈ 𝑁(𝑏) such that 𝑈 ∩𝑋2

𝑊 ⊂ (𝑓 × 𝑓)−1(𝑉 ).
Let 𝑋, 𝑌, and 𝑍 be fiberwise quasi-uniform spaces over 𝐵 and

let 𝑓 : 𝑋 → 𝑌 and 𝑔 : 𝑌 → 𝑍 be fiberwise functions. Since
𝑔𝑓 × 𝑔𝑓 = (𝑔 × 𝑔) ∘ (𝑓 × 𝑓), fiberwise quasi-uniformly continuities
of 𝑓 and 𝑔 imply that 𝑔𝑓 is fiberwise quasi-uniformly continuous.
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Let 𝑋 and 𝑌 be fiberwise quasi-uniform spaces over a space 𝐵
and let 𝑓 : 𝑋 → 𝑌 be a fiberwise bijection. Then 𝑓 is a fiber-
wise quasi-unimorphism if 𝑓 and 𝑓−1 are fiberwise quasi-uniformly
continuous.

The following propositions can be easily proved, so we omit the
proofs.

Proposition 3.4. Let (𝑋,𝒰) and (𝑌,𝒱) be fiberwise quasi-uniform
spaces over a space 𝐵. If 𝑓 : (𝑋,𝒰) → (𝑌,𝒱) is fiberwise quasi-
uniformly continuous, then 𝑓 : (𝑋,𝒰−1) → (𝑌,𝒱−1) is fiberwise
quasi-uniformly continuous and 𝑓 : (𝑋,𝒰∗) → (𝑌,𝒱∗) is fiberwise
uniformly continuous.

Proposition 3.5. Let 𝑋 be a fiberwise set over 𝐵. For each
𝑖 ∈ 𝐴, let (𝑌𝑖,𝒱𝑖) be a fiberwise quasi-uniform space over 𝐵 and
let 𝑓𝑖 : 𝑋 → 𝑌𝑖 be a fiberwise function. Then the family {(𝑓𝑖 ×
𝑓𝑖)

−1(𝑉 ) ∣ 𝑉 ∈ 𝒱𝑖, 𝑖 ∈ 𝐴} forms a fiberwise qu-subgerm, which
generates the coarsest fiberwise quasi-uniformity 𝒰 on 𝑋 such that
𝑓𝑖 : (𝑋,𝒰) → (𝑌𝑖,𝒱𝑖) is fiberwise quasi-uniformly continuous for
each 𝑖 ∈ 𝐴.

Proposition 3.6. Let 𝑋 and 𝑌 be fiberwise sets over 𝐵 and let
{𝒰𝑖 ∣ 𝑖 ∈ 𝐴} and {𝒱𝑖 ∣ 𝑖 ∈ 𝐴} be families of fiberwise quasi-
uniformities on 𝑋 and 𝑌 , respectively. Let 𝒰 = sup{𝒰𝑖} and
𝒱 = sup{𝒱𝑖}. If for each 𝑖 ∈ 𝐴, 𝑓 : (𝑋,𝒰𝑖) → (𝑌,𝒱𝑖) is fiberwise
quasi-uniformly continuous, then 𝑓 : (𝑋,𝒰) → (𝑌,𝒱) is fiberwise
quasi-uniformly continuous.

Let (𝑋,𝒰) be a fiberwise quasi-uniform space over 𝐵 and let
𝐸 ⊂ 𝑋. The fiberwise quasi-uniformity {𝑈 ∩ 𝐸2 ∣ 𝑈 ∈ 𝒰} on 𝐸 is
called the fiberwise quasi-uniformity induced by 𝒰 and denoted by
𝒰∣𝐸×𝐸 .

Let (𝑋,𝒰) and (𝑌,𝒱) be fiberwise quasi-uniform spaces over 𝐵,
let 𝑓 : 𝑋 → 𝑌 be a fiberwise function, and let 𝐸 ⊂ 𝑋. If 𝑓 :
(𝑋,𝒰) → (𝑌,𝒱) is fiberwise quasi-uniformly continuous, then 𝑓 ∣𝐸 :
(𝐸,𝒰∣𝐸×𝐸) → (𝑌,𝒱) is fiberwise quasi-uniformly continuous. Let
(𝑋,𝒰) be a fiberwise quasi-uniform space over 𝐵. If 𝐹 ⊂ 𝐸 ⊂ 𝑋,
then 𝒰∣𝐹×𝐹 = (𝒰∣𝐸×𝐸)∣𝐹×𝐹 .

Let {(𝑋𝑖,𝒰𝑖) ∣ 𝑖 ∈ 𝐴} be a family of fiberwise quasi-uniform
spaces over 𝐵 and let 𝑋 =

∏
𝐵 𝑋𝑖. The product fiberwise quasi-

uniformity is the coarsest fiberwise quasi-uniformity on𝑋 for which
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all the projections 𝜋𝑖 : 𝑋 → 𝑋𝑖 are fiberwise quasi-uniformly con-
tinuous. The family of all sets of the form (𝜋𝑖 × 𝜋𝑖)

−1(𝑈𝑖), for each
𝑈𝑖 ∈ 𝒰𝑖, 𝑖 ∈ 𝐴, is a fiberwise qu-subgerm for the product fiberwise
quasi-uniformity of {𝒰𝑖 ∣ 𝑖 ∈ 𝐴}.

The following is obvious.

Proposition 3.7. Let (𝑋,𝒰) and (𝑌𝑖,𝒱𝑖) be fiberwise quasi-uniform
spaces over 𝐵 for each 𝑖 ∈ 𝐴 and 𝒱 the product fiberwise quasi-
uniformity of {(𝑌𝑖,𝒱𝑖) ∣ 𝑖 ∈ 𝐴}. Then a fiberwise function 𝑓 :
(𝑋,𝒰) → (

∏
𝐵 𝑌𝑖,𝒱) is fiberwise quasi-uniformly continuous if and

only if 𝜋𝑖𝑓 : (𝑋,𝒰) → (𝑌𝑖,𝒱𝑖) is fiberwise quasi-uniformly continu-
ous for each 𝑖 ∈ 𝐴.

For a fiberwise uniform space (fiberwise entourage uniform space,
respectively) (𝑋,𝒰) over 𝐵, the fiberwise uniform topology (fiber-
wise topology, respectively) induced by 𝒰 was discussed in [3, Sec-
tion 13] ([5, Section 3], respectively). For a fiberwise quasi-uniform
space (𝑋,𝒰), the fiberwise quasi-uniform topology 𝜏(𝒰) is defined
below.

Definition 3.8. Let (𝑋,𝒰) be a fiberwise quasi-uniform space over
𝐵. We denote the topology generated by the nbd system {𝒩 (𝑥)∣𝑥 ∈
𝑋} where 𝒩 (𝑥) = {𝑈 [𝑥] ∩𝑋𝑊 ∣𝑈 ∈ 𝒰 ,𝑊 ∈ 𝑁(𝑝(𝑥))} as 𝜏(𝒰) and
we call it the fiberwise quasi-uniform topology.

In fact, we can prove that {𝒩 (𝑥)∣𝑥 ∈ 𝑋} satisfies the axiom of
nbd system. The only condition which may not be entirely obvious
is the coherence condition. To verify this, for each 𝑈 [𝑥] ∩ 𝑋𝑊 ∈
𝒩 (𝑥), where 𝑥 ∈ 𝑋, 𝑊 ∈ 𝑁(𝑝(𝑥)), and 𝑈 ∈ 𝒰 , there exist 𝑉 ∈ 𝒰
and 𝑊 ′ ∈ 𝑁(𝑝(𝑥)) such that (𝑋2

𝑊 ′ ∩ 𝑉 ) ∘ (𝑋2
𝑊 ′ ∩ 𝑉 ) ⊂ 𝑈 . Let

𝑂 = 𝑊 ∩𝑊 ′ and 𝑉 [𝑥]∩𝑋𝑂 ∈ 𝒩 (𝑥). For each 𝑦 ∈ 𝑉 [𝑥]∩𝑋𝑂, it is
easy to see that 𝑉 [𝑦] ∩𝑋𝑂 ⊂ 𝑈 [𝑥]. Therefore, 𝑈 [𝑥] ∩𝑋𝑊 ∈ 𝒩 (𝑦),
which completes the proof.

We shall show some propositions which are used in section 5.

Proposition 3.9. Let (𝑋,𝒰) be a fiberwise quasi-uniform space
over 𝐵.

(1) (𝑋, 𝜏(𝒰)) is a fiberwise 𝑇0-space if and only if (
∩𝒰) ∩𝑋2

𝑏
is a partial order on 𝑋𝑏 for each 𝑏 ∈ 𝐵.

(2) (𝑋, 𝜏(𝒰)) is a fiberwise 𝑇0-space if and only if (𝑋, 𝜏(𝒰∗)) is
a fiberwise Hausdorff space.
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Thus, (
∩𝒰) ∩𝑋2

𝑏 is a partial order on 𝑋𝑏 for each 𝑏 ∈ 𝐵 if and
only if (𝑋, 𝜏(𝒰∗)) is a fiberwise Hausdorff space.

Proof: (1) (⇒): For each 𝑏 ∈ 𝐵, we show that (
∩𝒰) ∩ 𝑋2

𝑏 is
a partial order on 𝑋𝑏. First, it is clear that (𝑥, 𝑥) ∈ (

∩𝒰) ∩ 𝑋2
𝑏

for every 𝑥 ∈ 𝑋𝑏. Next, let (𝑥, 𝑦), (𝑦, 𝑧) ∈ (
∩𝒰) ∩ 𝑋2

𝑏 . Then for
any 𝑈 ∈ 𝒰 , there exist 𝑊 ∈ 𝑁(𝑏) and 𝑉 ∈ 𝒰 such that (𝑋2

𝑊 ∩
𝑉 ) ∘ (𝑋2

𝑊 ∩ 𝑉 ) ⊂ 𝑈 ; it is easy to show (𝑥, 𝑧) ∈ 𝑈 , which shows
(𝑥, 𝑧) ∈ (

∩𝒰) ∩ 𝑋2
𝑏 . Finally, for each 𝑥,𝑦 ∈ 𝑋𝑏(𝑥 ∕= 𝑦), since

(𝑋, 𝜏(𝒰)) is a fiberwise 𝑇0-space, there exists 𝑈 ∈ 𝒰 such that
𝑥 ∕∈ 𝑈 [𝑦] or 𝑦 ∕∈ 𝑈 [𝑥]. Therefore, 𝑥 ∕∈ 𝑈 [𝑦] ∩𝑋𝑏 or 𝑦 ∕∈ 𝑈 [𝑥] ∩𝑋𝑏,
and (𝑥, 𝑦) ∕∈ (

∩𝒰) ∩𝑋2
𝑏 or (𝑦, 𝑥) ∕∈ (

∩𝒰) ∩𝑋2
𝑏 . Thus, (

∩𝒰) ∩𝑋2
𝑏

is a partial order on 𝑋𝑏.

(⇐): For each 𝑥,𝑦 ∈ 𝑋𝑏 (𝑥 ∕= 𝑦) where 𝑏 ∈ 𝐵, since (
∩𝒰) ∩𝑋2

𝑏

is a partial order on 𝑋𝑏, (𝑥, 𝑦) ∕∈ (
∩𝒰)∩𝑋2

𝑏 or (𝑦, 𝑥) ∕∈ (
∩𝒰)∩𝑋2

𝑏 .
There exists 𝑈 ∈ 𝒰 such that 𝑥 ∕∈ 𝑈 [𝑦] or 𝑦 ∕∈ 𝑈 [𝑥]. Therefore,
(𝑋, 𝜏(𝒰)) is a fiberwise 𝑇0-space.

(2) (⇒): For each 𝑏 ∈ 𝐵 and 𝑥, 𝑥′ ∈ 𝑋𝑏 (𝑥 ∕= 𝑥′), there exists
a 𝜏(𝒰)-nbd 𝑂 of 𝑥 such that 𝑥′ ∕∈ 𝑂. So, there exists 𝑈 ∈ 𝒰
such that 𝑈 [𝑥] ⊂ 𝑂. There exist 𝑉 ∈ 𝒰 and 𝑊 ∈ 𝑁(𝑏) such
that (𝑉 ∩ 𝑋2

𝑊 ) ∘ (𝑉 ∩ 𝑋2
𝑊 ) ⊂ 𝑈 . Then (𝑉 ∩ 𝑉 −1 ∩ 𝑋2

𝑊 )[𝑥′] and
(𝑉 ∩𝑉 −1∩𝑋2

𝑊 )[𝑥] ∈ 𝜏(𝒰∗), and it is easy to see (𝑉 ∩𝑉 −1∩𝑋2
𝑊 )[𝑥′]∩

(𝑉 ∩ 𝑉 −1 ∩𝑋2
𝑊 )[𝑥] = ∅. Thus, (𝑋, 𝜏(𝒰∗)) is a fiberwise Hausdorff

space.

(⇐): For each 𝑏 ∈ 𝐵 and 𝑥, 𝑥′ ∈ 𝑋𝑏 (𝑥 ∕= 𝑥′), there exist a
𝜏(𝒰∗)-nbd 𝑂 of 𝑥 and a 𝜏(𝒰∗)-nbd 𝑂′ of 𝑥′ such that 𝑂 ∩ 𝑂′ = ∅.
So, there exist 𝑈 ∈ 𝒰∗ and 𝑊 ∈ 𝑁(𝑏) such that 𝑈 [𝑥] ∩𝑋𝑊 ⊂ 𝑂.
There exists 𝑉 ∈ 𝒰 such that 𝑉 ∩𝑉 −1 ⊂ 𝑈 . Since 𝑥′ /∈ 𝑈 [𝑥]∩𝑋𝑊 ,
𝑥′ /∈ (𝑉 ∩ 𝑉 −1)[𝑥] ∩𝑋𝑊 . Therefore, (𝑥, 𝑥′) ∕∈ 𝑉 ∩𝑋2

𝑊 or (𝑥, 𝑥′) ∕∈
𝑉 −1 ∩𝑋2

𝑊 . Thus, 𝑥′ ∕∈ 𝑉 [𝑥] ∩𝑋𝑊 or 𝑥 ∕∈ 𝑉 [𝑥′] ∩𝑋𝑊 . □
Proposition 3.10. Let (𝑋,𝒰) and (𝑌,𝒱) be fiberwise quasi-uniform
spaces over 𝐵. If a fiberwise function 𝑓 : (𝑋,𝒰) → (𝑌,𝒱) is fiber-
wise quasi-uniformly continuous, then 𝑓 is 𝜏(𝒰)-𝜏(𝒱) continuous
and 𝜏(𝒰−1)-𝜏(𝒱−1) continuous and 𝜏(𝒰∗)-𝜏(𝒱∗) continuous.

Proof: To prove 𝜏(𝒰)-𝜏(𝒱) continuity, let 𝑞 : 𝑌 → 𝐵 be the
projection. For each 𝑂 ∈ 𝜏(𝒱) and 𝑥 ∈ 𝑓−1(𝑂), there exists 𝑉 ∈
𝒱 and a nbd 𝑊 of 𝑞(𝑓(𝑥)) such that 𝑉 [𝑓(𝑥)] ∩ 𝑌𝑊 ⊂ 𝑂. Since
𝑓 : (𝑋,𝒰) → (𝑌,𝒱) is fiberwise quasi-uniformly continuous, there
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exists 𝑈 ∈ 𝒰 and a nbd 𝑊 ′ of 𝑞(𝑓(𝑥)) such that 𝑋2
𝑊 ′ ∩ 𝑈 ⊂ (𝑓 ×

𝑓)−1(𝑉 ). Therefore,

𝑓−1(𝑉 [𝑓(𝑥)] ∩ 𝑌𝑊 ) ⊂ 𝑓−1(𝑂)

((𝑓 × 𝑓)−1(𝑉 ))[𝑥] ∩𝑋𝑊 ⊂ 𝑓−1(𝑉 [𝑓(𝑥)] ∩ 𝑌𝑊 )

(𝑋2
𝑊 ′ ∩ 𝑈)[𝑥] ∩𝑋𝑊 ⊂ ((𝑓 × 𝑓)−1(𝑉 ))[𝑥] ∩𝑋𝑊 .

Therefore, 𝑈 [𝑥] ∩ 𝑋𝑊∩𝑊 ′ ⊂ 𝑓−1(𝑂), 𝑓−1(𝑂) ∈ 𝜏(𝒰). It follows
that 𝑓 is 𝜏(𝒰)-𝜏(𝒱) continuous. The other continuities follow from
Proposition 3.4. □

Proposition 3.11. Let 𝜏1 and 𝜏2 be fiberwise topologies on 𝑋, and
let (𝑌,𝒱) be a fiberwise quasi-uniform space. Let 𝑓 : 𝑋 → 𝑌 be a
fiberwise function such that 𝑓 is 𝜏1-𝜏(𝒱) continuous and 𝜏2-𝜏(𝒱−1)
continuous. Then for each 𝑉 ∈ 𝒱, (𝑓 × 𝑓)−1(𝑉 ) is a 𝜏2 × 𝜏1-nbd of
the diagonal Δ𝑋 .

Proof: Let 𝑉 ∈ 𝒱, 𝑥 ∈ 𝑋, and 𝑏 = 𝑝(𝑥). Then there exist
𝑊 ∈ 𝑁(𝑏) and 𝑉1 ∈ 𝒱 such that (𝑌 2

𝑊 ∩ 𝑉1) ∘ (𝑌 2
𝑊 ∩ 𝑉1) ⊂ 𝑉 .

Since 𝑓 is 𝜏1-𝜏(𝒱) continuous and 𝜏2-𝜏(𝒱−1) continuous, there exist
𝐺1 ∈ 𝜏1 and 𝐺2 ∈ 𝜏2 such that 𝑥 ∈ 𝐺1∩𝐺2, 𝑓(𝐺1) ⊂ 𝑉1[𝑓(𝑥)]∩𝑌𝑊 ,
and 𝑓(𝐺2) ⊂ 𝑉 −1

1 [𝑓(𝑥)] ∩ 𝑌𝑊 . Then for every (𝑦, 𝑧) ∈ 𝐺2 × 𝐺1,

(𝑓(𝑥), 𝑓(𝑦)) ∈ 𝑉 −1
1 , 𝑓(𝑦) ∈ 𝑌𝑊 , and (𝑓(𝑥), 𝑓(𝑧)) ∈ 𝑉1, 𝑓(𝑧) ∈ 𝑌𝑊 .

Thus, (𝑓(𝑦), 𝑓(𝑧)) = (𝑓(𝑦), 𝑓(𝑥)) ∘ (𝑓(𝑥), 𝑓(𝑧)) ∈ (𝑌 2
𝑊 ∩𝑉1) ∘ (𝑌 2

𝑊 ∩
𝑉1) ⊂ 𝑉 , which shows (𝑓 × 𝑓)(𝐺2 ×𝐺1) ⊂ 𝑉 . □

4. Fiberwise quasi-uniformizability of fiberwise spaces

In this section, we prove that every fiberwise space is fiber-
wise quasi-uniformizable; that is, there exists a fiberwise quasi-
uniformity 𝒰 on 𝑋 such that 𝜏(𝒰) = 𝜏𝑋 . This idea is analogous to
Pervin quasi-uniformity [2]. Further, we refer to the definition of
“quasi-uniform space over 𝐵” in [6].

Let 𝑋 be a set. For every subset 𝐴 of 𝑋, let

𝑆(𝐴) := 𝐴×𝐴 ∪ (𝑋 −𝐴)×𝑋.

Theorem 5. Let (𝑋, 𝜏𝑋) be a fiberwise space over 𝐵. Then 𝒮 =
{𝑆(𝐴)∣𝐴 ∈ 𝜏𝑋} is a fiberwise qu-subgerm for a fiberwise quasi-
uniformity on 𝑋 compatible with 𝜏𝑋 .
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Proof: For each 𝐴 ∈ 𝜏𝑋 , it is clear that Δ ⊂ 𝑆(𝐴), and we
can easily show that 𝑆(𝐴) ∘ 𝑆(𝐴) = 𝑆(𝐴). Thus, 𝒮 is a fiberwise
qu-subgerm for a fiberwise quasi-uniformity on 𝑋.

Let 𝜏(𝒰) be the topology defined by the fiberwise quasi-uniformity
𝒰 which is generated by the qu-subgerm 𝒮.

Now we shall show that 𝜏(𝒰) = 𝜏𝑋 . Let 𝑂 ∈ 𝜏𝑋 and 𝑥 ∈ 𝑂.
Then 𝑥 ∈ 𝑆(𝑂)[𝑥] = 𝑂. Thus, 𝑂 ∈ 𝜏(𝒰).

Conversely, let 𝑂 ∈ 𝜏(𝒰) and 𝑥 ∈ 𝑂. Then there exist 𝑊 ∈
𝑁(𝑝(𝑥)) and 𝑂1, ⋅ ⋅ ⋅ , 𝑂𝑛 ∈ 𝜏𝑋 such that 𝑥 ∈ ∩𝑛

𝑖=1 𝑆(𝑂𝑖)[𝑥]∩𝑋𝑊 ⊂
𝑂. In fact, if 𝑥 ∕∈ ∪𝑛

𝑖=1𝑂𝑖, then 𝑋 =
∩𝑛

𝑖=1 𝑆(𝑂𝑖)[𝑥] ⊂ 𝑈 [𝑥].
Therefore, 𝑈 [𝑥] = 𝑋 ∈ 𝜏𝑋 . If 𝑥 ∈ ∪𝑛

𝑖=1𝑂𝑖, then
∩𝑛

𝑖=1 𝑆(𝑂𝑖)[𝑥] =∩𝑛
𝑖=1{𝑂𝑖∣𝑥 ∈ 𝑂𝑖} is a 𝜏𝑋 -open set and 𝑋𝑊 is also 𝜏𝑋 -open. Thus,∩𝑛
𝑖=1 𝑆(𝑂𝑖)[𝑥] ∩𝑋𝑊 is a 𝜏 -open set. Hence, 𝑂 ∈ 𝜏𝑋 . □

We call the fiberwise quasi-uniformity constructed in this theo-
rem fiberwise Pervin quasi-uniformity.

Last, we shall note the definition of “quasi-uniform space over
𝐵” as presented by Jin Won Park and Byung Sik Lee [6]: A quasi-
uniform space 𝑋 over 𝐵 is a function 𝑝 : 𝑋 → 𝐵 in which both
𝑋 and 𝐵 are quasi-uniform spaces and 𝑝 is a quasi-uniformly con-
tinuous map. This definition is a generalization of James in [4],
where he studied 𝑝 : 𝑋 → 𝐵 in the situation that both 𝑋 and 𝐵
are uniform spaces and 𝑝 is a uniformly continuous map. On the
other hand, our definition of fiberwise quasi-uniformity in section
3 is a generalization along the lines of Y. Konami and T. Miwa in
[5], as well as James in [3].

In connection with the Pervin quasi-uniformity [2], the following
proposition was obtained.

Proposition 2.17 [2]. For every continuous map
𝑓 : (𝑋, 𝜏𝑋) → (𝐵, 𝜏𝐵), let 𝒰 and 𝒱 be the Pervin
quasi-uniformities on 𝑋 and 𝐵, respectively, then
𝑓 : (𝑋,𝒰) → (𝐵,𝒱) is quasi-uniformly continuous.

If we consider this proposition, we can say that every fiberwise
space 𝑋 over 𝐵 can be considered as “quasi-uniform space 𝑋 over
𝐵” (as in [6]), if we introduce the Pervin quasi-uniformities to 𝑋
and 𝐵.
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5. Proofs of theorems 1 and 2

In this section, we shall prove the main theorems.

Proof of Theorem 1: Let 𝒰 = {𝑈 ⊂ 𝑋2 ∣ 𝑈 is a (𝜏𝑋 × 𝜏𝑋)-nbd
of 𝐺𝑏 for any 𝑏 ∈ 𝐵}. First, we shall show that 𝒰 is a fiberwise
quasi-uniformity on 𝑋. Since 𝒰 is a nbd filter of 𝐺, 𝒰 is a filter on
𝑋2. It is easy to see that Definition 3.1(FU1) (see Definition 2.1)
is satisfied. To show Definition 3.1(FU3) (see Definition 2.1), we
assume that there exist 𝑏 ∈ 𝐵 and an open entourage 𝑈 ∈ 𝒰 such
that (𝑋2

𝑊 ∩𝑉 )∘(𝑋2
𝑊 ∩𝑉 ) ∕⊂ 𝑈 for each 𝑊 ∈ 𝑁(𝑏) and each 𝑉 ∈ 𝒰 .

For each 𝑉 ∈ 𝒰 and 𝑊 ∈ 𝑁(𝑏) let
𝑉 (𝑊 ) = {((𝑥, 𝑦), 𝑧) ∣ (𝑥, 𝑧), (𝑧, 𝑦) ∈ 𝑋2

𝑊 ∩ 𝑉, (𝑥, 𝑦) ∈ 𝑈 𝑐}.
It is easy to see that ℬ = {𝑉 (𝑊 ) ∣ 𝑉 ∈ 𝒰 , 𝑊 ∈ 𝑁(𝑏)} is a
filter base on 𝑈 𝑐 × 𝑋. Let ℱ be the filter on 𝑈 𝑐 × 𝑋 generated
by ℬ. Since 𝑋 is fiberwise compact and 𝑈 𝑐 is closed in 𝑋 × 𝑋,
(𝑈 𝑐 × 𝑋) is fiberwise compact over (𝐵 × 𝐵) × 𝐵. Further, since
we can prove easily that ℱ is a ((𝑏, 𝑏), 𝑏)-filter on 𝑈 𝑐 × 𝑋, from
[3, Proposition 4.3], there exists an adherence point ((𝑟, 𝑠), 𝑡) of ℱ
such that ((𝑟, 𝑠), 𝑡) ∈ (𝑈 𝑐 × 𝑋)((𝑏,𝑏),𝑏). We assert that (𝑟, 𝑡) ∈ 𝐺𝑏.
Suppose that (𝑟, 𝑡) ∕∈ 𝐺𝑏. Since𝑋 is fiberwise regular over 𝐵, 𝑋×𝑋
is fiberwise regular over 𝐵 × 𝐵. Further, since 𝐺𝑏 is closed in 𝑋2

𝑏

(hence in 𝑋2), there exists an open nbd 𝑊 ′ of (𝑏, 𝑏), a nbd 𝐴 of
(𝑟, 𝑡), and a nbd 𝐴′ of 𝐺𝑏 such that 𝐴 ∩ 𝐴′ = ∅. From regularity
of 𝐵, there exists 𝑊 ∈ 𝑁(𝑏) such that 𝑊 × 𝑊 ⊂ 𝑊 ′. Let 𝐷 =
{((𝑥, 𝑦), 𝑧) ∈ 𝑈 𝑐 × 𝑋 ∣ (𝑥, 𝑧) ∈ 𝐴}. It is easy to see that 𝐷 is a
nbd of ((𝑟, 𝑠), 𝑡). Let 𝑉 = 𝐴′ ∪ (𝑋𝐵−𝑊 )2. Then it is easily verified
that 𝑉 is a nbd of 𝐺𝑏, 𝑉 ∈ 𝒰 , and 𝑉 (𝑊 ) ∈ ℬ. Since 𝐷 is a nbd

of ((𝑟, 𝑠), 𝑡) and ((𝑟, 𝑠), 𝑡) ∈ 𝑉 (𝑊 ), we have 𝐷 ∩ 𝑉 (𝑊 ) ∕= ∅, which
contradicts the constructions of 𝐷 and 𝑉 (𝑊 ). Thus, (𝑟, 𝑡) ∈ 𝐺𝑏.
By this same argument, we have (𝑡, 𝑠) ∈ 𝐺𝑏. Since 𝐺𝑏 is transitive,
(𝑟, 𝑠) ∈ 𝐺𝑏 ⊂ 𝑈 . This contradicts to (𝑟, 𝑠) ∈ 𝑈 𝑐. Thus, 𝒰 satisfies
Definition 2.1(FU3) and 𝒰 is a fiberwise quasi-uniformity on 𝑋.

Now we shall show that

(i) (∩𝒰) ∩𝑋2
𝑏 = 𝐺𝑏,

(ii) 𝜏(𝒰∗) = 𝜏𝑋 , and
(iii) the uniqueness of 𝒰 satisfying these conditions.

Proof of (i): (i) is trivial.

Proof of (ii): It is clear that 𝜏(𝒰∗) ⊂ 𝜏𝑋 .
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By Proposition 3.9, we have that 𝜏(𝒰∗) is fiberwise Hausdorff.
Now let 𝑖 : (𝑋, 𝜏𝑋) → (𝑋, 𝜏(𝒰∗)) be the identity map, then Corol-
lary 3.20 and the comment after that in [3] show 𝑖 is a fiberwise
topological equivalence. That is 𝜏(𝒰∗) = 𝜏𝑋 .

Proof of (iii): Let 𝒱 be another fiberwise quasi-uniformity on 𝑋
such that (∩𝒱) ∩𝑋2

𝑏 = 𝐺𝑏 and 𝜏(𝒱∗) = 𝜏𝑋 .
Firstly, we show that 𝒱 consists of all 𝜏𝑋 × 𝜏𝑋 -nbds of 𝐺𝑏 for all

𝑏 ∈ 𝐵. Since (∩𝒱) ∩ 𝑋2
𝑏 = 𝐺𝑏, it is clear that 𝐺𝑏 ⊂ 𝑉 for every

𝑉 ∈ 𝒱 and for every 𝑏 ∈ 𝐵. Let (𝑥, 𝑦) ∈ 𝐺𝑏. For every 𝑉 ∈ 𝒱,
there exist 𝑉 ′ ∈ 𝒱 and 𝑊 ∈ 𝑁(𝑏) such that (𝑉 ′ ∩ 𝑋2

𝑊 ) ∘ (𝑉 ′ ∩
𝑋2

𝑊 ) ∘ (𝑉 ′ ∩ 𝑋2
𝑊 ) ⊂ 𝑉 . Then a 𝜏𝑋 × 𝜏𝑋 -nbd ((𝑉 ′ ∩ 𝑉 ′−1)[𝑥] ∩

𝑋𝑊 ) × ((𝑉 ′ ∩ 𝑉 ′−1)[𝑦] ∩ 𝑋𝑊 ) of (𝑥, 𝑦) is contained in 𝑉 . Since
for (𝑝, 𝑞) ∈ ((𝑉 ′ ∩ 𝑉 ′−1)[𝑥] ∩𝑋𝑊 )× ((𝑉 ′ ∩ 𝑉 ′−1)[𝑦] ∩𝑋𝑊 ), noting
𝑝, 𝑞, 𝑥, 𝑦 ∈ 𝑋𝑊 , we have (𝑝, 𝑥), (𝑥, 𝑦), (𝑦, 𝑞) ∈ 𝑉 ′ ∩𝑋2

𝑊 . Therefore,
(𝑝, 𝑞) ∈ (𝑉 ′ ∩𝑋2

𝑊 )3 ⊂ 𝑉 . This shows that 𝑉 is a 𝜏𝑋 × 𝜏𝑋 -nbd of
𝐺𝑏 for every 𝑏 ∈ 𝐵, i.e., 𝒱 ⊂ 𝒰 .

Next, suppose that 𝒱 ∕= 𝒰 . This means there exists 𝑈 ∈ 𝒰 such
that 𝑈 ∕∈ 𝒱. Note that 𝑉𝛼 − 𝑈 ∕= ∅ for all 𝑉𝛼 ∈ 𝒱.

For every 𝑏 ∈ 𝐵, let

ℱ𝑏 := {(𝑉𝛼 − 𝑈) ∩𝑋2
𝑊 ∣𝑉𝛼 ∈ 𝒱,𝑊 ∈ 𝑁(𝑏)}.

Since [(𝑉𝛼−𝑈)∩𝑋2
𝑊1

]∩ [(𝑉𝛽 −𝑈)∩𝑋2
𝑊2

] ∕= ∅ for every 𝑉𝛼, 𝑉𝛽 ∈ 𝒱
and 𝑊1,𝑊2 ∈ 𝑁(𝑏), if ℱ𝑏 is not a filter, then ∅ ∈ ℱ𝑏. Then we
have that 𝑉𝛼𝑏

∩ 𝑋2
𝑊𝑏

⊂ 𝑈 for some 𝑉𝛼𝑏
∈ 𝒱 and 𝑊𝑏 ∈ 𝑁(𝑏). By

Definition 2.3(FU4), we have 𝑈 ∈ 𝒱, which is a contradiction.
Therefore, ℱ𝑏 is a filter for some 𝑏 ∈ 𝐵. It is clear that ℱ𝑏 is a

(𝑏, 𝑏)-filter on 𝑋 ×𝑋. Since 𝑋 ×𝑋 is fiberwise compact, ℱ𝑏 has a
𝜏𝑋 × 𝜏𝑋 -cluster point (𝑥, 𝑦) that does not belong to 𝐺𝑏.

On the other hand, with a method similar to the proof of Propo-
sition 13.5 in [3], we have that for each 𝑉 ∈ 𝒱, there exist 𝑉 ′ ∈ 𝒱
and 𝑊 ∈ 𝑁(𝑏) such that Cl 𝑉 ′ ∩𝑋2

𝑊 ⊂ 𝑉 , where Cl is the closure
operator of the topology 𝜏𝑋 × 𝜏𝑋 . Then we have

𝐺𝑏 = (
∩𝒱) ∩𝑋2

𝑏 = (
∩{Cl 𝑉 ∩𝑋2

𝑊 ∣𝑊 ∈ 𝑁(𝑏), 𝑉 ∈ 𝒱}) ∩𝑋2
𝑏 .

This contradicts the fact that (𝑥, 𝑦) does not belong to 𝐺𝑏. Thus,
𝒱 = 𝒰 .

The proof of Theorem 1 is complete. □

Next, we shall prove the second main theorem.
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Proof of Theorem 2: The proof consists of the following four
steps. Let 𝐺𝑏 = (

∩𝒰) ∩𝑋2
𝑏 for each 𝑏 ∈ 𝐵.

(1) For each 𝑏 ∈ 𝐵, 𝐺𝑏 is a partial order on 𝑋𝑏, and for each
𝑈 ∈ 𝒰 , 𝑈 is a 𝜏(𝒰∗)2-nbd of 𝐺𝑏 for each 𝑏 ∈ 𝐵.

Proof of (1): The first part follows from Proposition 3.9. The sec-
ond part follows from the definition of the fiberwise quasi-uniform
topology (Definition 3.8).

(2) For each 𝑏 ∈ 𝐵, 𝐺𝑏 is closed in (𝑋2, 𝜏(𝒰∗)2).
Note that by the facts (1) and (2) and the construction of 𝒰 in

the proof of Theorem 1, 𝒰 in this theorem satisfies the conditions
in Theorem 1.

Proof of (2): To show that (
∩𝒰) ∩ 𝑋2

𝑏 is closed in (𝑋2, 𝜏(𝒰∗)2),
for every (𝑥, 𝑦) ∕∈ (

∩𝒰) ∩𝑋2
𝑏 (so 𝑥 ∕= 𝑦), we shall show that there

exist 𝑊 ∈ 𝑁(𝑏) and 𝐷 ∈ 𝒰 such that

(*) ((𝐷 ∩𝐷−1)[𝑥]× (𝐷 ∩𝐷−1)[𝑦] ∩𝑋2
𝑊 )

∩
((
∩𝒰) ∩𝑋2

𝑏 ) = ∅.
Assume that (*) does not hold. Since for every 𝐷 ∈ 𝒰 and 𝑊 ∈
𝑁(𝑏), (*) does not hold, for 𝐷 ∈ 𝒰 and 𝑊 ∈ 𝑁(𝑏), there exist
𝐸 ∈ 𝒰 and 𝑊1 ∈ 𝑁(𝑏) such that 𝑊1 ⊂ 𝑊 , (𝑋2

𝑊1
∩𝐸)∘ (𝑋2

𝑊1
∩𝐸)∘

(𝑋2
𝑊1

∩ 𝐸) ⊂ 𝐷. Therefore, there exists (𝑠, 𝑡) ∈ ((𝐸 ∩ 𝐸−1)[𝑥] ×
(𝐸 ∩ 𝐸−1)[𝑦] ∩ 𝑋2

𝑊1
) ∩ ((

∩𝒰) ∩ 𝑋2
𝑏 ). This shows (𝑥, 𝑦) = (𝑥, 𝑠) ∘

(𝑠, 𝑡) ∘ (𝑡, 𝑦) ∈ (𝑋2
𝑊1

∩𝐸) ∘ (𝑋2
𝑊1

∩𝐸) ∘ (𝑋2
𝑊1

∩𝐸) ⊂ 𝐷. Therefore,

for any 𝐷 ∈ 𝒰 , (𝑥, 𝑦) ∈ 𝐷. Thus, (𝑥, 𝑦) ∈ (
∩𝒰) ∩𝑋2

𝑏 , which is a
contradiction.

(3) For each 𝑉 ∈ 𝒱, (𝑓 × 𝑓)−1(𝑉 ) is a 𝜏(𝒰−1)× 𝜏(𝒰)-nbd of Δ𝑋

in 𝑋2.

Proof of (3): This follows from Proposition 3.11.

(4) For each 𝑉 ∈ 𝒱 and each 𝑏 ∈ 𝐵, (𝑓 × 𝑓)−1(𝑉 ) is a 𝜏(𝒰−1)×
𝜏(𝒰)-nbd of 𝐺𝑏 in 𝑋2.

Proof of (4): For this, we will prove the next two facts:
(i) (

∩𝒰) ∩𝑋2
𝑏 ⊂ (𝑓 × 𝑓)−1(𝑉 );

(ii) (𝑓 × 𝑓)−1(𝑉 ) is a 𝜏(𝒰−1)× 𝜏(𝒰)-nbd of (
∩𝒰) ∩𝑋2

𝑏 .

Proof of (i): Assume that (i) does not hold. Then there exists
(𝑥, 𝑦) ∈ (

∩𝒰) ∩ 𝑋2
𝑏 − (𝑓 × 𝑓)−1(𝑉 ). Since 𝑉 [𝑓(𝑥)] is a 𝜏(𝒱)-nbd

of 𝑓(𝑥), from the 𝜏(𝒰)-𝜏(𝒱)-continuity, we have that there exist
𝑈 ∈ 𝒰 and 𝑊 ∈ 𝑁(𝑏) such that 𝑓(𝑈 [𝑥] ∩ 𝑋𝑊 ) ⊂ 𝑉 [𝑓(𝑥)]. This
means that 𝑈 [𝑥] ∩𝑋𝑊 ⊂ ((𝑓 × 𝑓)−1(𝑉 ))[𝑥]. But by (𝑥, 𝑦) ∈ ∩𝒰 ,
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we have (𝑥, 𝑦) ∈ 𝑈 . Therefore, (𝑥, 𝑦) ∈ (𝑓 × 𝑓)−1(𝑉 ), which is a
contradiction.

Proof of (ii): Let (𝑥, 𝑦) ∈ (
∩𝒰) ∩ 𝑋2

𝑏 . By Proposition 3.11, (𝑓 ×
𝑓)−1(𝑉 ) is a nbd of (𝑥, 𝑥) and (𝑦, 𝑦). Then there exist 𝑈 ∈ 𝒰 and
𝑊 ∈ 𝑁(𝑏) such that (𝑈−1[𝑥]∩𝑋𝑊 )× (𝑈 [𝑥]∩𝑋𝑊 ) ⊂ (𝑓 ×𝑓)−1(𝑉 ),
(𝑈−1[𝑦]∩𝑋𝑊 )×(𝑈 [𝑦]∩𝑋𝑊 ) ⊂ (𝑓×𝑓)−1(𝑉 ). For this 𝑈 , there exist
𝑈1 ∈ 𝒰 and 𝑊1 ∈ 𝑁(𝑏) such that 𝑊1 ⊂ 𝑊 , (𝑋2

𝑊1
∩ 𝑈1) ∘ (𝑋2

𝑊1
∩

𝑈1) ∘ (𝑋2
𝑊1

∩ 𝑈1) ⊂ 𝑈 . Then (𝑈−1
1 [𝑥] ∩ 𝑋𝑊1) × (𝑈1[𝑦] ∩ 𝑋𝑊1) ⊂

(𝑓 × 𝑓)−1(𝑉 ).

Thus, from the fact 𝜏(𝒰) ∪ 𝜏(𝒰−1) ⊂ 𝜏(𝒰∗), we have (𝑓 ×
𝑓)−1(𝑉 ) ∈ 𝒰 , so 𝑓 is fiberwise quasi-uniformly continuous.

The proof of Theorem 2 is complete. □
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