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FIBERWISE COMPACTNESS AND
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MASAKI IWAMOTO, YOSHIFUMI KONAMI, AND TAKUO MIWA

ABSTRACT. In this paper, first, we study the relationship be-
tween fiberwise compactness and uniformities, and correct the
result of I. M. James. Next, we introduce a new notion of
fiberwise quasi-uniform spaces over a topological space B, and
study the basic properties of fiberwise quasi-uniform spaces
and fiberwise quasi-uniformizability of fiberwise spaces. Last,
we prove two main theorems of fiberwise quasi-uniform spaces
which are extended versions of theorems in both fiberwise
compact spaces (as fiberwise uniform spaces) and quasi-uniform
spaces.

1. INTRODUCTION

Our motivation of this study is the common extension of fiberwise
compact spaces (as fiberwise uniform spaces [3]) and quasi-uniform
spaces [2].

Throughout this paper, we use the following notation and ter-
minology. Let B be a fixed topological space (as the base space)
with a topology 7. We will use the abbreviation nbd(s) for neigh-
borhood(s). For b € B, N(b) is the family of all open nbds of b.

First, in section 2, we consider the relationship between fiberwise
compactness and fiberwise uniformities.
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I. M. James obtained the following proposition in [3, Chapter 3|.

Proposition 17.1. Let X be a fiberwise compact
and fiberwise regular space over B, with B regular.
Then there exists a unique fiberwise uniform struc-
ture 2 on X, compatible with the fiberwise topol-
ogy, in which the members of 2 are the nbds of the
diagonal.

This proposition is false in a strict sense of the definition of “fiber-
wise uniform structure.” In this section, we remedy this proposition
in the form of Theorem 3.

In section 3, we introduce a new notion of fiberwise quasi-uniform
spaces which is a common extension of both fiberwise uniform
spaces [5] and quasi-uniform spaces [2]. We investigate the ba-
sic properties of fiberwise quasi-uniform spaces. In section 4, we
investigate the fiberwise quasi-uniformizability of fiberwise spaces.

Last, in section 5, we prove the main theorems. We begin here
with a little background of these theorems.

Theorem 1 is a common extension of Theorem 3 and the following
theorem.

Theorem 1.20 [2]. Let (X, 7x) be a compact Haus-
dorff space and let G be a closed partial order on
X. There exists exactly one quasi-uniformity & on

X such that U = G and 7(U*) = 7x.

Theorem 1. Let (X,7x) be a fiberwise space X with a topology
Tx, and B a reqular space. Let X be a fiberwise compact fiberwise
Hausdorff space over B and G be a relation on X such that G =
User Gb, where Gy = G N Xg for each b € B, and Gy is a closed
partial order on Xp. Then there is exactly one fiberwise quasi-
uniformity U on X such that 7(U*) = 7x and (NU) N X} = Gy

Theorem 2 is a common extension of Theorem 4 (see page 87)
(cf. [3, Corollary 17.2]) and the following theorem.
Theorem 1.21 [2]. Let (X,U) and (Y, V) be quasi-
uniform spaces and suppose that (X, 7(U*)) is a
compact Hausdorff space. If f : X — Y is 7(U)-
7(V) continuous and 7(U~1)-7(V~1) continuous, then
f:(X,U) — (Y,V) is quasi-uniformly continuous.
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Theorem 2. Let (X,U) and (Y, V) be fiberwise quasi-uniform spaces
over B, with B regular, and (X, 7(U*)) be the fiberwise compact and

fiberwise Hausdorff space over B. If for projections p: X — B and

q:Y — B, a fiberwise function f : X =Y (i.e., p=gqof)isT(U)-

7(V) continuous and 7(U~1)-1(V™L) continuous, then f: (X,U) —

(Y, V) is fiberwise quasi-uniformly continuous.

For aset X, afunctionp: X — B,W C Bandbe B,p ' (W) =
Xw, p7L(b) = Xp, X x X = XZ and X x X = X2. For D, E C
X2, Do E = {(x,2)|3y € X such that (z,y) € D, (y,2) € E},
D~ = {(y,2)|(z,y) € D}, and D[z] = {y|(z,y) € D}. For a
quasi-uniformity ¢« on X, let U~ = {U7|U € U}, and U* be the
fiberwise quasi-uniformity generated by {U N U~|U € U}. For a
(fiberwise) quasi-uniform space (X,U), T(U), T(U™'), and T(U*)
are (fiberwise) topologies induced by U, U=, and U*, respectively.

For a map p : X — B, X is said to be a fiberwise Ty-space
(fiberwise Hausdorff space, respectively) if for any different points
xz,y € X with p(z) = p(y), at least one of the points z,y has a
nbd in X not containing the other point (the points z and y have
disjoint nbds in X, respectively). Further, a fiberwise Tp-space X
is said to be fiberwise regular if for any point x € X and a closed
subset F' of X such that x ¢ F there exists a nbd W € N(p(x))
such that z and F N Xy have disjoint nbds in Xy .

In this paper, we assume that all maps are continuous. For other
terminology and definitions in the topological category TOP and
the fiberwise category T'OPp, one can consult [1] and [3], respec-
tively, and for quasi-uniform spaces, see [2].

2. FIBERWISE COMPACTNESS AND UNIFORMITIES

In this section, we discuss the difference of fiberwise uniformities
in [3] and [5] and show that the assertion of Proposition 17.1 in [3]
is false in the strict sense of its definition and relieve its difficulty
by using the notion of “fiberwise entourage uniformity” in [5].

We begin with the definition of fiberwise uniform structure.

Definition 2.1 ([3, Section 12]). Let X be a fiberwise set over B.
By a fiberwise uniform structure on X, we mean a filter  on X?
satisfying three conditions, as follows.

(FU1) Each D € Q contains the diagonal A of X.
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(FU2) For any D € Q and b € B, there exist W € N(b) and E € Q
such that X3, N E C D1

(FU3) For any D € Q and b € B, there exist W € N(b) and E € Q
such that (X%, NE)o (X% NE)CD.

Now we can construct the following example.

Example 2.2. Let X = B be the set of all positive real numbers
with the usual topology, and let p : X — B be the identity map.
Then X is a fiberwise compact and fiberwise regular space over B.
Let B; and Bs be two families of X? constructed as follows:

B1 ={U|U. = {(z,y)|lx —e <y <z +e€}, €¢>0},

By = {Uco|Uecq = {(z,y)|z —e <y < Va? +a}, € >0,a >0}

Let ©; and €y be the filters on X? generated by B; and Bo,

respectively, and let © be the filter on X? which contains all nbds
of the diagonal. Then it is easy to see that 1, (o, and 2 are
different from each other.

On the other hand, in [5], we introduced a notion of slightly
stronger fiberwise uniformity (called fiberwise entourage uniformity)
in order to discuss the relationship between the fiberwise uniformi-
ties by using entourages and coverings. This notion of fiberwise
entourage uniformity seems to relieve the difficulty in the above.

Definition 2.3 ([5]). Let X be a fiberwise set over B. By a fiber-
wise entourage uniformity on X, we mean a filter Q on X? satisfy-
ing four conditions: (FU1), (FU2), and (FU3), above, and

(FU4) If D C X? satisfies that for each b € B, there exist W €
N(b) and E € Q such that X3, N E C D, then D € (.

We call X with Q a fiberwise entourage uniform space, denoted by
(X, Q).

It is easily verified that, in Example 2.2, ()1 and 9 are fiberwise
uniform structures but not fiberwise entourage uniformities on X,
and € is a fiberwise entourage uniformity on X.

To remedy Proposition 17.1 in [3], we shall introduce some no-
tions.

For a fiberwise entourage uniformity 2 on X, a subfamily B of
) is said to be a fiberwise uniform base (briefly, fiberwise u-base) if
B is a filter-base and satisfies the conditions (FU1), (FU2), (FU3),
in Definition 2.1, and the following:
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For each D € Q and b € B, there exist W € N(b)
and E € B such that X2, NE C D.

A subfamily S of Q is said to be a fiberwise uniform subbase
(briefly, fiberwise u-subbase) if S is a filter-base and the family of
all finite intersections of members of S is a fiberwise u-base of €2.

A family G of subsets of X? is said to be a fiberwise uniform
germ (briefly, fiberwise u-germ) if G is a filter-base and satisfies
the conditions (FU1), (FU2), and (FU3). A family S of subsets of
X2 is said to be a fiberwise uniform subgerm (briefly, fiberwise u-
subgerm) if S is a filter-base and the family of all finite intersections
of members of § is a fiberwise u-germ.

It is clear that, for a fiberwise u-germ G, the family

Q= {D|Vb € B,3E € G such that X3, N E C D}
is a fiberwise entourage uniformity on X. Then it is clear that G
is a fiberwise u-base of 2. (€ is said to be the fiberwise entourage
uniformity generated by G.)

In Example 2.2, ; and €9 are fiberwise u-germs and the fiber-
wise entourage uniformities generated by €3 and 29 are equal to
the fiberwise entourage uniformity Q.

We can remedy Proposition 17.1 and Corollary 17.2 in [3] in the
following theorems. The fiberwise uniform topology is the fiberwise
topology induced by the (entourage) uniformity (cf. [3, Section 13]
and [5, Section 3]). Proofs of the theorems are omitted because
these are almost all the same as those in [3].

Theorem 3. Let X be a fiberwise compact and fiberwise reqular
space over B, with B reqular. Then there exists a unique fiber-
wise entourage uniformity 0 on X, compatible with the fiberwise
topology, in which the members of € are the nbds of the diagonal.

Theorem 4. Let f: X — Y be a fiberwise function, where X and
Y are fiberwise entourage uniform spaces over B, with B regular.
Suppose that X is fiberwise compact over B in the fiberwise uniform
topology. If f is continuous in the fiberwise uniform topology, then
f is fiberwise uniformly continuous.

3. FIBERWISE QUASI-UNIFORM SPACES AND BASIC PROPERTIES

In this section, we define a new notion of fiberwise quasi-uniform
spaces, some related notions, and study some basic properties. We
begin with the following definition.
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Definition 3.1. Let X be a fiberwise set over B. By a fiberwise
quasi-uniformity on X, we mean a filter {/ on X? satisfying condi-
tions (FU1), (FU3) in Definition 2.1 and (FU4) in Definition 2.3.

By a fiberwise quasi-uniform space (X,U), we mean a fiberwise
set X with a fiberwise quasi-uniformity .

Fiberwise quasi-uniform spaces over a point can be regarded as
quasi-uniform spaces in the ordinary sense. If I/ is a fiberwise quasi-
uniformity, then 4! is also a fiberwise quasi-uniformity and is
called the conjugate of U.

Further, note that our definition of fiberwise quasi-uniformity
is an extended version of a fiberwise entourage uniformity (Defini-
tion 2.3) but is not an extended one of fiberwise uniform structure
(Definition 2.1).

It is easily verified that for a fiberwise quasi-uniformity & on X
the filter U* is a fiberwise entourage uniformity on X.

For a fiberwise quasi-uniformity ¢ on X, a subfamily B of U is
said to be a fiberwise quasi-uniform base (briefly, fiberwise qu-base)
if B is a filter-base and satisfies the conditions (FU1), (FU3), and
the following:

For each U € U and b € B, there exist W € N(b)
and V € B such that X2, NV C U.

A subfamily S of U is said to be a fiberwise quasi-uniform subbase
(briefly, fiberwise qu-subbase) if S is a filter-base and the family of
all finite intersections of members of § is a fiberwise qu-base of U.

A family G of subsets of X? is said to be a fiberwise quasi-uniform
germ (briefly, fiberwise qu-germ) if G is a filter-base and satisfies
the conditions (FU1) and (FU3). A family S of subsets of X? is
said to be a fiberwise quasi-uniform subgerm (briefly, fiberwise qu-
subgerm) if S is a filter-base and the family of all finite intersections
of members of S is a fiberwise qu-germ.

It is clear that, for a fiberwise qu-germ G, the family

U={Ube B,3W € N(b)3V € G such that VN X% C U}
is a fiberwise quasi-uniformity on X. Then it is clear that G is
a fiberwise qu-base of U. (U is said to be the fiberwise quasi-
uniformity generated by G.)

If U7 and Uy are fiberwise quasi-uniformities on a fiberwise set X
over B, U is finer than Us (or Us coarser than Uy) if each member
of Uy contains a member of U;.
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If U is a fiberwise quasi-uniformity on X, then the family {U N
U~!' | U € U} is a fiberwise qu-germ and generates the fiberwise
entourage uniformity U*, which is the coarsest fiberwise entourage
uniformity containing U.

Let {U4; | i € A} be a family of fiberwise quasi-uniformities on
a fiberwise set X over B. The supremum of {U; | i € A} is the
coarsest fiberwise quasi-uniformity on X that is finer than every U;.
The infimum of {U; | i € A} is the finest fiberwise quasi-uniformity
on X that is coarser than every U;. We denote the supremum and
the infimum of {U/; | i € A} by sup{l/;} and inf{l4;}, respectively.

The following proposition holds.

Proposition 3.2. Let {U; | i € A} be a family of fiberwise quasi-
uniformities on a fiberwise set X over B. The supremum and the
infimum always exist.

Proof: Let B = | Jty and B = {Uyn---NU, | Uj € B,j €
€A
{1,--- ,n},n € N}. Then it is easy to see that B’ is a fiberwise
qu-germ of X, and that the fiberwise quasi-uniformity generated
by B’ is sup{U;}.

For the existence of the infimum of {U; | i € A}, let U =
ﬂ U;. Then it is easy to see that U is the required fiberwise quasi-
€A
uniformity. O
Definition 3.3. Let (X,U) and (Y, V) be fiberwise (quasi-, respec-
tively) uniform spaces. A fiberwise function f : X — Y is fiberwise
(quasi-, respectively) uniformly continuous if for each V' € V and
each point b € B, there exist W € N(b) and U € U such that
UNXg C(fxf)~YV).

For fiberwise quasi-uniform spaces (X,U) and (Y, V), let By and
By be fiberwise qu-bases for & and V), respectively. Then it is easy
to see that a fiberwise function f : X — Y is fiberwise quasi-
uniformly continuous if and only if, for V € By and b € B, there
exist U € U and W € N(b) such that UN X2, C (f x f)~ (V).

Let X, Y, and Z be fiberwise quasi-uniform spaces over B and
let f: X — Y and g : Y — Z be fiberwise functions. Since
gf xgf = (g xg)o(f x f), fiberwise quasi-uniformly continuities
of f and g imply that gf is fiberwise quasi-uniformly continuous.
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Let X and Y be fiberwise quasi-uniform spaces over a space B
and let f : X — Y be a fiberwise bijection. Then f is a fiber-
wise quasi-unimorphism if f and f~' are fiberwise quasi-uniformly
continuous.

The following propositions can be easily proved, so we omit the
proofs.

Proposition 3.4. Let (X,U) and (Y, V) be fiberwise quasi-uniform
spaces over a space B. If f : (X,U) — (Y,V) is fiberwise quasi-
uniformly continuous, then f : (X,U™') — (Y,V71) is fiberwise
quasi-uniformly continuous and f : (X,U*) — (Y, V*) is fiberwise
uniformly continuous.

Proposition 3.5. Let X be a fiberwise set over B. For each
i € A, let (Y;,V;) be a fiberwise quasi-uniform space over B and
let fi - X = Y; be a fiberwise function. Then the family {(f; x
)7YV) |V € Vi € A} forms a fiberwise qu-subgerm, which
generates the coarsest fiberwise quasi-uniformity U on X such that
fi o (X,U) — (Y3,V;) is fiberwise quasi-uniformly continuous for
each i € A.

Proposition 3.6. Let X and Y be fiberwise sets over B and let
{U; | i € A} and {V; | i € A} be families of fiberwise quasi-
uniformities on X and Y, respectively. Let U = sup{l;} and
V =sup{V;}. If for each i € A, f: (X,U;) — (Y, V) is fiberwise
quasi-uniformly continuous, then f : (X,U) — (Y,V) is fiberwise
quasi-uniformly continuous.

Let (X,U) be a fiberwise quasi-uniform space over B and let
E C X. The fiberwise quasi-uniformity {U N E? | U € U} on E is
called the fiberwise quasi-uniformity induced by U and denoted by
UlExE.

Let (X,U) and (Y,V) be fiberwise quasi-uniform spaces over B,
let f: X — Y be a fiberwise function, and let £ C X. If f :
(X, U) — (Y, V) is fiberwise quasi-uniformly continuous, then f|g :
(E,U|gxp) — (Y,V) is fiberwise quasi-uniformly continuous. Let
(X,U) be a fiberwise quasi-uniform space over B. If F C E C X,
then U|pxr = U|pxE)|FxF-

Let {(X;,U;) | i € A} be a family of fiberwise quasi-uniform
spaces over B and let X = [[5X;. The product fiberwise quasi-
uniformity is the coarsest fiberwise quasi-uniformity on X for which
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all the projections m; : X — X, are fiberwise quasi-uniformly con-
tinuous. The family of all sets of the form (m; x 7;) =1 (U;), for each
U, eU;, i € A, is a fiberwise qu-subgerm for the product fiberwise
quasi-uniformity of {U; | i € A}.

The following is obvious.

Proposition 3.7. Let (X,U) and (Y3, V;) be fiberwise quasi-uniform
spaces over B for each i € A and V the product fiberwise quasi-
uniformity of {(Yi,Vi) | i € A}. Then a fiberwise function f :
(X, U) = (15 Yi, V) is fiberwise quasi-uniformly continuous if and
only if mif : (X,U) — (Y3,V;) is fiberwise quasi-uniformly continu-
ous for each i € A.

For a fiberwise uniform space (fiberwise entourage uniform space,
respectively) (X,U) over B, the fiberwise uniform topology (fiber-
wise topology, respectively) induced by U was discussed in [3, Sec-
tion 13] ([5, Section 3], respectively). For a fiberwise quasi-uniform
space (X,U), the fiberwise quasi-uniform topology 7 (i) is defined
below.

Definition 3.8. Let (X,U) be a fiberwise quasi-uniform space over
B. We denote the topology generated by the nbd system { N (z)|z €
X} where N(z) = {U[z] N Xw|U €e U,W € N(p(x))} as 7(U) and

we call it the fiberwise quasi-uniform topology.

In fact, we can prove that {N(z)|r € X} satisfies the axiom of
nbd system. The only condition which may not be entirely obvious
is the coherence condition. To verify this, for each Ulz] N Xy €
N(z), where z € X, W € N(p(x)), and U € U, there exist V € U
and W’ € N(p(z)) such that (X2, NV)o (X3, NV) C U. Let
O =WnW and V[z]NXo € N(z). For each y € V[z] N Xop, it is
easy to see that V[y] N Xo C Ulx]. Therefore, Ulz] N Xy € N (y),
which completes the proof.

We shall show some propositions which are used in section 5.

Proposition 3.9. Let (X,U) be a fiberwise quasi-uniform space
over B.
(1) (X,7(U)) is a fiberwise Ty-space if and only if (U) N X}
s a partial order on Xy for each b € B.
(2) (X,7(U)) is a fiberwise Ty-space if and only if (X, 7(U*)) is
a fiberwise Hausdorff space.
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Thus, (NU) N X} is a partial order on Xy, for each b € B if and
only if (X, 7(U*)) is a fiberwise Hausdorff space.

Proof: (1) (=): For each b € B, we show that (NU) N X7 is
a partial order on Xj. First, it is clear that (z,z) € (NU) N X7
for every x € Xj. Next, let (z,y), (y,2) € (NU) N XZ. Then for
any U € U, there exist W € N(b) and V € U such that (X3 N
V)o (X3 NV) C U; it is easy to show (z,2) € U, which shows
(z,z) € (NU) N XZ. Finally, for each z,y € Xy(z # y), since
(X,7(U)) is a fiberwise Tp-space, there exists U € U such that
x ¢ Uly] or y € Ulx]. Therefore, x € Uly] N Xp or y € Ulx] N Xy,
and (z,y) € (NU) N X or (y,z) & (NU) N XZ. Thus, (NU) N X7
is a partial order on Xj.

(«): For each z,y € X, (z # y) where b € B, since (NU) N X7
is a partial order on Xy, (z,y) € (NU)NXZ or (y,z) & (NU)NXE.
There exists U € U such that € Uly| or y ¢ Ulx]. Therefore,
(X,7(U)) is a fiberwise Tp-space.

(2) (=): For each b € B and z,2’ € X}, (v # 2’), there exists
a 7(U)-nbd O of x such that 2’ ¢ O. So, there exists U € U
such that Ul[z] € O. There exist V € U and W € N(b) such
that (V N X3)o(VNXE)CU. Then (VNV~INXE)2'] and
(VAV~INX3E,)[z] € 7(U*), and it is easy to see (VNV INXE,)[2']N
(VNV=tnX3)[z] = 0. Thus, (X, 7(U*)) is a fiberwise Hausdorff
space.

(«<): For each b € B and z,2’ € X, (v # 2'), there exist a
7(U*)-nbd O of x and a 7(U*)-nbd O’ of 2’ such that O N O" = 0.
So, there exist U € U* and W € N(b) such that Ulz] N Xy C O.
There exists V € U such that VN V=L C U. Since 2’ ¢ Ulz] N X,
2’ ¢ (VNVYHz] N Xw. Therefore, (z,2') ¢ VN XE or (z,2') ¢
V=N X2, Thus, 2/ € V]z] N Xw or & V[2/] N Xy O

Proposition 3.10. Let (X,U) and (Y, V) be fiberwise quasi-uniform
spaces over B. If a fiberwise function f : (X,U) — (Y,V) is fiber-
wise quasi-uniformly continuous, then f is T(U)-T7(V) continuous
and T(U1)-T1(V™Y) continuous and T(U*)-T(V*) continuous.
Proof: To prove 7(U)-7(V) continuity, let ¢ : ¥ — B be the
projection. For each O € 7(V) and = € f~1(0), there exists V €

V and a nbd W of ¢(f(x)) such that V[f(z)] N Y C O. Since
f (X, U) — (Y,V) is fiberwise quasi-uniformly continuous, there
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exists U € Y and a nbd W’ of ¢(f(z)) such that X%, NU C (f x
f)~Y(V). Therefore,

FVIf@)nYw) © f7H0)
(fx NTHV)EINnXw © fTHVIf(@)] N Yw)
(X N[zl N Xw < ((f x /)7 (V))[z] N Xw.

Therefore, Uz] N Xwawr C f~HO), f71(0) € 7(U). Tt follows
that f is 7(U)-7(V) continuous. The other continuities follow from
Proposition 3.4. [l

Proposition 3.11. Let 71 and 1o be fiberwise topologies on X, and
let (Y,V) be a fiberwise quasi-uniform space. Let f : X =Y be a
fiberwise function such that f is 71-7(V) continuous and 2-7(V~1)
continuous. Then for each V €V, (f x f)~1(V) is a 73 x T1-nbd of
the diagonal Ax.

Proof: Let V€ V, z € X, and b = p(z). Then there exist
W € N(b) and V; € V such that (Vi NVy)o (Y3 NV C V.
Since f is 71-7(V) continuous and m»-7(V~!) continuous, there exist
G1 € 11 and G9 € 19 such that z € G1NGo, f(G1) C Vi[f((L’)}ﬂYW,
and f(Ga) € Vi '[f(2)] N Y. Then for every (y,z) € Go x G,

(f(x), f() € V', fy) € Yiw, and (f(x), f(2)) € V1, f(2 )GYW-

):
Thus, (f(y), f(2)) = (f(y), f(2)) o (f(2), f(2)) € (Vi N V1) o (YN
V1) € V, which shows (f x f)(G2 x G1) C V. D

4. FIBERWISE QUASI-UNIFORMIZABILITY OF FIBERWISE SPACES

In this section, we prove that every fiberwise space is fiber-
wise quasi-uniformizable; that is, there exists a fiberwise quasi-
uniformity & on X such that 7(U) = 7x. This idea is analogous to
Pervin quasi-uniformity [2]. Further, we refer to the definition of
“quasi-uniform space over B” in [6].

Let X be a set. For every subset A of X, let
S(A):=AxAU(X —A) x X

Theorem 5. Let (X,7x) be a fiberwise space over B. Then S =
{S(A)|A € 7x} is a fiberwise qu-subgerm for a fiberwise quasi-
uniformity on X compatible with Tx.
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Proof: For each A € 7y, it is clear that A C S(A), and we
can easily show that S(A) o S(A) = S(A). Thus, S is a fiberwise
qu-subgerm for a fiberwise quasi-uniformity on X.

Let 7(U) be the topology defined by the fiberwise quasi-uniformity
U which is generated by the qu-subgerm S.

Now we shall show that 7({) = 7x. Let O € 7x and =z € O.
Then z € S(O)[z] = O. Thus, O € 7(U).

Conversely, let O € 7(U) and x € O. Then there exist W €
N(p(z)) and Oy, -+ ,0, € Tx such that x € (;_; S(O;)[z]NXw C
0. In fact, if z ¢ Ui, Os, then X = N, S(0;)[z] C Ulx].
Therefore, U[ | =X erx. faelJ,0;, then N, S(0))[z] =
Nie1{0: ]a; € O;} is a Tx-open set and Xy is also 7x-open. Thus,
Niz; S(0;)[z] N X is a T-open set. Hence, O € 7x. O

We call the fiberwise quasi-uniformity constructed in this theo-
rem fiberwise Pervin quasi-uniformity.

Last, we shall note the definition of “quasi-uniform space over
B” as presented by Jin Won Park and Byung Sik Lee [6]: A quasi-
uniform space X over B is a function p : X — B in which both
X and B are quasi-uniform spaces and p is a quasi-uniformly con-
tinuous map. This definition is a generalization of James in [4],
where he studied p : X — B in the situation that both X and B
are uniform spaces and p is a uniformly continuous map. On the
other hand, our definition of fiberwise quasi-uniformity in section
3 is a generalization along the lines of Y. Konami and T. Miwa in
[5], as well as James in [3].

In connection with the Pervin quasi-uniformity [2], the following
proposition was obtained.

Proposition 2.17 [2]. For every continuous map
[ (X,7x) = (B,7B), let U and V be the Pervin
quasi-uniformities on X and B, respectively, then
f:(X,U) — (B,V) is quasi-uniformly continuous.

If we consider this proposition, we can say that every fiberwise
space X over B can be considered as “quasi-uniform space X over
B” (as in [6]), if we introduce the Pervin quasi-uniformities to X
and B.
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5. PROOFS OF THEOREMS 1 AND 2

In this section, we shall prove the main theorems.

Proof of Theorem 1: Let U = {U C X? | U is a (x x 7x)-nbd
of Gy for any b € B}. First, we shall show that U is a fiberwise
quasi-uniformity on X. Since U is a nbd filter of G, U is a filter on
X2, Tt is easy to see that Definition 3.1(FU1) (see Definition 2.1)
is satisfied. To show Definition 3.1(FU3) (see Definition 2.1), we
assume that there exist b € B and an open entourage U € U such
that (X3, NV)o (X2 NV) ¢ U for each W € N(b) and each V € U.

For each Ve Y and W € N(b) let

V) = {((5,9),2) | (5,2), (2,9) € X3, OV, (2,y) € U°}.

It is easy to see that B = {V(W) |V e U, W € N(b)} is a
filter base on U¢ x X. Let F be the filter on U¢ x X generated
by B. Since X is fiberwise compact and U€ is closed in X x X,
(U¢ x X) is fiberwise compact over (B x B) x B. Further, since
we can prove easily that F is a ((b,b),b)-filter on U¢ x X, from
[3, Proposition 4.3], there exists an adherence point ((r,s),t) of F
such that ((r,s),t) € (U° x X)(p)p)- We assert that (r,t) € Gy.
Suppose that (r,t) & Gp. Since X is fiberwise regular over B, X x X
is fiberwise regular over B x B. Further, since G is closed in X 5
(hence in X?), there exists an open nbd W' of (b,b), a nbd A of
(r,t), and a nbd A" of G} such that AN A" = (. From regularity
of B, there exists W € N(b) such that W x W C W'. Let D =
{{(z,y),2) e U* x X | (z,2) € A}. It is easy to see that D is a
nbd of ((r,s),t). Let V.= A’ U (X5 ) Then it is easily verified
that V is a nbd of Gy, V € U, and V(W) € B. Since D is a nbd
of ((r,s),t) and ((r,s),t) € V(W), we have D N V(W) # (), which
contradicts the constructions of D and V(W). Thus, (r,t) € Gb.
By this same argument, we have (t,s) € Gj. Since G} is transitive,
(r,s) € Gy C U. This contradicts to (r,s) € U¢. Thus, U satisfies
Definition 2.1(FU3) and U is a fiberwise quasi-uniformity on X.

Now we shall show that
(i) (NU) N X7 =G,
(ii) 7(U*) = 7x, and
(iii) the uniqueness of U satisfying these conditions.
Proof of (i): (i) is trivial.
Proof of (ii): It is clear that 7(U*) C 7x.
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By Proposition 3.9, we have that 7(U*) is fiberwise Hausdorff.
Now let i : (X, 7x) — (X, 7(U*)) be the identity map, then Corol-
lary 3.20 and the comment after that in [3] show ¢ is a fiberwise
topological equivalence. That is 7(U*) = 7x.

Proof of (iii): Let V be another fiberwise quasi-uniformity on X
such that (NV) N X7 = G and 7(V*) = 7x.

Firstly, we show that V consists of all 7x X 7x-nbds of Gy for all
b € B. Since (NV) N X2 = Gy, it is clear that G, C V for every
V € V and for every b € B. Let (z,y) € Gy. For every V € V,
there exist V' € V and W € N(b) such that (V' N X%)o (V' N
X2)o(V'NnXZ%) C V. Then a 7x x 7x-nbd (V' N V' Y)[z] N
X)) x (V' nV'=YHy] N Xw) of (z,y) is contained in V. Since
for (p,q) € (V' NnV'=YH[z] N Xw) x (V' N V'~H[y] N Xw), noting
p,q, 7,y € Xw, we have (p,z), (z,y), (y,q) € V' N XZ,. Therefore,
(p,q) € (V/'N X3,)® C V. This shows that V is a 7x x 7x-nbd of
Gy for every b € B, i.e., V CU.

Next, suppose that V # . This means there exists U € U such
that U ¢ V. Note that V,, — U # () for all V, € V.

For every b € B, let

Since [(Vo —U) N X7, IN[(Vs —U)N X7, ] # 0 for every Vo, Vg € V
and Wy, Wy € N(b), if Fp is not a filter, then ) € F,. Then we
have that V,, N X%Vb C U for some V,,, € V and W}, € N(b). By
Definition 2.3(FU4), we have U € V, which is a contradiction.

Therefore, F3 is a filter for some b € B. It is clear that Fj is a
(b,b)-filter on X x X. Since X x X is fiberwise compact, F; has a
Tx X Tx-cluster point (z,y) that does not belong to Gy.

On the other hand, with a method similar to the proof of Propo-
sition 13.5 in [3], we have that for each V' € V), there exist V' € V
and W € N(b) such that C1 V' N X3, C V, where Cl is the closure
operator of the topology 7x X 7x. Then we have

Gr=((NV)NXZ=(({CLVNXE|W e N®Db),V eV} nXE
This contradicts the fact that (x,y) does not belong to Gj. Thus,
V=U.

The proof of Theorem 1 is complete. O

Next, we shall prove the second main theorem.
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Proof of Theorem 2: The proof consists of the following four
steps. Let G, = (NU) N X} for each b € B.

(1) For each b € B, Gy is a partial order on X;, and for each
UecU,UisarU*)?*nbd of Gy for each b € B.

Proof of (1): The first part follows from Proposition 3.9. The sec-
ond part follows from the definition of the fiberwise quasi-uniform
topology (Definition 3.8).

(2) For each b € B, Gy is closed in (X2, 7(U*)?).

Note that by the facts (1) and (2) and the construction of U in
the proof of Theorem 1, U/ in this theorem satisfies the conditions
in Theorem 1.

Proof of (2): To show that (NU) N X7 is closed in (X2, 7(U*)?),
for every (z,y) & (NU) N X7? (so x # y), we shall show that there
exist W € N(b) and D € U such that

(") (DND™H[z] x (DN D™yl N XF) N (NU) N XG) = 0.
Assume that (*) does not hold. Since for every D € U and W €
N(b), (*) does not hold, for D € U and W € N(b), there exist
E €U and Wy € N(b) such that W, ¢ W, (X3, NE)o(Xj, NE)o
(X{y, N E) C D. Therefore, there exists (s,t) € (ENE1)[z] x
(ENE Yy N X{,) N ((NU) N XY). This shows (z,y) = (,s) o
(s,t)o(t,y) € (X%V1 NE)o (X%Vl NE)o (ngl NE) C D. Therefore,
for any D € U, (z,y) € D. Thus, (z,y) € (NU) N X2, which is a
contradiction.

(3) Foreach V € V, (f x f)~Y(V)isa 7(U~') x 7(U)-nbd of Ax
in X2
Proof of (3): This follows from Proposition 3.11.

(4) For each V € V and each b € B, (f x f)"Y(V)isa (U1 x
7(U)-nbd of Gy in X2.
Proof of (4): For this, we will prove the next two facts:

(1) (NU) N X (f x F)7HV);

(ii) (f x /)71 (V) isa7U™') x 7(U)-nbd of (NU) N X2
Proof of (i): Assume that (i) does not hold. Then there exists
(z,y) € (NU)YNXE = (f x )~ (V). Since V[f(x)] is a 7(V)-nbd
of f(z), from the 7(U)-7(V)-continuity, we have that there exist
U €U and W € N(b) such that f(Ulz] N Xw) C V[f(x)]. This
means that Ulz] N Xy C ((f x f)~Y(V))[z]. But by (z,y) € NU,
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we have (z,y) € U. Therefore, (x,y) € (f x f)~*(V), which is a
contradiction.
Proof of (ii): Let (z,y) € (NU) N XZ. By Proposition 3.11, (f x
f)71(V) is a nbd of (z,z) and (y,y). Then there exist U € U and
W € N(b) such that (U~ '[z]N Xy ) x (Ulz]NXyw) C (f x £)~H(V),
(U ylNnXw) x (Uly]NXw) C (f x £)~1(V). For this U, there exist
Uy € U and Wy € N(b) such that Wy C W, (X%V1 NUy) o (X%V1 N
U1) o (X3, NUL) C U. Then (U; '[z] N Xw,) x (Urly] N Xw,) C
(f x )~HV).

Thus, from the fact 7(U) U 7(U™Y) C 7(U*), we have (f x
)~ V) elU, so f is fiberwise quasi-uniformly continuous.

The proof of Theorem 2 is complete. O
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