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ON 𝑛-FOLD HYPERSPACES OF CONTINUA, II

SERGIO MACÍAS

Abstract. We prove that if 𝑋 is an indecomposable contin-
uum and 𝑌 is a hereditarily decomposable continuum, then
neither their 𝑛-fold hyperspaces nor their 𝑛-fold hyperspace
suspensions are homeomorphic. We characterize locally con-
nected continua for which their 𝑛-fold hyperspaces are dimen-
sionally homogeneous as those such continua 𝑋 such that 𝑋
does not contain free arcs or 𝑋 is either an arc or a simple
closed curve. We also prove that if 𝑋 is a locally connected
continuum such that its 𝑛-fold hyperspace suspension is di-
mensionally homogeneous, then 𝑋 does not contain free arcs
or 𝑋 is either an arc or a simple closed curve. We show that
the 𝑛-fold hyperspace and the 𝑛-fold hyperspace suspension
of arc-smooth continua are arc-smooth.

1. Introduction

The notion of 𝑛-fold hyperspace suspension was introduced in
[10]. This concept is a natural extension of the notion of hyperspace
suspension introduced by Sam B. Nadler, Jr. [18].

In [14, Theorem 3.1 and Theorem 4.17], it was proven that
indecomposable continua with the property of Kelley share nei-
ther 𝑛-fold hyperspaces nor 𝑛-fold hyperspace suspensions with de-
composable continua. Those proofs show more than stated, we
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138 S. MACÍAS

present those more general statements (Theorem 3.1 and Theorem
4.1, respectively). We prove that indecomposable continua do not
share either the 𝑛-fold hyperspace or the 𝑛-fold hyperspace suspen-
sion with the 𝑚-fold hyperspace or the 𝑚-fold hyperspace suspen-
sion hereditarily decomposable continua, respectively (Theorem 3.5
and Theorem 4.5, respectively).

We characterize locally connected continua for which their 𝑛-fold
hyperspaces are dimensionally homogeneous as those such continua
𝑋 such that 𝑋 does not contain free arcs or 𝑋 is either an arc or
a simple closed curve (Theorem 3.6). We also prove that if 𝑋
is a locally connected continuum such that its 𝑛-fold hyperspace
suspension is dimensionally homogeneous, then 𝑋 does not contain
free arcs or𝑋 is either an arc or a simple closed curve (Theorem 4.8)
and prove a partial converse of this theorem (Theorem 4.9).

We show that the 𝑛-fold hyperspace and the 𝑛-fold hyperspace
suspensions of arc-smooth continua are arc-smooth (Theorem 3.7
and Theorem 4.12, respectively).

2. Definitions

If (𝑍, 𝑑) is a metric space, then given 𝐴 ⊂ 𝑍 and 𝜀 > 0, the
open ball about 𝐴 of radius 𝜀 is denoted by 𝒱𝑑

𝜀 (𝐴), the interior of
𝐴 is denoted by 𝐼𝑛𝑡𝑍(𝐴). The symbol IR denotes the set of real
numbers.

An arc is any space homeomorphic to [0, 1]. The end points of
an arc are the images of {0, 1} under a homeomorphism.

Given a metric space 𝑍, the symbol dim(𝑍) denotes the topo-
logical dimension of 𝑍. Also, if 𝑧 ∈ 𝑍, then dim𝑧(𝑍) denotes
the dimension of the space 𝑍 at the point 𝑧 [6]. A metric space
𝑍 is dimensionally homogeneous if for any two points 𝑧1, 𝑧2 ∈ 𝑍,
dim𝑧1(𝑍) = dim𝑧2(𝑍). An 𝑛-dimensional compact connected met-
ric space 𝑍 is a Cantor manifold provided that for each subset 𝐴
of 𝑍 such that dim(𝐴) ≤ 𝑛− 2, we have that 𝑍 ∖𝐴 is connected.

A continuum is a nonempty compact, connected metric space. A
continuum 𝑋 is freely contractible provided that there exist a point
𝑝 in 𝑋 and a homotopy 𝐾 : 𝑋 × [0, 1] → 𝑋 such that for each 𝑥
in 𝑋, (1) 𝐾(𝑥, 0) = 𝑝, (2) 𝐾(𝑥, 1) = 𝑥, and (3) 𝐾(𝐾(𝑥, 𝑠), 𝑡) =
𝐾(𝑥,min{𝑠, 𝑡}) for all 𝑠, 𝑡 ∈ [0, 1].
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Given a continuum 𝑋, we consider the following hyperspaces of
𝑋:

2𝑋 = {𝐴 ⊂ 𝑋 ∣ 𝐴 is nonempty and closed}
and

𝒞𝑛(𝑋) = {𝐴 ∈ 2𝑋 ∣ 𝐴 has at most 𝑛 components},
where 𝑛 is a positive integer. 𝒞𝑛(𝑋) is called the 𝑛-fold hyperspace
of 𝑋. These spaces are topologized with the Hausdorff metric de-
fined as

ℋ(𝐴,𝐵) = inf{𝜀 > 0 ∣ 𝐴 ⊂ 𝒱𝑑
𝜀 (𝐵) and 𝐵 ⊂ 𝒱𝑑

𝜀 (𝐴)};
ℋ always denotes the Hausdorff metric on 2𝑋 . When 𝑛 = 1,
we write 𝒞(𝑋) instead of 𝒞1(𝑋). An order arc in 2𝑋 is a map
𝛾 : [0, 1] → 2𝑋 such that for each 𝑡, 𝑠 ∈ [0, 1] such that 𝑡 < 𝑠, we
have that 𝛾(𝑡) ⊊ 𝛾(𝑠).

The symbol ℱ𝑛(𝑋) denotes the 𝑛-fold symmetric product of a
continuum 𝑋; that is,

ℱ𝑛(𝑋) = {𝐴 ∈ 𝒞𝑛(𝑋) ∣ 𝐴 has at most 𝑛 points}.
If 𝐴 is a nonempty subset of 𝑋, 𝒞𝑛(𝐴) denotes the set {𝐵 ∈

𝒞𝑛(𝑋) ∣ 𝐵 ⊂ 𝐴}.
By the 𝑛-fold hyperspace suspension of a continuum 𝑋, which is

denoted by 𝐻𝑆𝑛(𝑋), we mean the quotient space

𝐻𝑆𝑛(𝑋) = 𝒞𝑛(𝑋)/ℱ𝑛(𝑋)

with the quotient topology. The fact that 𝐻𝑆𝑛(𝑋) is a continuum
follows from [19, Theorem 3.10]. Note that 𝐻𝑆1(𝑋) corresponds
to the hyperspace suspension 𝐻𝑆(𝑋) defined by Nadler in [18].

Notation 2.1. Given a continuum 𝑋, 𝑞𝑛𝑋 : 𝒞𝑛(𝑋)→→𝐻𝑆𝑛(𝑋) de-
notes the quotient map. Also, let 𝐹𝑛

𝑋 and 𝑇𝑛
𝑋 denote the points

𝑞𝑛𝑋(ℱ𝑛(𝑋)) and 𝑞𝑛𝑋(𝑋), respectively.

Remark 2.2. Note that the sets 𝐻𝑆𝑛(𝑋) ∖ {𝐹𝑛
𝑋} and 𝐻𝑆𝑛(𝑋) ∖

{𝑇𝑛
𝑋 , 𝐹𝑛

𝑋} are homeomorphic to 𝒞𝑛(𝑋)∖ℱ𝑛(𝑋) and 𝒞𝑛(𝑋)∖ ({𝑋}∪
ℱ𝑛(𝑋)), respectively, using the appropriate restriction of 𝑞𝑛𝑋 .

Definitions not included here may be found in [17], [7], or [11].
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3. 𝑛-fold hyperspaces

We begin by noting that Theorem 3.1 of [14] may be strength-
ened, with small changes to the proof.

Theorem 3.1. Let 𝑋 be an indecomposable continuum with the
property of Kelley and let 𝑛 and 𝑚 be positive integers. If 𝑌 is a
continuum such that 𝒞𝑚(𝑌 ) is homeomorphic to 𝒞𝑛(𝑋), then 𝑌 is
indecomposable.

The following lemma is easy to establish.

Lemma 3.2. Let 𝑋 be a continuum, let 𝑛 be a positive integer,
and let 𝐴 ∈ 𝒞𝑛(𝑋). Then 𝒞𝑛(𝑋) ∖ {𝐴} is not arcwise connected if
and only if 𝒞𝑛(𝑋) ∖ ({𝐴} ∪ ℱ𝑛(𝑋)) is not arcwise connected.

Theorem 3.3. Let 𝑋 be a continuum, let 𝑛 be a positive integer,
and let 𝐴 ∈ 𝒞𝑛(𝑋). Then 𝒞𝑛(𝑋) ∖ {𝐴} is not arcwise connected if
and only if 𝐻𝑆𝑛(𝑋) ∖ {𝑞𝑛𝑋(𝐴), 𝐹𝑛

𝑋} is not arcwise connected.

Proof: Suppose 𝒞𝑛(𝑋) ∖ {𝐴} is not arcwise connected. Then
𝐴 ∈ 𝒞(𝑋) [11, Theorem 6.5.2]. Hence, 𝒞𝑛(𝑋) ∖ 𝒞𝑛(𝐴) is arcwise
connected [11, Lemma 6.5.1]. Thus, there exists 𝐵 ∈ 𝒞(𝐴) ∖ℱ1(𝑋)
such that 𝐴 belongs to each arc in 𝒞𝑛(𝑋) joining 𝐵 and 𝑋.

Assume 𝐻𝑆𝑛(𝑋)∖{𝑞𝑛𝑋(𝐴), 𝐹𝑛
𝑋} is arcwise connected. Then there

exists an arc 𝛼 : [0, 1] → 𝐻𝑆𝑛(𝑋) ∖ {𝑞𝑛𝑋(𝐴), 𝐹𝑛
𝑋} such that 𝛼(0) =

𝑞𝑛𝑋(𝐵) and 𝛼(1) = 𝑇𝑛
𝑋 . Since 𝑞𝑛𝑋 is a homeomorphism on 𝒞𝑛(𝑋) ∖

ℱ𝑛(𝑋) onto𝐻𝑆𝑛(𝑋)∖{𝐹𝑛
𝑋}, 𝑞𝑛𝑋∘𝛼 is an arc in 𝒞𝑛(𝑋)∖({𝐴} ∪ ℱ𝑛(𝑋))

joining 𝐵 to 𝑋, a contradiction. Therefore, 𝐻𝑆𝑛(𝑋)∖{𝑞𝑛𝑋(𝐴), 𝐹𝑛
𝑋}

is not arcwise connected.
Now, suppose 𝐻𝑆𝑛(𝑋) ∖ {𝑞𝑛𝑋(𝐴), 𝐹𝑛

𝑋} is not arcwise connected.
Then 𝐴 ∈ 𝒞(𝑋) [12, Theorem 4.4]. Assume 𝒞𝑛(𝑋) ∖ {𝐴} is arcwise
connected. Then, by Lemma 3.2, 𝒞𝑛(𝑋) ∖ ({𝐴}∪ℱ𝑛(𝑋)) is arcwise
connected. Thus, since𝐻𝑆𝑛(𝑋)∖{𝑞𝑛𝑋(𝐴), 𝐹𝑛

𝑋} = 𝑞𝑛𝑋(𝒞𝑛(𝑋)∖({𝐴}∪
ℱ𝑛(𝑋))), we have that 𝐻𝑆𝑛(𝑋)∖{𝑞𝑛𝑋(𝐴), 𝐹𝑛

𝑋} is arcwise connected,
a contradiction. Therefore, 𝒞𝑛(𝑋) ∖ {𝐴} is not arcwise connected.

□

Lemma 3.4. Let 𝐴 be a proper decomposable subcontinuum of
a continuum 𝑋 and let 𝑛 be a positive integer. If 𝒞𝑛(𝑋) ∖ {𝐴}
is not arcwise connected, then 𝒞𝑛(𝑋) ∖ {𝐴} has exactly two arc
components.
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Proof: Note that 𝒞𝑛(𝑋)∖𝒞𝑛(𝐴) is arcwise connected [11, Lemma
6.5.1]. Since 𝐴 is a decomposable continuum, 𝒞𝑛(𝐴)∖{𝐴} is arcwise
connected [11, Theorem 6.5.3]. Hence, since 𝒞𝑛(𝑋)∖{𝐴} = (𝒞𝑛(𝑋)∖
𝒞𝑛(𝐴)) ∪ 𝒞𝑛(𝐴) ∖ {𝐴}, we have that 𝒞𝑛(𝑋) ∖ {𝐴} has exactly two
arc components. □

Theorem 3.5. Let 𝑋 be an indecomposable continuum and let
𝑛 and 𝑚 be positive integers. If 𝑌 is a hereditarily decomposable
continuum, then 𝒞𝑚(𝑌 ) is not homeomorphic to 𝒞𝑛(𝑋).

Proof: Let us suppose that 𝒞𝑚(𝑌 ) is homeomorphic to 𝒞𝑛(𝑋).
Let ℎ : 𝒞𝑛(𝑋)→→𝒞𝑚(𝑌 ) be a homeomorphism. Since 𝑋 is indecom-
posable, 𝒞𝑛(𝑋)∖{𝑋} is not arcwise connected. Recall that since 𝑋
is indecomposable, 𝑋 has uncountably many composants [5, The-
orem 3–46]. Also, for each composant 𝜅 of 𝑋, 𝒞𝑛(𝜅) is an arc
component of 𝒞𝑛(𝑋) ∖ {𝑋} [11, Theorem 6.5.11]. Hence, we have
that 𝒞𝑛(𝑋) ∖ {𝑋} has uncountably many arc components. Then
𝒞𝑚(𝑌 ) ∖ {ℎ(𝑋)} has uncountably many arc components. Since
𝒞𝑚(𝑌 ) ∖ {ℎ(𝑋)} is not arcwise connected, ℎ(𝑋) ∈ 𝒞(𝑌 ) [11, The-
orem 6.5.2]. Since 𝑌 is a hereditarily decomposable continuum,
ℎ(𝑋) is a decomposable subcontinuum of 𝑌 . Hence, by Lemma 3.4,
𝒞𝑚(𝑌 ) ∖ {ℎ(𝑋)} has exactly two arc components, a contradiction.
Therefore, 𝒞𝑚(𝑌 ) is not homeomorphic to 𝒞𝑛(𝑋). □

Now, we consider dimensionally homogeneous 𝑛-fold hyperspaces.
The following result is a generalization to 𝑛-fold hyperspaces of [17,
Theorem (2.16)].

Theorem 3.6. Let 𝑋 be a locally connected continuum, and let 𝑛
be a positive integer. Then 𝒞𝑛(𝑋) is dimensionally homogeneous if
and only if 𝑋 does not contain a free arc or 𝑋 is an arc or a simple
closed curve.

Proof: Suppose 𝒞𝑛(𝑋) is dimensionally homogeneous. Assume𝑋
contains a free arc. Then, by [11, Theorem 6.8.10], dim(𝒞𝑛(𝑋)) =
2𝑛. Hence, by [11, Theorem 6.8.3], 𝑋 is a graph. Thus, 𝑋 is either
an arc of a simple closed curve [14, Theorem 3.5].

Now, suppose 𝑋 does not contain a free arc. Then 𝒞𝑛(𝑋) is
homeomorphic to the Hilbert cube 𝒬 [9, Theorem 7.1]. Since 𝒬 is
homogeneous [16, Theorem 6.1.6], 𝒞𝑛(𝑋) is dimensionally homoge-
neous.
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If 𝑋 is an arc or a simple closed curve, then 𝒞𝑛(𝑋) is a Cantor
manifold [15, Theorem 4.6]. By [6, A), pp. 93 and 94], Cantor
manifolds are dimensionally homogeneous. Therefore, 𝒞𝑛(𝑋) is di-
mensionally homogeneous.

Next, we consider arc-smoothness of 𝑛-fold hyperspaces. Recall
that a continuum 𝑋 is arc-smooth provided that there exist a point
𝑝 and a map 𝛼 : 𝑋 → 𝒞(𝑋) such that (i) 𝛼(𝑝) = {𝑝}; (ii) for each
𝑥 ∈ 𝑋 ∖ {𝑝}, 𝛼(𝑥) is an arc joining 𝑝 and 𝑥; and (iii) if 𝑧 ∈ 𝛼(𝑥),
then 𝛼(𝑧) ⊂ 𝛼(𝑥). The map 𝛼 is called an arc map for 𝑋.

Theorem 3.7. If 𝑋 is an arc-smooth continuum and 𝑛 is a positive
integer, then 𝒞𝑛(𝑋) is arc-smooth.

Proof: By [4, Theorem II-3-B], 𝑋 is freely contractible. Hence,
there exist a point 𝑝 and a homotopy 𝑅 : 𝑋 × [0, 1] → 𝑋 such
that for each 𝑥 in 𝑋, (1) 𝑅(𝑥, 0) = 𝑝, (2) 𝑅(𝑥, 1) = 𝑥, and (3)
𝑅(𝑅(𝑥, 𝑠), 𝑡) = 𝑅(𝑥,min{𝑠, 𝑡}) for all 𝑠, 𝑡 ∈ [0, 1].

Define 𝐺 : 𝒞𝑛(𝑋)× [0, 1] → 𝒞𝑛(𝑋) by

𝐺(𝐴, 𝑡) = {𝑅(𝑎, 𝑡) ∣ 𝑎 ∈ 𝐴}.
Note that 𝐺 is continuous. Also observe that for each 𝐴 ∈ 𝒞𝑛(𝑋),
𝐺(𝐴, 0) = {𝑝} and 𝐺(𝐴, 1) = 𝐴. It is easy to verify that
𝐺(𝐺(𝐴, 𝑠), 𝑡) = 𝐺(𝐴,min{𝑠, 𝑡}) for all 𝑠, 𝑡 ∈ [0, 1] and each 𝐴 ∈
𝒞𝑛(𝑋). Hence, 𝒞𝑛(𝑋) is freely contractible. Therefore, 𝒞𝑛(𝑋) is
arc-smooth [4, Theorem II-3-B]. □

4. 𝑛-fold hyperspace suspensions

We start by noting that Theorem 4.17 of [14] may be strength-
ened, with few changes to the proof.

Theorem 4.1. Let 𝑋 be an indecomposable continuum with the
property of Kelley and let 𝑛 and 𝑚 be positive integers. If 𝑌 is a
continuum such that 𝐻𝑆𝑚(𝑌 ) is homeomorphic to 𝐻𝑆𝑛(𝑋), then
𝑌 is indecomposable.

Lemma 4.2. Let 𝐴 be a proper decomposable subcontinuum of
a continuum 𝑋 and let 𝑛 be a positive integer. If 𝐻𝑆𝑛(𝑋) ∖
{𝑞𝑛𝑋(𝐴), 𝐹𝑛

𝑋} is not arcwise connected, then 𝐻𝑆𝑛(𝑋)∖{𝑞𝑛𝑋(𝐴), 𝐹𝑛
𝑋}

has exactly two arc components.
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Proof: The lemma follows from Lemma 3.2 and the following
facts:

𝒞𝑛(𝐴) ∖ ({𝐴} ∪ ℱ𝑛(𝐴)) = 𝒞𝑛(𝐴) ∖ ({𝐴} ∪ ℱ𝑛(𝑋)),
𝑞𝑛𝑋(𝒞𝑛(𝐴) ∖ ({𝐴} ∪ ℱ𝑛(𝑋))) = 𝑞𝑛𝑋(𝒞𝑛(𝐴)) ∖ {𝑞𝑛𝑋(𝐴), 𝐹𝑛

𝑋}, and
𝐻𝑆𝑛(𝑋) ∖ {𝑞𝑛𝑋(𝐴), 𝐹𝑛

𝑋} =
(𝑞𝑛𝑋(𝒞𝑛(𝑋)) ∖ 𝑞𝑛𝑋(𝒞𝑛(𝐴))) ∪ (𝑞𝑛𝑋(𝒞𝑛(𝐴)) ∖ {𝑞𝑛𝑋(𝐴), 𝐹𝑛

𝑋}). □
Lemma 4.3. If𝑋 is an indecomposable continuum, then𝐻𝑆𝑛(𝑋)∖
{𝑇𝑛

𝑋 , 𝐹𝑛
𝑋} has uncountably many arc components.

Proof: Since 𝑋 is an indecomposable continuum, by [10, The-
orem 6.2], 𝐻𝑆𝑛(𝑋) ∖ {𝑇𝑛

𝑋 , 𝐹𝑛
𝑋} is not arcwise connected. Since

indecomposable continua have uncountably many composants [5,
Theorem 3–46], and for each composant 𝜅 of 𝑋, 𝑞𝑛𝑋(𝒞𝑛(𝜅) ∖ℱ𝑛(𝜅))
is an arc component of 𝐻𝑆𝑛(𝑋)∖{𝑇𝑛

𝑋 , 𝐹𝑛
𝑋} [10, Theorem 6.4] (com-

pare with [13, Theorem 2]), we have that 𝐻𝑆𝑛(𝑋) ∖ {𝑇𝑛
𝑋 , 𝐹𝑛

𝑋} has
uncountably many arc components. □
Lemma 4.4. Let 𝑋 be a continuum and let 𝑛 be a positive integer.
If 𝜒1 and 𝜒2 are two points of 𝐻𝑆𝑛(𝑋) such that 𝐻𝑆𝑛(𝑋)∖{𝜒1, 𝜒2}
is not arcwise connected, then 𝐹𝑛

𝑋 ∈ {𝜒1, 𝜒2}.
Proof: Suppose 𝐹𝑛

𝑋 ∕∈ {𝜒1, 𝜒2}. By [12, Theorem 4.3], we may
assume that 𝑇𝑛

𝑋 ∕∈ {𝜒1, 𝜒2}.
First, we show that there exists an arc in 𝐻𝑆𝑛(𝑋) ∖ {𝜒1, 𝜒2}

joining 𝐹𝑛
𝑋 and 𝑇𝑛

𝑋 .
If (𝑞𝑛𝑋)−1(𝜒1) ∪ (𝑞𝑛𝑋)−1(𝜒2) ∕= 𝑋, then there exists a point 𝑥 ∈

𝑋 ∖ ((𝑞𝑛𝑋)−1(𝜒1)∪ (𝑞𝑛𝑋)−1(𝜒2)). Let 𝛼 be an order arc in 𝒞(𝑋) from
{𝑥} to 𝑋 [17, Theorem (1.8)]. Note that

𝛼 ∩ {(𝑞𝑛𝑋)−1(𝜒1), (𝑞
𝑛
𝑋)−1(𝜒2)} = ∅.

Hence, 𝑞𝑛𝑋(𝛼) is an arc in 𝐻𝑆𝑛(𝑋) ∖ {𝜒1, 𝜒2} from 𝐹𝑛
𝑋 to 𝑇𝑛

𝑋 .
Now, assume that (𝑞𝑛𝑋)−1(𝜒1) ∪ (𝑞𝑛𝑋)−1(𝜒2) = 𝑋. Since 𝑋 ∕∈

{(𝑞𝑛𝑋)−1(𝜒1), (𝑞
𝑛
𝑋)−1(𝜒2)}, there exist nondegenerate components

𝐴1 and 𝐵1 of (𝑞𝑛𝑋)−1(𝜒1) and (𝑞𝑛𝑋)−1(𝜒2), respectively, such that

𝐴1 ∩ 𝐵1 ∕= ∅. Let 𝑥 ∈ 𝐴1 ∩ 𝐵1 and let 𝜀 = 1
2 min{diam(𝐴1),

diam(𝐵1)}. By [19, Corollary 5.5], there exist two nondegener-
ate continua 𝐴 and 𝐵 such that 𝑥 ∈ 𝐴 ⊂ 𝐴1 ∩ 𝒱𝜀(𝑥) and 𝑥 ∈
𝐵 ⊂ 𝐵1 ∩ 𝒱𝜀(𝑥). Let 𝛼1 be an order arc in 𝒞(𝑋) from {𝑥} to 𝐴
[17, Theorem (1.8)]. Let 𝛼2 be an order arc in 𝒞(𝑋) from 𝐴 to
𝐴 ∪𝐵. Let 𝛼3 be an order arc in 𝒞(𝑋) from 𝐴 ∪𝐵 to = 𝑋. Then
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𝛼1 ∪ 𝛼2 ∪ 𝛼3 is an arc in 𝒞𝑛(𝑋) ∖ {(𝑞𝑛𝑋)−1(𝜒1), (𝑞
𝑛
𝑋)−1(𝜒2)} joining

{𝑥} and 𝑋. Hence, 𝑞𝑛𝑋(𝛼1∪𝛼2∪𝛼3) is an arc in 𝐻𝑆𝑛(𝑋)∖{𝜒1, 𝜒2}
joining 𝐹𝑛

𝑋 and 𝑇𝑛
𝑋 .

Let 𝜒 ∈ 𝐻𝑆𝑛(𝑋) ∖ {𝜒1, 𝜒2}. Now it is easy to construct an arc
in 𝐻𝑆𝑛(𝑋) ∖ {𝜒1, 𝜒2} joining 𝜒 with either 𝐹𝑛

𝑋 or 𝑇𝑛
𝑋 . Therefore,

𝐻𝑆𝑛(𝑋) ∖ {𝜒1, 𝜒2} is arcwise connected. □

The following theorem shows that indecomposable continua and
hereditarily decomposable continua do not share 𝑛-fold hyperspace
suspensions.

Theorem 4.5. Let 𝑋 be an indecomposable continuum and let
𝑛 and 𝑚 be positive integers. If 𝑌 is a hereditarily decomposable
continuum, then 𝐻𝑆𝑚(𝑌 ) is not homeomorphic to 𝐻𝑆𝑛(𝑋).

Proof: Suppose that 𝐻𝑆𝑚(𝑌 ) is homeomorphic to 𝐻𝑆𝑛(𝑋) and
let ℎ : 𝐻𝑆𝑛(𝑋)→→𝐻𝑆𝑚(𝑌 ) be a homeomorphism.

Since 𝑋 is indecomposable, 𝐻𝑆𝑛(𝑋) ∖ {𝑇𝑛
𝑋 , 𝐹𝑛

𝑋} is not arcwise
connected [10, Theorem 6.2]. In fact, by Lemma 4.3, 𝐻𝑆𝑛(𝑋) ∖
{𝑇𝑛

𝑋 , 𝐹𝑛
𝑋} has uncountably many arc components. Then 𝐻𝑆𝑚(𝑌 )∖

{ℎ(𝑇𝑛
𝑋), ℎ(𝐹𝑛

𝑋)} has uncountably many arc components. Since
𝐻𝑆𝑚(𝑌 )∖{ℎ(𝑇𝑛

𝑋), ℎ(𝐹𝑛
𝑋)} is not arcwise connected, by Lemma 4.4,

𝐹𝑚
𝑌 ∈ {ℎ(𝑇𝑛

𝑋), ℎ(𝐹𝑛
𝑋)}. Let 𝜒 ∈ 𝐻𝑆𝑚(𝑌 ) be such that {𝜒, 𝐹𝑚

𝑌 } =
{ℎ(𝑇𝑛

𝑋), ℎ(𝐹𝑛
𝑋)}. Since 𝐻𝑆𝑚(𝑌 )∖{𝜒, 𝐹𝑚

𝑌 } is not arcwise connected,
(𝑞𝑚𝑌 )−1(𝜒) ∈ 𝒞(𝑌 ). Since 𝑌 is hereditarily decomposable, (𝑞𝑚𝑌 )−1(𝜒)
is a decomposable subcontinuum of 𝑌 . Hence, by Lemma 4.2,
𝐻𝑆𝑚(𝑌 )∖{𝜒, 𝐹𝑚

𝑌 } has exactly two arc components, a contradiction.
Therefore, 𝐻𝑆𝑚(𝑌 ) is not homeomorphic to 𝐻𝑆𝑛(𝑋). □

Next, we note that Theorem 7.1 of [12] may be strengthened,
with small changes to the proof.

Theorem 4.6. Let𝑋 be a hereditarily indecomposable continuum,
and let 𝑛 and 𝑚 be integers greater than or equal to two. If 𝑌 is a
continuum such that 𝐻𝑆𝑚(𝑌 ) is homeomorphic to 𝐻𝑆𝑛(𝑋), then
𝑌 is homeomorphic to 𝑋.

Next, we consider dimensionally homogeneous 𝑛-fold hyperspace
suspensions. First, we note that as a consequence of [14, Lemma
3.5] and [10, Theorem 3.6], we have the following.
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Lemma 4.7. Let 𝑋 be a graph topologically different from an arc
and a simple closed curve, and let 𝑛 be a positive integer. Then
dim(𝐻𝑆𝑛(𝑋)) ≥ 2𝑛+ 1.

Theorem 4.8. Let 𝑋 be a locally connected continuum and let
𝑛 be a positive integer. If 𝐻𝑆𝑛(𝑋) is dimensionally homogeneous,
then 𝑋 does not contain a free arc or 𝑋 is either an arc or a simple
closed curve.

Proof: Suppose 𝑋 contains a free arc. Then dim(𝐻𝑆𝑛(𝑋)) = 2𝑛
[10, Corollary 3.10]. Hence, by [10, Theorem 3.6], dim(𝐻𝑆𝑛(𝑋)) =
dim(𝒞𝑛(𝑋)). Thus, 𝑋 is a graph [11, Theorem 6.8.3]. This implies,
by Lemma 4.7, that 𝑋 is either an arc or a simple closed curve. □

The following theorem is a partial converse of Theorem 4.8.

Theorem 4.9. If𝑋 is an arc or a simple closed curve, then𝐻𝑆𝑛(𝑋)
is dimensionally homogeneous.

Proof: If 𝑋 is an arc or a simple closed curve, by [10, Corollary
3.10],𝐻𝑆𝑛(𝑋) is a 2𝑛-dimensionally Cantor manifold. The theorem
now follows from [6, A), pp. 93 and 94]. □

Let us recall that there exists a locally connected continuum 𝑋
without free arcs such that 𝐻𝑆(𝑋) is not homeomorphic to the
Hilbert cube [3, Example 5.3]. Hence, we have the following.

Question 4.10. If 𝑋 is a locally connected continuum without
free arcs and 𝑛 is a positive integer, then is 𝐻𝑆𝑛(𝑋) dimensionally
homogeneous?

Note that for locally connected and contractible continua without
free arcs, it is known that their 𝑛-fold hyperspace suspension is
homeomorphic to the Hilbert cube [10, Theorem 5.3]. Hence, in
this case, we have a positive answer to Question 4.10.

Now, we consider arc-smoothness on 𝑛-fold hyperspace suspen-
sions.

Remark 4.11. Note that if 𝑋 is the unit circle, then, since 𝒞(𝑋)
is a 2-cell and ℱ1(𝑋) is the manifold boundary of the cell [17,
Example (0.55)], 𝒞(𝑋) is arc-smooth [4, Introduction, p. 545], but
𝐻𝑆(𝑋) is not arc-smooth, because 𝐻𝑆(𝑋) is a 2-sphere, which is
not contractible.
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Theorem 4.12. If 𝑋 is an arc-smooth continuum and 𝑛 is a pos-
itive integer, then 𝐻𝑆𝑛(𝑋) is arc-smooth.

Proof: Let 𝐺 : 𝒞𝑛(𝑋)× [0, 1] → 𝒞𝑛(𝑋) be the map defined in the
proof of Theorem 3.7. Let 𝐾 : 𝐻𝑆𝑛(𝑋)× [0, 1] → 𝐻𝑆𝑛(𝑋) be given
by

𝐾(𝜒, 𝑡) =

{
𝐹𝑛
𝑋 , if 𝜒 = 𝐹𝑛

𝑋 ;

𝑞𝑛𝑋

(
𝐺
(
(𝑞𝑛𝑋)−1 (𝜒), 𝑡

))
, if 𝜒 ∕= 𝐹𝑛

𝑋 .

Then 𝐾 is continuous by [2, Theorem 4.3, p. 126]. Observe that for
each 𝜒 ∈ 𝐻𝑆𝑛(𝑋), 𝐾(𝜒, 0) = 𝐹𝑛

𝑋 and𝐾(𝜒, 1) = 𝜒. It is also easy to
see that 𝐾(𝐾(𝜒, 𝑠), 𝑡) = 𝐾(𝜒,min{𝑠, 𝑡}) for all 𝑠, 𝑡 ∈ [0, 1] and each
𝜒 ∈ 𝐻𝑆𝑛(𝑋). Hence, 𝐻𝑆𝑛(𝑋) is freely contractible. Therefore, by
[4, Theorem II-3-B], 𝐻𝑆𝑛(𝑋) is arc-smooth. □
Acknowledgment. The author thanks the referee for the valuable
suggestions made which improved the paper.
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