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ON n-FOLD HYPERSPACES OF CONTINUA, II

SERGIO MACIAS

ABSTRACT. We prove that if X is an indecomposable contin-
uum and Y is a hereditarily decomposable continuum, then
neither their n-fold hyperspaces nor their n-fold hyperspace
suspensions are homeomorphic. We characterize locally con-
nected continua for which their n-fold hyperspaces are dimen-
sionally homogeneous as those such continua X such that X
does not contain free arcs or X is either an arc or a simple
closed curve. We also prove that if X is a locally connected
continuum such that its n-fold hyperspace suspension is di-
mensionally homogeneous, then X does not contain free arcs
or X is either an arc or a simple closed curve. We show that
the n-fold hyperspace and the n-fold hyperspace suspension
of arc-smooth continua are arc-smooth.

1. INTRODUCTION

The notion of n-fold hyperspace suspension was introduced in
[10]. This concept is a natural extension of the notion of hyperspace
suspension introduced by Sam B. Nadler, Jr. [18].

In [14, Theorem 3.1 and Theorem 4.17], it was proven that
indecomposable continua with the property of Kelley share nei-
ther n-fold hyperspaces nor n-fold hyperspace suspensions with de-
composable continua. Those proofs show more than stated, we
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138 S. MACIAS

present those more general statements (Theorem 3.1 and Theorem
4.1, respectively). We prove that indecomposable continua do not
share either the n-fold hyperspace or the n-fold hyperspace suspen-
sion with the m-fold hyperspace or the m-fold hyperspace suspen-
sion hereditarily decomposable continua, respectively (Theorem 3.5
and Theorem 4.5, respectively).

We characterize locally connected continua for which their n-fold
hyperspaces are dimensionally homogeneous as those such continua
X such that X does not contain free arcs or X is either an arc or
a simple closed curve (Theorem 3.6). We also prove that if X
is a locally connected continuum such that its n-fold hyperspace
suspension is dimensionally homogeneous, then X does not contain
free arcs or X is either an arc or a simple closed curve (Theorem 4.8)
and prove a partial converse of this theorem (Theorem 4.9).

We show that the n-fold hyperspace and the n-fold hyperspace
suspensions of arc-smooth continua are arc-smooth (Theorem 3.7
and Theorem 4.12, respectively).

2. DEFINITIONS

If (Z,d) is a metric space, then given A C Z and € > 0, the
open ball about A of radius ¢ is denoted by V4(A), the interior of
A is denoted by Intz(A). The symbol IR denotes the set of real
numbers.

An arc is any space homeomorphic to [0,1]. The end points of
an arc are the images of {0,1} under a homeomorphism.

Given a metric space Z, the symbol dim(Z) denotes the topo-
logical dimension of Z. Also, if z € Z, then dim.(Z) denotes
the dimension of the space Z at the point z [6]. A metric space
Z is dimensionally homogeneous if for any two points z1, 20 € Z,
dim,, (Z) = dim,,(Z). An n-dimensional compact connected met-
ric space Z is a Cantor manifold provided that for each subset A
of Z such that dim(A) < n — 2, we have that Z \ A is connected.

A continuum is a nonempty compact, connected metric space. A
continuum X is freely contractible provided that there exist a point
p in X and a homotopy K: X x [0,1] — X such that for each x
in X, (1) K(z,0) = p, (2) K(z,1) = z, and (3) K(K(z,s),t) =
K(z,min{s,t}) for all s,t € [0,1].
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Given a continuum X, we consider the following hyperspaces of
X:

2% = {A C X | A is nonempty and closed}

and
Cn(X) = {A € 2% | Ahas at most n components},

where n is a positive integer. C,,(X) is called the n-fold hyperspace
of X. These spaces are topologized with the Hausdorff metric de-
fined as

H(A,B) =inf{e > 0| A C VB) and B C V¢(A)};

H always denotes the Hausdorff metric on 2X. When n = 1,
we write C(X) instead of C;(X). An order arc in 2% is a map
v:[0,1] — 2% such that for each t,s € [0,1] such that t < s, we
have that v(t) C v(s).

The symbol F,,(X) denotes the n-fold symmetric product of a
continuum X; that is,

Fn(X)={A€C,(X) | Ahas at most n points}.

If A is a nonempty subset of X, C,(A) denotes the set {B €
Cn(X) | BC A}

By the n-fold hyperspace suspension of a continuum X, which is
denoted by HS,(X), we mean the quotient space

HS,(X)=Ch(X)/Fn(X)

with the quotient topology. The fact that HS,(X) is a continuum
follows from [19, Theorem 3.10]. Note that HS;(X) corresponds
to the hyperspace suspension HS(X) defined by Nadler in [18].

Notation 2.1. Given a continuum X, ¢%: C,(X)—»HS,(X) de-
notes the quotient map. Also, let F'y and T% denote the points
% (Fn(X)) and ¢'% (X), respectively.

Remark 2.2. Note that the sets HS,(X) \ {F%} and HS,(X) \
{T'%, F}} are homeomorphic to Cy, (X)) \ 7, (X) and C,(X) \ ({X}U
Fn(X)), respectively, using the appropriate restriction of ¢’ .

Definitions not included here may be found in [17], [7], or [11].
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3. n-FOLD HYPERSPACES

We begin by noting that Theorem 3.1 of [14] may be strength-
ened, with small changes to the proof.

Theorem 3.1. Let X be an indecomposable continuum with the
property of Kelley and let n and m be positive integers. If Y is a
continuum such that C,,(Y") is homeomorphic to C,(X), then Y is
indecomposable.

The following lemma is easy to establish.

Lemma 3.2. Let X be a continuum, let n be a positive integer,
and let A € Cp(X). Then C,(X) \ {A} is not arcwise connected if
and only if C,(X) \ ({A} U F,.(X)) is not arcwise connected.

Theorem 3.3. Let X be a continuum, let n be a positive integer,
and let A € Cp(X). Then C,(X) \ {A} is not arcwise connected if
and only if HS,(X) \ {¢%(A), F§} is not arcwise connected.

Proof: Suppose C,(X) \ {A} is not arcwise connected. Then
A € C(X) [11, Theorem 6.5.2]. Hence, C,(X) \ Cn(A) is arcwise
connected [11, Lemma 6.5.1]. Thus, there exists B € C(A) \ F1(X)
such that A belongs to each arc in C,,(X) joining B and X.

Assume HS,(X)\{q%(A), F¢} is arcwise connected. Then there
exists an arc a: [0,1] = HS,(X) \ {¢%(A), F¥} such that «(0) =
¢y (B) and «(1) = T%. Since ¢% is a homeomorphism on C,(X) \
Fn(X) onto HS,(X)\{F¥%}, ¢oais an arcin C,(X)\({A} U Fn(X))
joining B to X, a contradiction. Therefore, HS, (X)\ {¢%(A4), F'¢}
is not arcwise connected.

Now, suppose HS,(X) \ {¢%(A), F'¢} is not arcwise connected.
Then A € C(X) [12, Theorem 4.4]. Assume C,(X)\ {A} is arcwise
connected. Then, by Lemma 3.2, C,,(X) \ ({A} UF, (X)) is arcwise
connected. Thus, since HSy,(X)\{q%(4), F%} = ¢%(Cn(X)\({A}U
Fn(X))), we have that HS,,(X)\{¢%(A), F'¢ } is arcwise connected,
a contradiction. Therefore, C,,(X) \ {A} is not arcwise connected.

O

Lemma 3.4. Let A be a proper decomposable subcontinuum of
a continuum X and let n be a positive integer. If C,(X) \ {A}
is not arcwise connected, then C,(X) \ {A} has exactly two arc
components.
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Proof: Note that C,,(X)\C,(A) is arcwise connected [11, Lemma
6.5.1]. Since A is a decomposable continuum, C,,(A)\{A} is arcwise
connected [11, Theorem 6.5.3]. Hence, since Cp,(X)\{A} = (Cn(X)\
Cn(A)) UCh(A) \ {4}, we have that C,(X) \ {A} has exactly two
arc components. O

Theorem 3.5. Let X be an indecomposable continuum and let
n and m be positive integers. If Y is a hereditarily decomposable
continuum, then C,,(Y") is not homeomorphic to C,(X).

Proof: Let us suppose that Cy,(Y) is homeomorphic to C,(X).
Let h: Cp(X)—C,(Y) be a homeomorphism. Since X is indecom-
posable, C,,(X)\ {X} is not arcwise connected. Recall that since X
is indecomposable, X has uncountably many composants [5, The-
orem 3-46]. Also, for each composant x of X, C,(k) is an arc
component of C,(X) \ {X} [11, Theorem 6.5.11]. Hence, we have
that C,(X) \ {X} has uncountably many arc components. Then
Cn(Y) \ {R(X)} has uncountably many arc components. Since
Cr(Y) \ {h(X)} is not arcwise connected, h(X) € C(Y) [11, The-
orem 6.5.2]. Since Y is a hereditarily decomposable continuum,
h(X) is a decomposable subcontinuum of Y. Hence, by Lemma 3.4,
Crn(Y) \ {R(X)} has exactly two arc components, a contradiction.
Therefore, C,,(Y) is not homeomorphic to Cy,(X). O

Now, we consider dimensionally homogeneous n-fold hyperspaces.
The following result is a generalization to n-fold hyperspaces of [17,
Theorem (2.16)].

Theorem 3.6. Let X be a locally connected continuum, and let n
be a positive integer. Then C,(X) is dimensionally homogeneous if
and only if X does not contain a free arc or X is an arc or a simple
closed curve.

Proof: Suppose C,,(X) is dimensionally homogeneous. Assume X
contains a free arc. Then, by [11, Theorem 6.8.10], dim(C,, (X)) =
2n. Hence, by [11, Theorem 6.8.3], X is a graph. Thus, X is either
an arc of a simple closed curve [14, Theorem 3.5].

Now, suppose X does not contain a free arc. Then C,(X) is
homeomorphic to the Hilbert cube Q [9, Theorem 7.1]. Since Q is
homogeneous [16, Theorem 6.1.6], C,,(X) is dimensionally homoge-
neous.
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If X is an arc or a simple closed curve, then C,(X) is a Cantor
manifold [15, Theorem 4.6]. By [6, A), pp. 93 and 94], Cantor
manifolds are dimensionally homogeneous. Therefore, C,,(X) is di-
mensionally homogeneous.

Next, we consider arc-smoothness of n-fold hyperspaces. Recall
that a continuum X is arc-smooth provided that there exist a point
p and a map «: X — C(X) such that (i) a(p) = {p}; (ii) for each
x € X \ {p}, a(z) is an arc joining p and x; and (iii) if z € a(x),
then a(z) C a(x). The map « is called an arc map for X.

Theorem 3.7. If X is an arc-smooth continuum and n is a positive
integer, then Cy,(X) is arc-smooth.

Proof: By [4, Theorem II-3-B], X is freely contractible. Hence,
there exist a point p and a homotopy R: X x [0,1] — X such
that for each z in X, (1) R(z,0) = p, (2) R(x,1) = z, and (3)
R(R(z,s),t) = R(xz,min{s, t}) for all s,t € [0,1].

Define G: C,,(X) x [0,1] — Cn(X) by

G(A,t) ={R(a,t) | a € A}.

Note that G is continuous. Also observe that for each A € C,(X),
G(A,0) = {p} and G(A,1) = A. It is easy to verify that
G(G(A,s),t) = G(A,min{s,t}) for all s,t € [0,1] and each A €
Cn(X). Hence, C,(X) is freely contractible. Therefore, C,(X) is
arc-smooth [4, Theorem II-3-B]. O

4. n-FOLD HYPERSPACE SUSPENSIONS

We start by noting that Theorem 4.17 of [14] may be strength-
ened, with few changes to the proof.

Theorem 4.1. Let X be an indecomposable continuum with the
property of Kelley and let n and m be positive integers. If Y is a
continuum such that HS,,(Y) is homeomorphic to HS,(X), then
Y is indecomposable.

Lemma 4.2. Let A be a proper decomposable subcontinuum of
a continuum X and let n be a positive integer. If HS,(X) \
{q%v (A), F}} is not arcwise connected, then HS,,(X)\{q% (A4), F%}
has exactly two arc components.
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Proof: The lemma follows from Lemma 3.2 and the following

facts:
Cn(A)\ ({4} UFn(A)) = Cn(A) \ ({A} U Fr(X)),
ax (C (A)\({A}UF( ) = a%(Cn(A)) \ {dx (A), F} }, and
Sn(X)\{qx (A), Fx} =
(g% (Cn(X ))\qX( n(A)) U (g% (Cn(A)) \{dx(A), F}}). O

Lemma 4.3. If X is an indecomposable continuum, then HS,(X)\
{T'%}, F¢} has uncountably many arc components.

Proof: Since X is an indecomposable continuum, by [10, The-
orem 6.2], HS,(X) \ {T%, F¢} is not arcwise connected. Since
indecomposable continua have uncountably many composants [5,
Theorem 3-46], and for each composant « of X, ¢% (Cp(k) \ Fn(r))
is an arc component of H.S, (X)\{T%, F¢} [10, Theorern 6.4] (com-
pare with [13, Theorem 2]), we have that HS,(X) \ {T%, F'¢} has
uncountably many arc components. O

Lemma 4.4. Let X be a continuum and let n be a positive integer.
If x1 and 2 are two points of HS,, (X)) such that HS,(X)\{x1, x2}
is not arcwise connected, then F¥¢ € {x1, x2}-

Proof: Suppose FY & {x1,x2}. By [12, Theorem 4.3], we may
assume that T% & {x1, x2}-

First, we show that there exists an arc in HS,(X) \ {x1,x2}
joining F'¢ and T%.

If (q})_l(xl) (qX) 1(X2) # X, then there exists a point z €
X\ ((¢%) 1) U(g%)~(x2)). Let a be an order arc in C(X) from
{z} to X [17, Theorem (1.8)]. Note that

an{(g%) " (a), (%) (x2)} = 0.

Hence, ¢% () is an arc in HS,(X) \ {x1, x2} from Fg to T%.

Now, assume that (¢%)7(x1) U (¢%) 1(x2) = X. Since X ¢
{(d%) 2 (x1), (¢%)"1(x2)}, there exist nondegenerate components
Ay and By of (¢%)71(x1) and (¢%) *(x2), respectively, such that
A1 N By # 0. Let x € Ay N By and let ¢ = %min{diam(Al),
diam(Bp)}. By [19, Corollary 5.5], there exist two nondegener-
ate continua A and B such that © € A C A; N V.(z) and z €
B C BiNV.(x). Let a; be an order arc in C(X) from {z} to A
[17, Theorem (1.8)]. Let ag be an order arc in C(X) from A to
AU B. Let ag be an order arc in C(X) from AU B to = X. Then
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arUag Uag is an arc in Co(X) \ {(g%) " (x1), (¢%) " (x2)} joining
{z} and X. Hence, ¢% (1 UagUag) is an arc in HS,,(X)\ {x1, x2}
joining F'¢ and T%.

Let x € HS,(X) \ {x1,x2}. Now it is easy to construct an arc
in HS,(X) \ {x1,x2} joining x with either F'}{ or T%. Therefore,
HSh(X)\ {x1,x2} is arcwise connected. O

The following theorem shows that indecomposable continua and
hereditarily decomposable continua do not share n-fold hyperspace
suspensions.

Theorem 4.5. Let X be an indecomposable continuum and let
n and m be positive integers. If Y is a hereditarily decomposable
continuum, then HS,,(Y) is not homeomorphic to HS,(X).

Proof: Suppose that HS,,(Y) is homeomorphic to HS,(X) and
let h: HSp(X)—»HS,,(Y) be a homeomorphism.

Since X is indecomposable, HS, (X) \ {T'%, F¢} is not arcwise
connected [10, Theorem 6.2]. In fact, by Lemma 4.3, HS,(X) \
{T'}, F'}} has uncountably many arc components. Then HS,,(Y)\
{h(T%),h(F%)} has uncountably many arc components. Since
HS(Y)\{h(T%), h(F%)} is not arcwise connected, by Lemma 4.4,
FJr e {h(T%),h(F})}. Let x € HS,,(Y') be such that {x, Fy'} =
{h(T%),h(F¥)}. Since HS,,(Y)\{x, Fy"'} is not arcwise connected,
()~ Y(x) € C(Y). Since Y is hereditarily decomposable, (¢*)~*(x)
is a decomposable subcontinuum of Y. Hence, by Lemma 4.2
HS,,(Y)\{x, Fy"'} has exactly two arc components, a contradiction.
Therefore, HS,,(Y) is not homeomorphic to HS,(X). O

Next, we note that Theorem 7.1 of [12] may be strengthened,
with small changes to the proof.

Theorem 4.6. Let X be a hereditarily indecomposable continuum,
and let n and m be integers greater than or equal to two. IfY is a
continuum such that HS,,(Y') is homeomorphic to HS,(X), then
Y is homeomorphic to X.

Next, we consider dimensionally homogeneous n-fold hyperspace
suspensions. First, we note that as a consequence of [14, Lemma
3.5] and [10, Theorem 3.6], we have the following.
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Lemma 4.7. Let X be a graph topologically different from an arc
and a simple closed curve, and let n be a positive integer. Then
dim(HS,(X)) > 2n+ 1.

Theorem 4.8. Let X be a locally connected continuum and let
n be a positive integer. If HS,(X) is dimensionally homogeneous,
then X does not contain a free arc or X is either an arc or a simple
closed curve.

Proof: Suppose X contains a free arc. Then dim(H S, (X)) = 2n
[10, Corollary 3.10]. Hence, by [10, Theorem 3.6], dim(H S, (X)) =
dim(C,(X)). Thus, X is a graph [11, Theorem 6.8.3]. This implies,
by Lemma 4.7, that X is either an arc or a simple closed curve. [

The following theorem is a partial converse of Theorem 4.8.

Theorem 4.9. If X is an arc or a simple closed curve, then HS,(X)
is dimensionally homogeneous.

Proof: If X is an arc or a simple closed curve, by [10, Corollary
3.10], HS,(X) is a 2n-dimensionally Cantor manifold. The theorem
now follows from [6, A), pp. 93 and 94]. O

Let us recall that there exists a locally connected continuum X
without free arcs such that HS(X) is not homeomorphic to the
Hilbert cube [3, Example 5.3]. Hence, we have the following.

Question 4.10. If X is a locally connected continuum without
free arcs and n is a positive integer, then is HS,,(X) dimensionally
homogeneous?

Note that for locally connected and contractible continua without
free arcs, it is known that their n-fold hyperspace suspension is
homeomorphic to the Hilbert cube [10, Theorem 5.3]. Hence, in
this case, we have a positive answer to Question 4.10.

Now, we consider arc-smoothness on n-fold hyperspace suspen-
sions.

Remark 4.11. Note that if X is the unit circle, then, since C(X)
is a 2-cell and F1(X) is the manifold boundary of the cell [17,
Example (0.55)], C(X) is arc-smooth [4, Introduction, p. 545], but
HS(X) is not arc-smooth, because HS(X) is a 2-sphere, which is
not contractible.
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Theorem 4.12. If X is an arc-smooth continuum and n is a pos-
itive integer, then HS, (X) is arc-smooth.

Proof: Let G: C,,(X) x [0,1] — C,(X) be the map defined in the
proof of Theorem 3.7. Let K: HS,(X) x[0,1] = HS,(X) be given
by
Iy, if x = F%;

q% (G (((J?()*l (X),t)) . if x # FY.

Then K is continuous by [2, Theorem 4.3, p. 126]. Observe that for
each x € HS,(X), K(x,0) = F'y and K(x,1) = x. It is also easy to
see that K (K (x, s),t) = K(x,min{s,t}) for all s,t € [0,1] and each
X € HS,(X). Hence, HS,,(X) is freely contractible. Therefore, by
[4, Theorem II-3-B|, HS,(X) is arc-smooth. O
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