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Electronically published on October 22, 2010

Topology Proceedings

Web: http://topology.auburn.edu/tp/
Mail: Topology Proceedings

Department of Mathematics & Statistics
Auburn University, Alabama 36849, USA

E-mail: topolog@auburn.edu
ISSN: 0146-4124

COPYRIGHT c⃝ by Topology Proceedings. All rights reserved.



TOPOLOGY
PROCEEDINGS
Volume 38 (2011)
Pages 253-278

http://topology.auburn.edu/tp/

E-Published on October 22, 2010

INVERSE HYPERSYSTEMS

NIKICA UGLEŠIĆ

Abstract. The notion of a (generalized) inverse hypersys-
tem in a category 𝒞, that generalizes the known notion of a
generalized inverse system, is introduced via a functor of a
cofinally small weakly cofiltered category to 𝒞. The appropri-
ate morphisms are also defined such that they generalize the
morphisms of generalized inverse systems. The correspond-
ing category 𝑃𝑅𝑂-𝒞 is constructed such that 𝑝𝑟𝑜-𝒞 and 𝑃𝑟𝑜-
𝒞 are subcategories of it. In comparison to the relationship
between 𝑝𝑟𝑜-𝒞 and 𝑃𝑟𝑜-𝒞, the essential benefit is that there
exist inverse hypersystems which are not isomorphic to any
generalized inverse system. The notion of a cofinite inverse
hypersystem is also introduced, and it is proven that every
generalized inverse hypersystem is isomorphic to a cofinite
inverse hypersystem. At the end, it is shown by example how
an inverse hypersystem could occur.

1. Introduction

Since 1960, when Alexander Grothendieck introduced the no-
tion of a pro-category and the appropriate technique (see [7]), pro-
categories have had a very wide range of applications, especially in
geometric and algebraic topology (see [1], [2], [6], [11], [3]). How-
ever, it has been noticed that in some considerations, the notion
of an inverse system is too restrictive. Namely, there are specific
circumstances in which more than one morphism between a pair
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254 N. UGLEŠIĆ

of terms of an inverse system has occurred. To consider such a
case, Sibe Mardešić and Jack Segal [11] introduced the notion of a
generalized inverse system. This requires generalizing and extend-
ing the pro-category 𝑝𝑟𝑜-𝒞 to a larger one, denoted by 𝑃𝑟𝑜-𝒞 [11].
Although very useful as tools, the generalized inverse systems and
“pro-category” 𝑃𝑟𝑜-𝒞 cannot yield any essentially new result com-
pared to the inverse systems and pro-category 𝑝𝑟𝑜-𝒞. Namely, every
generalized inverse system 𝑿 admits an (ordinary) inverse system
𝑿 ′ which are isomorphic objects of 𝑃𝑟𝑜-𝒞 [11, Theorem I.1.4]. In
other words, 𝑝𝑟𝑜-𝒞 ⊆ 𝑃𝑟𝑜-𝒞 is a skeletal subcategory. Therefore, a
new extension is needed.

The presented one is based on the following replacement: Instead
of the requirement that for every pair 𝑝𝑢, 𝑝𝑣 : 𝑋𝜆′ ⇉ 𝑋𝜆, there ex-
ists a 𝑝𝑢′ : 𝑋𝜆′′ → 𝑋𝜆′ satisfying 𝑝𝑢𝑝𝑢′ = 𝑝𝑣𝑝𝑢′ , we put a weaker
condition: for every pair 𝑝𝑢, 𝑝𝑣 : 𝑋𝜆′ ⇉ 𝑋𝜆, there exists a pair
𝑝𝑢′ , 𝑝𝑣′ : 𝑋𝜆′′ ⇉ 𝑋𝜆′ satisfying 𝑝𝑢𝑝𝑢′ = 𝑝𝑣𝑝𝑣′ . The idea came from
studying 𝑆-equivalence and the corresponding sequence of the 𝑆𝑛-
equivalences (see [10], [14], [4]), where such families of morphisms
between the terms of inverse sequences naturally occurred. Ac-
cording to that weaker condition, the notion of a weakly cofiltered
category is introduced. Consequently, in the usual way, the notion
of a generalized inverse system is generalized to so-called (gener-
alized) inverse hypersystem. More precisely, a generalized inverse
hypersystem 𝑿 ≡ (𝑋𝜆, 𝑝𝑢,Λ) in a category 𝒞 is a (covariant) func-
tor 𝑋 : Λ→ 𝒞 of any cofinally small weakly cofiltered category Λ to
the category 𝒞. Further, the notion of a map of generalized inverse
systems is generalized to a map of (generalized) inverse hypersys-
tems, 𝑿 → 𝒀 = (𝑌𝜇, 𝑞𝑣,𝑀), such that, for every 𝜇 ∈ 𝑂𝑏(𝑀), a
unique 𝑓𝜇 : 𝑋𝑓(𝜇) → 𝑌𝜇 is replaced by a set 𝐹𝜇 of morphisms sub-
jected to certain conditions. Finally, the morphisms of generalized
inverse hypersystems are defined to be the equivalence classes of the
corresponding maps by an appropriate equivalence relation. The
obtained category is denoted by 𝑃𝑅𝑂-𝒞. Its subcategory 𝑃𝑅𝑂1-𝒞,
determined by all the morphisms having the representatives with
all 𝐹𝜇 singletons, is also considered. By construction,

𝑝𝑟𝑜-𝒞 ⊆ 𝑃𝑟𝑜-𝒞 ⊆ 𝑃𝑅𝑂1-𝒞 ⊆ 𝑃𝑅𝑂-𝒞
holds, and 𝑃𝑟𝑜-𝒞 is not a skeleton of 𝑃𝑅𝑂1-𝒞 (Theorem 4.6).
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The main results of the paper are as follows:

1. There exist categories 𝒞 (for example, 𝒞 ∈ {Set,Top,H(Top)})
and there exist generalized inverse hypersystems in 𝒞 which are
not isomorphic in 𝑃𝑅𝑂-𝒞 to any generalized inverse system in 𝒞
(Theorem 4.6 and Corollary 4.8).

2. Every generalized inverse hypersystem 𝑿 = (𝑋𝜆, 𝑝𝑢,Λ) in a
category 𝒞 is isomorphic to a “small subhypersystem” 𝑿 ′ of the
kind (𝑋𝜆′ , 𝑝𝑢, (Λ

′,≤)), where 𝜆′
1 ≤ 𝜆′

2 if and only if Λ′(𝜆′
2, 𝜆

′
1) ∕= ∅

(Theorem 4.11).

By that fact, it makes sense (and, above all, is very useful) to con-
sider inverse hypersystems (Definition 4.12) which are those gen-
eralized inverse hypersystems 𝑿 = (𝑋𝜆, 𝑝𝑢,Λ) having a directed
preorder ≤ on the set 𝑂𝑏(Λ) such that

(∀𝜆, 𝜆′) ∈ 𝑂𝑏(Λ)𝜆 ≤ 𝜆′ ⇔ Λ(𝜆′, 𝜆) ∕= ∅.

Such an inverse hypersystem 𝑿 is denoted by (𝑋𝜆, 𝑝𝑢, (Λ,≤)). Fur-
ther, the notion of a cofinite inverse hypersystem in a category 𝒞 is
introduced in the most natural way.

The main fact is as follows.

3. Every generalized inverse hypersystem 𝑿 = (𝑋𝜆, 𝑝𝑢,Λ) in a
category 𝒞 is isomorphic to an inverse hypersystem 𝒀 = (𝑌𝜇, 𝑞𝑣,
(𝑀,≤)) with 𝑀 cofinite and ordered such that every 𝑌𝜇 is an 𝑋𝜆(𝜇)

and {𝑞𝑣 ∣ 𝑞𝑣 : 𝑌𝜇′ → 𝑌𝜇} = {𝑝𝑢 ∣ 𝑝𝑢 : 𝑋𝜆(𝜇′) → 𝑋𝜆(𝜇)} (Theorem
5.3).

2. A weakly cofiltered category

Recall that a category Λ is called cofiltered (dual to filtered, see
[1], [2], [6], [11], [3]; in some places the words “filtering” and “cofil-
tering” are used), if the following two conditions are fulfilled.

(i) (∀𝜆𝑗 ∈ 𝑂𝑏(Λ), 𝑗 = 1, 2)(∃𝑢𝑗 ∈ Λ(𝜆, 𝜆𝑗), 𝑗 = 1, 2), i.e., every
pair 𝜆1 and 𝜆2 of objects admits a diagram

𝜆1

𝜆2

↖ 𝑢1

↙ 𝑢2

𝜆 ;
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(ii) (∀𝑢, 𝑣 ∈ Λ(𝜆′, 𝜆)(∃𝑤 ∈ Λ(𝜆′′, 𝜆′)) 𝑢𝑤 = 𝑣𝑤, i.e., the follow-
ing diagram commutes

𝜆

𝑢←
←
𝑣

𝜆′ 𝑤← 𝜆′′.

Example 2.1 ([8, VI. 16]). Every category satisfying condition (i)
and having equalizers is cofiltered.

A category Λ is said to be cofinally (or essentially) small, pro-
vided there exists a small subcategory Λ′ ⊆ Λ which is cofinal in
Λ; i.e., for every object 𝜆 of Λ, there exist an object 𝜆′ of Λ′ and a
morphism 𝑢 : 𝜆′ → 𝜆. The simplest example of a (cofinally) small
cofiltered category is a directed preordered set (Λ,≤). In that case,
for every pair 𝜆, 𝜆′ ∈ Λ, 𝑐𝑎𝑟𝑑(Λ(𝜆′, 𝜆)) ≤ 1, and Λ(𝜆′, 𝜆) ∕= ∅ if and
only if 𝜆 ≤ 𝜆′.

Example 2.2. Let 𝐴 be an infinite set, and let 𝐵 = {𝑏𝑖 ∣ 𝑖 ∈
ℕ} ⊆ 𝐴 be a countable subset such that for 𝑖 ∕= 𝑗, 𝑏𝑖 ∕= 𝑏𝑗 . Put
𝜆1 = 𝐴, and by induction, 𝜆𝑖+1 = 𝜆𝑖 ∖ {𝑏𝑖}, 𝑖 ∈ ℕ. Further, for
every 𝑖 ∈ ℕ, put 𝑢𝑖 : 𝜆𝑖+1 → 𝜆𝑖 to be the inclusion function, and
let 𝑣𝑖 : 𝜆𝑖+1 → 𝜆𝑖 be the function defined by

𝑣𝑖(𝑎) =

{
𝑎, 𝑎 ∕= 𝑏𝑖+1

𝑏𝑖+2, 𝑎 = 𝑏𝑖+1 .

Let us define a category Λ by putting 𝑂𝑏(Λ) = {𝜆𝑖 ∣ 𝑖 ∈ ℕ},
Λ(𝜆𝑖, 𝜆𝑖) = {1𝜆𝑖

}, Λ(𝜆𝑖′ , 𝜆𝑖) = ∅ whenever 𝑖′ < 𝑖, and let Λ(𝜆𝑖′ , 𝜆𝑖)
be the set of all possible compositions of the above defined functions
whenever 𝑖′ > 𝑖. Then Λ is a small cofiltered category. Indeed,
condition (i) holds via max{𝑖, 𝑖′}, while condition (ii) follows by
the fact that given any 𝑢, 𝑣 : 𝜆𝑖′ → 𝜆𝑖 of Λ, 𝑖 ≤ 𝑖′, the compositions

𝑢𝑢𝑖′+1 = 𝑣𝑢𝑖′+1 : 𝜆𝑖′+1 → 𝜆𝑖

coincide with the inclusion 𝜆𝑖′+1 ↪→ 𝜆𝑖. (Moreover, it is readily
seen that for every pair 𝑖 < 𝑖′, the set Λ(𝜆𝑖′ , 𝜆𝑖) consists of two
elements—the inclusion and the function that is the identity at
each element but 𝑏𝑖′ , which goes to 𝑏𝑖′+1.)

In certain considerations, condition (ii) seems to be too restric-
tive. Therefore, we introduce a weaker one obtaining a more general
type of “cofiltered” category in the following way.
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Definition 2.3. A category Λ is said to be weakly cofiltered (or
pairwise cofiltered) provided condition (i) and the following condi-
tion are fulfilled.

(ii)′ (∀𝑢1,𝑢2 ∈ Λ(𝜆′, 𝜆)(∃𝑢′1,𝑢′2 ∈ Λ(𝜆′′, 𝜆′)) 𝑢1𝑢
′
1 = 𝑢2𝑢

′
2 ; i.e.,

the following diagram commutes

𝜆
𝑢1 ↙

𝑢2 ↖

𝜆′

𝜆′

↖ 𝑢′1

↙ 𝑢′2
𝜆′′ .

The dual notion is a weakly filtered (or pairwise filtered) category.

Example 2.4. Let 𝐴 be a set such that 𝑐𝑎𝑟𝑑(𝐴) ≥ 2, and let 𝜎 :
𝐴→ 𝐴 be a permutation such that 𝜎2 = 1𝐴 and 𝜎 ∕= 1𝐴. For every
𝑖 ∈ ℕ, put 𝜆𝑖 = 𝐴. Further, for every 𝑖 ∈ ℕ, put 𝑢1 = 1𝐴 : 𝜆𝑖+1 →
𝜆𝑖 and 𝑢2 = 𝜎 : 𝜆𝑖+1 → 𝜆𝑖. Let us define a category Λ by putting
𝑂𝑏(Λ) = {𝜆𝑖 ∣ 𝑖 ∈ ℕ}, Λ(𝜆𝑖, 𝜆𝑖) = {1𝜆𝑖

} = {1𝐴}, Λ(𝜆𝑖′ , 𝜆𝑖) =
∅ whenever 𝑖′ < 𝑖, and let Λ(𝜆𝑖′ , 𝜆𝑖) be the set of all possible
compositions of members of {𝑢1, 𝑢2} = {1𝐴, 𝜎} whenever 𝑖′ > 𝑖.
Then Λ is a small weakly cofiltered category, which is not cofiltered.
Indeed, condition (i) holds by max{𝜆𝑖.𝜆𝑖′}. To verify condition
(ii)′, first observe that for every pair 𝑖 < 𝑖′, the morphism set
Λ(𝜆𝑖′ , 𝜆𝑖) = {1𝐴, 𝜎}. Then 1𝐴𝜎 = 𝜎1𝐴, which shows that condition
(ii)′ is fulfilled. On the other hand,

1𝐴1𝐴 = 1𝐴 ∕= 𝜎 = 𝜎1𝐴 and

1𝐴𝜎 = 𝜎 ∕= 1𝐴 = 𝜎2 = 𝜎𝜎,

which shows that condition (ii) does not hold.

Remark 2.5. Observe that every weakly cofiltered category Λ,
which is not cofiltered, must have infinitely many objects, i.e.,
𝑐𝑎𝑟𝑑(𝑂𝑏(Λ)) ≥ ℵ0. Indeed, in any finite case, by conditions (i) and
(ii)′, there exists a 𝜆max ∈ 𝑂𝑏(Λ) such that for every 𝜆 ∈ 𝑂𝑏(Λ),

𝑐𝑎𝑟𝑑(Λ(𝜆max, 𝜆)) = 1.

However, this implies that Λ is cofiltered.

Lemma 2.6. Condition (ii) implies condition (ii)′, while condi-
tions (i) and (ii)′ do not imply condition (ii).

Proof: The first statement is obviously true (put 𝑢′1 = 𝑢′2 ≡ 𝑤),
while the second one follows by Example 2.4 above. □
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Lemma 2.7. A category Λ is weakly cofiltered if and only if con-
dition (i) and the following strengthening of condition (ii)′ are ful-
filled.

(ii)′′ (∀𝑢𝑗 ∈ Λ(𝜆𝑗 , 𝜆), 𝑗 = 1, 2)(∃𝑢′𝑗 ∈ Λ(𝜆′, 𝜆𝑗), 𝑗 = 1, 2) 𝑢1𝑢
′
1

= 𝑢2𝑢
′
2 ; i.e., the following diagram commutes

𝜆
𝑢1 ↙

𝑢2 ↖

𝜆1

𝜆2

↖ 𝑢′1

↙ 𝑢′2
𝜆′ .

Proof: It is enough to prove that (i) and (ii)′ imply (ii)′′. Let 𝑢𝑗 ∈
Λ(𝜆𝑗 , 𝜆), 𝑗 = 1, 2. By (i), there exist 𝑣𝑗 ∈ Λ(𝜆∗, 𝜆𝑗), 𝑗 = 1, 2. Then
𝑢𝑗𝑣𝑗 ∈ Λ(𝜆∗, 𝜆), 𝑗 = 1, 2. By (ii)′, there exist 𝑣′1, 𝑣′2 ∈ Λ(𝜆′, 𝜆∗)
such that (𝑢1𝑣1)𝑣

′
1 = (𝑢2𝑣2)𝑣

′
2. Put 𝑢

′
𝑗 = 𝑣𝑗𝑣

′
𝑗 ∈ Λ(𝜆′, 𝜆𝑗), 𝑗 = 1, 2.

Then,

𝑢1𝑢
′
1 = 𝑢1𝑣1𝑣

′
1 = 𝑢2𝑣2𝑣

′
2 = 𝑢2𝑢

′
2,

which shows that (ii)′′ holds. □
Observe that, according to Lemma 2.7, every category satisfying

condition (i) and having pullbacks (compare Example 2.1) is weakly
cofiltered [8, VI. 21]. The next characterizations fully explain the
term “pairwise cofiltered.”

Proposition 2.8. Condition (ii) ′ of a category Λ is equivalent to
the following one.

(a) For every pair 𝜆, 𝜆′ ∈ 𝑂𝑏(Λ), every 𝑛 ∈ ℕ, and every
{𝑢1, . . . , 𝑢𝑛} ⊆ Λ(𝜆′, 𝜆), there exist a 𝜆′′ ∈ 𝑂𝑏(𝜆) and a
{𝑢′1, . . . , 𝑢′𝑛} ⊆ Λ(𝜆′′, 𝜆′) such that all composites 𝑢𝑖𝑢

′
𝑖 ∈

Λ(𝜆′′, 𝜆), 𝑖 = 1, . . . , 𝑛, coincide.

Proof. The implication (a) ⇒ (ii)′ is obviously true.

(ii)′ ⇒ (a) is by induction. If 𝑛 = 1, the statement is trivial. If
𝑛 = 2, (a) is (ii)′. Let 𝑛 ∈ ℕ, 𝑛 > 2, and assume that (a) holds for
every 𝑘 ∈ ℕ, 𝑘 < 𝑛. Let {𝑢1, . . . , 𝑢𝑛} ⊆ Λ(𝜆′, 𝜆). Then there exists
{𝑢′1, . . . , 𝑢′𝑛−1} ∈ Λ(𝜆′′, 𝜆′) such that 𝑢1𝑢

′
1 = ⋅ ⋅ ⋅ = 𝑢𝑛−1𝑢

′
𝑛−1 ≡ 𝑣1.

Further, by the case 𝑛 = 2, for 𝑣1, 𝑣2 ≡ 𝑢𝑛𝑢
′
𝑛−1 ∈ Λ(𝜆′′, 𝜆), there

exist 𝑣′1, 𝑣′2 ∈ Λ(𝜆′′, 𝜆′′′) such that 𝑣1𝑣
′
1 = 𝑣2𝑣

′
2. Put 𝑢′′𝑖 = 𝑢′𝑖𝑣

′
1 ∈

Λ(𝜆′′′, 𝜆′), 𝑖 = 1, . . . , 𝑛− 1, and 𝑢′′𝑛 = 𝑢′𝑛−1𝑣
′
2 ∈ Λ(𝜆′′′, 𝜆′). Then

𝑢𝑖𝑢
′′
𝑖 = 𝑢𝑖𝑢

′
𝑖𝑣

′
1 = 𝑣1𝑣

′
1, 𝑖 = 1, . . . , 𝑛− 1, and
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𝑢𝑛𝑢
′′
𝑛 = 𝑢𝑛𝑢

′
𝑛−1𝑣

′
2 = 𝑣2𝑣

′
2 = 𝑣1𝑣

′
1.

That completes the proof. □

Proposition 2.9. Condition (ii) ′′ of a category Λ is equivalent to
the following one.

(b) For every 𝑛 ∈ ℕ and every 𝑢𝑖 ∈ Λ(𝜆𝑖, 𝜆), 𝑖 = 1, . . . , 𝑛, there
exist a 𝜆′ ∈ 𝑂𝑏(𝜆) and a 𝑢′𝑖 ∈ Λ(𝜆′, 𝜆𝑖), 𝑖 = 1, . . . , 𝑛, such
that all composites 𝑢𝑖𝑢

′
𝑖 ∈ Λ(𝜆′, 𝜆), 𝑖 = 1, . . . , 𝑛, coincide.

Proof: The implication (b) ⇒ (ii)′′ is obviously true.

(ii)′′ ⇒ (b) is by induction. If 𝑛 = 1, the statement is trivial.
If 𝑛 = 2, (b) is (ii)′′. Let 𝑛 ∈ ℕ, 𝑛 > 2, and assume that (b)
holds for every 𝑘 ∈ ℕ, 𝑘 < 𝑛. Let 𝑢𝑖 ∈ Λ(𝜆𝑖, 𝜆), 𝑖 = 1, . . . , 𝑛.
Then there exist a 𝜆′ and a 𝑢′𝑖 ∈ Λ(𝜆′, 𝜆𝑖), 𝑖 = 1, . . . , 𝑛 − 1, such
that 𝑢1𝑢

′
1 = ⋅ ⋅ ⋅ = 𝑢𝑛−1𝑢

′
𝑛−1 ≡ 𝑣1. Further, by the case 𝑛 = 2,

for 𝑣1 ∈ Λ(𝜆′, 𝜆) and 𝑣2 ≡ 𝑢𝑛 ∈ Λ(𝜆𝑛, 𝜆), there exist a 𝜆′′, a
𝑣′1 ∈ Λ(𝜆′′, 𝜆′), and a 𝑣′2 ∈ Λ(𝜆′′, 𝜆𝑛) such that 𝑣1𝑣

′
1 = 𝑣2𝑣

′
2. Put

𝑢′′𝑖 = 𝑢′𝑖𝑣
′
1 ∈ Λ(𝜆′′, 𝜆𝑖), 𝑖 = 1, . . . , 𝑛 − 1, and 𝑢′′𝑛 = 𝑣′2 ∈ Λ(𝜆′′, 𝜆𝑛).

Then

𝑢𝑖𝑢
′′
𝑖 = 𝑢𝑖𝑢

′
𝑖𝑣

′
1 = 𝑣1𝑣

′
1, 𝑖 = 1, . . . , 𝑛− 1 and

𝑢𝑛𝑢
′′
𝑛 = 𝑣2𝑣

′
2 = 𝑣1𝑣

′
1.

That completes the proof. □
The following consequence of the previously obtained facts is

obviously true.

Corollary 2.10. A category Λ is weakly cofiltered if and only if
condition (i) and one (equivalently, all) of conditions (ii)′, (ii)′′,
(a), or (b) are fulfilled.

3. Generalized inverse hypersystems

Recall the notion of a generalized inverse system ([11, Theorem
I.1.4]). Let 𝒞 be a category, and let Λ be a cofinally small cofiltered
category. A generalized inverse system in 𝒞 is a (covariant) functor
𝑋 : Λ→ 𝒞, usually denoted by𝑿 = (𝑋𝜆, 𝑝𝑢,Λ), where𝑋𝜆 ≡ 𝑋(𝜆),
𝜆 ∈ 𝑂𝑏(Λ), and 𝑝𝑢 ≡ 𝑋(𝑢) : 𝑋𝜆′ → 𝑋𝜆, 𝑢 ∈ Λ(𝜆′, 𝜆). In the special
case of a directed preordered set Λ, we get an (ordinary) inverse
system in 𝒞 (𝑝𝑢 ≡ 𝑝𝜆𝜆′ is unique, 𝜆 ≤ 𝜆′) (see [7], [1], [2], [11], [3]).



260 N. UGLEŠIĆ

Example 3.1. Let Λ be the small cofiltered category of Example
2.2, and let 𝒞 be any category. Then every functor 𝑋 : Λ→ 𝒞 is a
generalized inverse system 𝑿 = (𝑋𝜆, 𝑝𝑢,Λ) in 𝒞. If 𝑋 is faithful,
then 𝑿 is not an inverse system. In any case, 𝑿 may be viewed
as a “generalized inverse sequence” (𝑋 ′

𝑖 = 𝑋𝜆𝑖
, 𝑝𝑢,ℕ) in 𝒞 such

that 𝑝𝑢 : 𝑋 ′
𝑖′ → 𝑋 ′

𝑖, 𝑖 ≤ 𝑖′, takes at most two values in 𝒞(𝑋 ′
𝑖′ , 𝑋

′
𝑖),

while 𝒞(𝑋 ′
𝑖′ , 𝑋

′
𝑖) = ∅ whenever 𝑖 > 𝑖′. Especially for 𝒞 = Set and

𝑋 : Λ ↪→ Set (the inclusion functor), the category Λ becomes a
“generalized inverse sequence.”

We generalize the notion of a generalized inverse system to the
weakly cofiltered categories by analogy as follows.

Definition 3.2. A generalized inverse hypersystem in a category
𝒞 is a (covariant) functor 𝑋 : Λ → 𝒞, where Λ is a cofinally small
weakly cofiltered category.

In analogy with the previous (more special) case, we shall again
denote a generalized inverse hypersystem 𝑋 : Λ → 𝒞 by 𝑿 =
(𝑋𝜆, 𝑝𝑢,Λ).

Example 3.3. Let Λ be the small weakly cofiltered category of
Example 2.4, and let 𝒞 be any category. Then every functor 𝑋 :
Λ → 𝒞 is a generalized inverse hypersystem 𝑿 = (𝑋𝜆, 𝑝𝑢,Λ) in 𝒞.
If 𝑋 is faithful, then 𝑿 is not a generalized inverse system. In any
case, 𝑿 may be viewed as a “generalized inverse hypersequence”
(𝑋 ′

𝑖 = 𝑋𝜆𝑖
, 𝑝𝑢,ℕ) in 𝒞 such that 𝑝𝑢 : 𝑋 ′

𝑖′ → 𝑋 ′
𝑖, 𝑖 ≤ 𝑖′, takes at

most two values in 𝒞(𝑋 ′
𝑖′ , 𝑋

′
𝑖), while 𝒞(𝑋 ′

𝑖′ , 𝑋
′
𝑖) = ∅ whenever 𝑖 > 𝑖′.

Especially for 𝒞 = 𝑆𝑒𝑡 and 𝑋 : Λ ↪→ 𝑆𝑒𝑡 (the inclusion functor),
the category Λ becomes a generalized inverse hypersequence that
is not a generalized inverse sequence.

4. Category of generalized inverse hypersystems

First recall the notion of a mapping of generalized inverse systems
([11, Theorem I.1.4]). Let 𝑿 and 𝒀 = (𝑌𝜇, 𝑞𝑣,𝑀) be generalized
inverse systems in a category 𝒞. A map of 𝑿 to 𝒀 is an ordered
pair (𝑓, 𝑓𝜇) consisting of a function 𝑓 : 𝑂𝑏(𝑀) → 𝑂𝑏(Λ) and of a
collection of 𝒞-morphisms 𝑓𝜇 : 𝑋𝑓(𝜇) → 𝑌𝜇, 𝜇 ∈ 𝑂𝑏(𝑀), so that the
condition

(∀𝑣 ∈𝑀(𝜇′, 𝜇))(∃𝑢 ∈ Λ(𝜆, 𝑓(𝜇)))(∃𝑢′ ∈ Λ(𝜆, 𝑓(𝜇′)))
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is fulfilled, such that the corresponding diagram

𝑋𝑓(𝜇)
𝑝𝑢← 𝑋𝜆

𝑋𝑓(𝜇′) ↙ 𝑝𝑢′

𝑓𝜇 ↓ ↓ 𝑓𝜇′

𝑌𝜇 ←
𝑞𝑣

𝑌𝜇′

in 𝒞 commutes, i.e., 𝑓𝜇𝑝𝑢 = 𝑞𝑣𝑓𝜇′𝑝𝑢′ . By the above definition,
if 𝑿 and 𝒀 are inverse systems in 𝒞, then every map (𝑓, 𝑓𝜇) :
𝑿 → 𝒀 of generalized inverse systems is an ordinary map of inverse
systems (a morphism of 𝑖𝑛𝑣-𝒞). The identity map on a generalized
inverse system 𝑿 in 𝒞 is defined by (1𝑂𝑏(Λ), 1𝑋𝜆

). The composition
of these maps is defined by (𝑔, 𝑔𝜈)(𝑓, 𝑓𝜇) = (𝑓𝑔, 𝑔𝜈𝑓𝑔(𝜈)). All the
generalized inverse systems in any category 𝒞, as objects, and all the
corresponding maps between them, as morphisms, make a category
denoted by 𝐼𝑛𝑣-𝒞. Clearly, the ordinary inv-category 𝑖𝑛𝑣-𝒞 is a
full subcategory of 𝐼𝑛𝑣-𝒞. A map (of generalized inverse systems)
(𝑓, 𝑓𝜇) : 𝑿 → 𝒀 is said to be equivalent to a map (𝑓 ′, 𝑓 ′

𝜇) : 𝑿 →
𝒀 , denoted by (𝑓, 𝑓𝜇) ∼ (𝑓 ′, 𝑓 ′

𝜇), provided each 𝜇 admits a 𝜆 and
morphisms 𝑢 : 𝜆 → 𝑓(𝜇) and 𝑢′ : 𝜆 → 𝑓 ′(𝜇) of Λ such that the
corresponding diagram

𝑋𝑓(𝜇)
𝑝𝑢← 𝑋𝜆

𝑋𝑓 ′(𝜇) ↙ 𝑝𝑢′

𝑓𝜇 ↓ ↙ 𝑓 ′
𝜇

𝑌𝜇

in 𝒞 commutes, i.e., 𝑓𝜇𝑝𝑢 = 𝑓 ′
𝜇𝑝𝑢′ . This is an equivalence rela-

tion on each set 𝐼𝑛𝑣-𝒞(𝑿,𝒀 ), which preserves composition. Thus,
there exists the corresponding quotient category (𝐼𝑛𝑣-𝒞)/(∼), de-
noted by 𝑃𝑟𝑜-𝒞. The composition of morphisms of 𝑃𝑟𝑜-𝒞 (the
equivalence classes [(𝑓, 𝑓𝜇)] ≡ 𝒇 : 𝑿 → 𝒀 ) is defined by composing
representatives, i.e.,

𝒈𝒇 = [(𝑔, 𝑔𝜈)][(𝑓, 𝑓𝜇)] = [(𝑓𝑔, 𝑔𝜈𝑓𝑔(𝜈))].

It is obvious by the above definitions that for every category 𝒞, the
ordinary pro-category 𝑝𝑟𝑜-𝒞 (see [7], [1], [2]) is a full subcategory
of 𝑃𝑟𝑜-𝒞 ([11], Theorem I.1.4).

A generalization of a morphism of 𝐼𝑛𝑣-𝒞 to generalized inverse
hypersystems is defined below. (For a more restrictive approach
see Remark 4.9.)
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Definition 4.1. Let 𝑿 = (𝑋𝜆, 𝑝𝑢,Λ) and 𝒀 = (𝑌𝜇, 𝑞𝑣,𝑀) be
generalized inverse hypersystems in a category 𝒞. A map of 𝑿 to
𝒀 is an ordered pair (𝑓, 𝐹𝜇) consisting of a function 𝑓 : 𝑂𝑏(𝑀)→
𝑂𝑏(Λ) and of a class of sets 𝐹𝜇 of 𝒞-morphisms 𝑓𝜇 : 𝑋𝑓(𝜇) → 𝑌𝜇,
𝜇 ∈ 𝑂𝑏(𝑀), so that the following two symmetric conditions are
fulfilled:

(1) (∀𝑣 ∈𝑀(𝜇′, 𝜇))(∀𝑓𝜇 ∈ 𝐹𝜇)(∃ 𝑓𝜇′ ∈ 𝐹𝜇′)
(∃𝑢 ∈ Λ(𝜆, 𝑓(𝜇)))(∃𝑢′ ∈ Λ(𝜆, 𝑓(𝜇′)))

such that the corresponding diagram

𝑋𝑓(𝜇)
𝑝𝑢← 𝑋𝜆

𝑋𝑓(𝜇′) ↙ 𝑝𝑢′

𝑓𝜇 ↓ ↓ 𝑓𝜇′

𝑌𝜇 ←
𝑞𝑣

𝑌𝜇′

in 𝒞 commutes;

(1)′ (∀𝑣 ∈𝑀(𝜇′, 𝜇))(∀𝑓𝜇′ ∈ 𝐹𝜇′)(∃ 𝑓𝜇 ∈ 𝐹𝜇)
(∃𝑢′ ∈ Λ(𝜆′, 𝑓(𝜇′)))(∃𝑢 ∈ Λ(𝜆′, 𝑓(𝜇)))

such that the corresponding diagram

𝑋𝑓(𝜇)
𝑝𝑢← 𝑋𝜆′

𝑋𝑓(𝜇′) ↙ 𝑝𝑢′

𝑓𝜇 ↓ ↓ 𝑓𝜇′

𝑌𝜇 ←
𝑞𝑣

𝑌𝜇′

in 𝒞 commutes.

Observe that every map of generalized inverse systems (𝑓, 𝑓𝜇) :
𝑿 → 𝒀 is a map of the generalized inverse hypersystems as well.
(Each 𝐹𝜇 is the singleton {𝑓𝜇}, 𝜇 ∈ 𝑂𝑏(𝑀)). Further, notice that
for 𝑣 = 1𝜇, the condition for a map of generalized inverse hypersys-
tems “generalizes” condition (ii)′ (weak cofiltration) for Λ, relating
the morphisms 𝑓𝜇 : 𝑋𝑓(𝜇) → 𝑌𝜇 of 𝐹𝜇 in a more flexible way than
the bonding morphisms 𝑝𝑢 of an 𝑋𝜆′ to an 𝑋𝜆.

Example 4.2. For every generalized inverse hypersystem 𝑿 =
(𝑋𝜆, 𝑝𝑢,Λ) in a category 𝒞, the class of all bonding morphisms
{𝑝𝑢 ∣ 𝑢 ∈ 𝑀𝑜𝑟(Λ)} provides a map of 𝑿 to itself. Indeed, let
𝑝 : 𝑂𝑏(Λ)→ 𝑂𝑏(Λ) be a function such that

(∀𝜆 ∈ 𝑂𝑏(Λ))Λ(𝑝(𝜆), 𝜆) ∕= ∅.
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For every 𝜆, put

𝑃𝜆 ≡ {𝑝𝑢 ∣ 𝑢 ∈ Λ(𝑝(𝜆), 𝜆)}.
Then (𝑝, 𝑃𝜆) : 𝑿 → 𝑿 is a map of generalized inverse hypersys-
tems. Namely, given a 𝑣 ∈ Λ(𝜆′, 𝜆) and a 𝑝𝑢 ∈ 𝑃𝜆, then condition
(1) holds for every 𝑝𝑢′ ∈ 𝑃𝜆′ . (Use condition (ii)′′ of Λ for the pair
𝑢 ∈ Λ(𝑝(𝜆), 𝜆) and 𝑣𝑢′ ∈ Λ(𝑝(𝜆′), 𝜆). Similarly, given a 𝑣 ∈ Λ(𝜆′, 𝜆)
and a 𝑝𝑢′ ∈ 𝑃𝜆′ , then condition (1)′ holds for every 𝑝𝑢 ∈ 𝑃𝜆.

The identity map on a generalized inverse hypersystem 𝑿 is
defined to be (1𝑂𝑏(Λ), {1𝑋𝜆

}) (put the same 𝑢 = “𝑣” and 𝑢′ = 1𝜆′).
The composition of an (𝑓, 𝐹𝜇) : 𝑿 → 𝒀 and a (𝑔,𝐺𝜈) : 𝒀 → 𝒁 =
(𝑍𝜈 , 𝑟𝑤, 𝑁) is defined by

(𝑔,𝐺𝜈)(𝑓, 𝐹𝜇) = (ℎ,𝐻𝜈) : 𝑿 → 𝒁,

where ℎ = 𝑓𝑔 : 𝑂𝑏(𝑁)→ 𝑂𝑏(Λ) and, for every 𝜈 ∈ 𝑂𝑏(𝑁),

𝐻𝜈 = {𝑔𝜈𝑓𝑔(𝜈) : 𝑋𝑓𝑔(𝜈) → 𝑍𝜈 ∣ 𝑔𝜈 ∈ 𝐺𝜈 , 𝑓𝑔(𝜈) ∈ 𝐹𝑔(𝜈)}.
Hence, we may write (𝑔,𝐺𝜈)(𝑓, 𝐹𝜇) = (𝑓𝑔,𝐺𝜈𝐹𝑔(𝜈)).

Lemma 4.3. The composition of maps of generalized inverse hyper-
systems is well defined and associative. Further, (1𝑂𝑏(Λ), {1𝑋𝜆

})
(𝑓, 𝐹𝜇) = (𝑓, 𝐹𝜇) and (𝑘,𝐾𝜏 )(1𝑂𝑏(Λ), {1𝑋𝜆

}) = (𝑘,𝐾𝜏 ).

Proof: Let 𝑤 ∈ 𝑁(𝜈 ′, 𝜈), and let 𝑔𝜈 ∈ 𝐺𝜈 and 𝑓𝑔(𝜈) ∈ 𝐹𝑔(𝜈). By
condition (1) of (𝑔,𝐺𝜈), for 𝑟𝑤 and 𝑔𝜈 , there exist a 𝑔𝜈′ ∈ 𝐺𝜈′ , a
𝑣 ∈𝑀(𝜇, 𝑔(𝜈)), and a 𝑣′ ∈𝑀(𝜇, 𝑔(𝜈 ′)) such that

𝑔𝜈𝑞𝑣 = 𝑟𝑤𝑔𝜈′𝑞𝑣′ .

Further, by (1) of (𝑓, 𝐹𝜇), for 𝑞𝑣 and 𝑓𝑔(𝜈), there exist an 𝑓𝜇 ∈ 𝐹𝜇,
a 𝑢1 ∈ Λ(𝜆1, 𝑓𝑔(𝜈)), and a 𝑢′1 ∈ Λ(𝜆1, 𝑓(𝜇)) such that

𝑓𝑔(𝜈)𝑝𝑢1 = 𝑞𝑣𝑓𝜇𝑝𝑢′
1
.

By condition (1)′ of (𝑓, 𝐹𝜇), for 𝑞𝑣′ and 𝑓𝜇, there exist an 𝑓𝑔(𝜈′) ∈
𝐹𝑔(𝜈′), a 𝑢′2 ∈ Λ(𝜆2, 𝑓(𝜇)), and a 𝑢2 ∈ Λ(𝜆2, 𝑓𝑔(𝜈

′)) such that

𝑓𝑔(𝜈′)𝑝𝑢2 = 𝑞𝑣′𝑓𝜇𝑝𝑢′
2
.

By condition (ii)′′ of Λ (Lemma 2.7), there exist a 𝑢0 ∈ Λ(𝜆, 𝜆1) and
a 𝑢′0 ∈ Λ(𝜆, 𝜆2) such that 𝑢′1𝑢0 = 𝑢′2𝑢′0. Put 𝑢 = 𝑢1𝑢0 ∈ Λ(𝜆, 𝑔𝑓(𝜈))
and 𝑢′ = 𝑢2𝑢

′
0 ∈ Λ(𝜆, 𝑓𝑔(𝜈 ′)). Then it is readily seen that

𝑔𝜈𝑓𝑔(𝜈)𝑝𝑢 = 𝑟𝑤𝑔𝜈′𝑓𝑔(𝜈′)𝑝𝑢′ ,
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which verifies (1) for (𝑓𝑔,𝐺𝜈𝐹𝑔(𝜈)). (1)′ for (𝑓𝑔,𝐺𝜈𝐹𝑔(𝜈)) holds in
a similar way. Thus, the composite

(𝑔,𝐺𝜈)(𝑓, 𝐹𝜇) = (𝑓𝑔,𝐺𝜈𝐹𝑔(𝜈)) : 𝑿 → 𝒁

is a map of inverse hypersystems.
Let (𝑓, 𝐹𝜇) : 𝑿 → 𝒀 , (𝑔,𝐺𝜈) : 𝒀 → 𝒁 and (ℎ,𝐻𝜔) : 𝒁 →

𝑾 = (𝑊𝜔, 𝑠𝑡,Ω) be maps of inverse hypersystems in a category 𝒞.
Denote 𝐺𝜈𝐹𝑔(𝜈) ≡ 𝐾𝜈 and 𝐻𝜔𝐺ℎ(𝜔) ≡ 𝐿𝜔. Then

(ℎ,𝐻𝜔)((𝑔,𝐺𝜈)(𝑓, 𝐹𝜇)) = (ℎ,𝐻𝜔)(𝑓𝑔,𝐺𝜈𝐹𝑔(𝜈)) ≡ (ℎ,𝐻𝜔)(𝑓𝑔,𝐾𝜈)

= ((𝑓𝑔)ℎ,𝐻𝜔𝐾ℎ(𝜔)) ≡ ((𝑓𝑔)ℎ,𝐻𝜔(𝐺ℎ(𝜔)𝐹𝑔ℎ(𝜔))), while

((ℎ,𝐻𝜔)(𝑔,𝐺𝜈))(𝑓, 𝐹𝜇)) = (𝑔ℎ,𝐻𝜔𝐺ℎ(𝜔))(𝑓, 𝐹𝜇) ≡ (𝑔ℎ, 𝐿𝜔)(𝑓, 𝐹𝜇)

= (𝑓(𝑔ℎ), 𝐿𝜔𝐹𝑔ℎ(𝜔)) ≡ (𝑓(𝑔ℎ), (𝐻𝜔𝐺ℎ(𝜔))𝐹𝑔ℎ(𝜔)).

Since the composition of functions and of 𝒞-morphisms are associa-
tive, the composition of maps of generalized inverse hypersystems
is also associative. The assertions concerning an identity map are
obviously true. □

According to definitions 3.2 and 4.1 and Lemma 4.3, for every
category 𝒞, there exists a certain category, denoted by 𝐼𝑁𝑉 -𝒞, of all
generalized inverse hypersystems in 𝒞 and all maps between them.
It is clear by the definitions that

𝑖𝑛𝑣-𝒞 ⊆ 𝐼𝑛𝑣-𝒞 ⊆ 𝐼𝑁𝑉 -𝒞.
Notice that the second inclusion is not full! Further, notice that
the maps (𝑓, 𝐹𝜇) of generalized inverse hypersystems in 𝒞 having all
𝐹𝜇 = {𝑓𝜇} singletons determine a subcategory of 𝐼𝑁𝑉 -𝒞, denoted
by 𝐼𝑁𝑉1-𝒞. Then

𝑖𝑛𝑣-𝒞 ⊆ 𝐼𝑛𝑣-𝒞 ⊆ 𝐼𝑁𝑉1-𝒞 ⊆ 𝐼𝑁𝑉 -𝒞,
where the first and second inclusion are full.

Finally, we need to extend and generalize the known equivalence
relation on a set 𝐼𝑛𝑣-𝒞(𝑿,𝒀 ) to the set 𝐼𝑁𝑉 -𝒞(𝑿,𝒀 ). A possible
way follows (see also Remark 4.9).

Definition 4.4. Let (𝑓, 𝐹𝜇), (𝑓
′, 𝐹 ′

𝜇) ∈ 𝐼𝑁𝑉 -𝒞(𝑿,𝒀 ). Then (𝑓, 𝐹𝜇)
is said to be equivalent to (𝑓 ′, 𝐹 ′

𝜇), denoted by (𝑓, 𝐹𝜇) ∼ (𝑓 ′, 𝐹 ′
𝜇),

provided the following two symmetric conditions are fulfilled.
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(2) (∀𝜇 ∈ 𝑂𝑏(𝑀))(∀𝑓𝜇 ∈ 𝐹𝜇)(∃𝑓 ′
𝜇 ∈ 𝐹 ′

𝜇)
(∃𝑢 ∈ Λ(𝜆, 𝑓(𝜇)))(∃𝑢′ ∈ Λ(𝜆, 𝑓 ′(𝜇)))

such that the corresponding diagram

𝑋𝑓(𝜇)
𝑝𝑢← 𝑋𝜆

𝑋𝑓 ′(𝜇) ↙ 𝑝𝑢′

𝑓𝜇 ↓ ↙ 𝑓 ′
𝜇

𝑌𝜇

in 𝒞 commutes, i.e., 𝑓𝜇𝑝𝑢 = 𝑓 ′
𝜇𝑝𝑢′ ;

(2)′ (∀𝜇 ∈ 𝑂𝑏(𝑀))(∀𝑓 ′
𝜇 ∈ 𝐹 ′

𝜇)(∃𝑓𝜇 ∈ 𝐹𝜇)
(∃𝑢′ ∈ Λ(𝜆′, 𝑓 ′(𝜇)))(∃𝑢 ∈ Λ(𝜆′, 𝑓(𝜇)))

such that the corresponding diagram

𝑋𝑓(𝜇)
𝑝𝑢← 𝑋𝜆′

𝑋𝑓 ′(𝜇) ↙ 𝑝𝑢′

𝑓𝜇 ↓ ↙ 𝑓 ′
𝜇

𝑌𝜇

in 𝒞 commutes, i.e., 𝑓𝜇𝑝𝑢 = 𝑓 ′
𝜇𝑝𝑢′ .

Observe that this relation restricted to the subset 𝐼𝑛𝑣-𝒞(𝑿,𝒀 ) ⊆
𝐼𝑁𝑉 -𝒞(𝑿,𝒀 ) coincides with the original equivalence relation on
that morphism set.

Lemma 4.5. Definition 4.4 determines an equivalence relation on
each set 𝐼𝑁𝑉 -𝒞(𝑿,𝒀 ), which preserves the category composition
of 𝐼𝑁𝑉 -𝒞.

Proof: It is obvious, by definitions 4.1 and 4.4, that this rela-
tion is reflexive and symmetric. To prove transitivity, assume that
(𝑓, 𝐹𝜇) ∼ (𝑓 ′, 𝐹 ′

𝜇) and (𝑓 ′, 𝐹 ′
𝜇) ∼ (𝑓 ′′, 𝐹 ′′

𝜇 ). Let 𝜇 ∈ 𝑂𝑏(𝑀) and
𝑓𝜇 ∈ 𝐹𝜇. By condition (2) of (𝑓, 𝐹𝜇) ∼ (𝑓 ′, 𝐹 ′

𝜇), for 𝜇 and 𝑓𝜇, there
exist an 𝑓 ′

𝜇 ∈ 𝐹 ′
𝜇, a 𝑢1 ∈ Λ(𝜆1, 𝑓(𝜇)), and a 𝑢′1 ∈ Λ(𝜆1, 𝑓

′(𝜇)) such
that

𝑓𝜇𝑝𝑢1 = 𝑓 ′
𝜇𝑝𝑢′

1
.

Further, by (2) of (𝑓 ′, 𝐹 ′
𝜇) ∼ (𝑓 ′′, 𝐹 ′′

𝜇 ), for 𝜇 and 𝑓 ′
𝜇, there exist an

𝑓 ′′
𝜇 ∈ 𝐹 ′′

𝜇 , a 𝑢2 ∈ Λ(𝜆2, 𝑓
′(𝜇)), and a 𝑢′2 ∈ Λ(𝜆2, 𝑓

′′(𝜇)) such that

𝑓 ′
𝜇𝑝𝑢2 = 𝑓 ′′

𝜇𝑝𝑢′
2
.

By condition (ii)′′ of Λ (Lemma 2.7), there exist a 𝑢0 ∈ Λ(𝜆, 𝜆1)
and a 𝑢′0 ∈ Λ(𝜆, 𝜆2) such that 𝑢′1𝑢0 = 𝑢2𝑢

′
0 ∈ Λ(𝜆, 𝑓 ′(𝜇)). Put
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𝑢 = 𝑢1𝑢0 ∈ Λ(𝜆, 𝑓(𝜇)) and 𝑢′ = 𝑢′2𝑢′0 ∈ Λ(𝜆, 𝑓 ′′(𝜇)). Then it is
readily seen that 𝑓𝜇𝑝𝑢 = 𝑓 ′′

𝜇𝑝𝑢′ , which proves that (2) for (𝑓, 𝐹𝜇)
and (𝑓 ′′, 𝐹 ′′

𝜇 ) is fulfilled. In a similar way, condition (2)′ for (𝑓, 𝐹𝜇)
and (𝑓 ′′, 𝐹 ′′

𝜇 ) holds as well. Thus, (𝑓, 𝐹𝜇) ∼ (𝑓 ′′, 𝐹 ′′
𝜇 ).

Let (𝑓, 𝐹𝜇) ∼ (𝑓 ′, 𝐹 ′
𝜇) : 𝑿 → 𝒀 . Let (𝑔,𝐺𝜈) : 𝒀 → 𝒁 =

(𝑍𝜈 , 𝑟𝑤, 𝑁) be a map of generalized inverse hypersystems in 𝒞.
Then, given a 𝜈 ∈ 𝑂𝑏(𝑁) and a 𝑔𝜈𝑓𝑔(𝜈) ∈ 𝐺𝜈𝐹𝑔(𝜈), by (2) of
(𝑓, 𝐹𝜇) ∼ (𝑓 ′, 𝐹 ′

𝜇), for 𝑔(𝜈) ∈ 𝑂𝑏(𝑀) and 𝑓𝑔(𝜈) ∈ 𝐹𝑔(𝜈), there exist
an 𝑓 ′

𝑔(𝜈) ∈ 𝐹 ′
𝑔(𝜈), a 𝑢 ∈ Λ(𝜆, 𝑓𝑔(𝜈)), and a 𝑢′ ∈ Λ(𝜆, 𝑓 ′𝑔(𝜈)) such

that

𝑔𝜈𝑓𝑓𝑔(𝜈)𝑝𝑢 = 𝑔𝜈𝑓
′
𝑓 ′𝑔(𝜈)𝑝𝑢′ .

Thus, (2) for (𝑔,𝐺𝜈)(𝑓, 𝐹𝜇) and (𝑔,𝐺𝜈)(𝑓
′, 𝐹 ′

𝜇) is fulfilled. Similarly,
(2)′ for (𝑔,𝐺𝜈)(𝑓, 𝐹𝜇) and (𝑔,𝐺𝜈)(𝑓

′, 𝐹 ′
𝜇) holds as well. Therefore,

(𝑔,𝐺𝜈)(𝑓, 𝐹𝜇) ∼ (𝑔,𝐺𝜈)(𝑓
′, 𝐹 ′

𝜇).
Let (ℎ,𝐻𝜔) : 𝑾 = (𝑊𝜔, 𝑠𝑡,Ω) → 𝑿 be a map of generalized

inverse hypersystems in 𝒞. Let 𝜇 ∈ 𝑂𝑏(𝑀) and 𝑓𝜇ℎ𝑓(𝜇) ∈ 𝐹𝜇𝐻𝑓(𝜇).
By (2) of (𝑓, 𝐹𝜇) ∼ (𝑓 ′, 𝐹 ′

𝜇), for 𝜇 and 𝑓𝜇, there exist an 𝑓 ′
𝜇 ∈ 𝐹 ′

𝜇, a
𝑢 ∈ Λ(𝜆, 𝑓(𝜇)), and a 𝑢′ ∈ Λ(𝜆, 𝑓 ′(𝜇)) such that

𝑓𝜇𝑝𝑢 = 𝑓 ′
𝜇𝑝𝑢′ .

Further, by condition (1) of (ℎ,𝐻𝜆), for 𝑢 and ℎ𝑓(𝜇), there exist an
ℎ𝜆 ∈ 𝐻𝜆, a 𝑡1 ∈ Ω(𝜔1, ℎ𝑓(𝜇)), and a 𝑡′1 ∈ Ω(𝜔1, ℎ(𝜆)) such that

ℎ𝑓(𝜇)𝑠𝑡1 = 𝑝𝑢ℎ𝜆𝑠𝑡′1 .

Further, by condition (1)′ of (ℎ,𝐻𝜆), for 𝑢
′ and ℎ𝜆, there exist an

ℎ𝑓 ′(𝜇) ∈ 𝐻𝑓 ′(𝜇), a 𝑡′2 ∈ Ω(𝜔2, ℎ(𝜆)), and a 𝑡2 ∈ Ω(𝜔2, ℎ𝑓
′(𝜇)) such

that

ℎ𝑓 ′(𝜇)𝑠𝑡2 = 𝑝𝑢′ℎ𝜆𝑠𝑡′2 .

By (ii)′′ of Ω (Lemma 2.7), there exist a 𝑡0 ∈ Ω(𝜔, 𝜔1) and a
𝑡′0 ∈ Ω(𝜔, 𝜔2) such that 𝑡′1𝑡0 = 𝑡′2𝑡′0 ∈ Ω(𝜔, ℎ(𝜆)). Put 𝑡 = 𝑡1𝑡0 ∈
Ω(𝜔, ℎ𝑓(𝜇)) and 𝑡′ = 𝑡2𝑡

′
0 ∈ Ω(𝜔, ℎ𝑓 ′(𝜇)). Then one easily verifies

that

𝑓𝜇ℎ𝑓(𝜇)𝑠𝑡 = 𝑓 ′
𝜇ℎ𝑓 ′(𝜇)𝑠𝑡′ .

Thus, (2) for (𝑓, 𝐹𝜇)(ℎ,𝐻𝜔) and (𝑓 ′, 𝐹 ′
𝜇)(ℎ,𝐻𝜔) is fulfilled. In a

quite similar way, (2)′ for (𝑓, 𝐹𝜇)(ℎ,𝐻𝜔) and (𝑓 ′, 𝐹 ′
𝜇)(ℎ,𝐻𝜔) holds

as well. Therefore, (𝑓, 𝐹𝜇)(ℎ,𝐻𝜔) ∼ (𝑓 ′, 𝐹 ′
𝜇)(ℎ,𝐻𝜔). That com-

pletes the proof of the lemma. □
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By Lemma 4.5, for every category 𝒞, there exists the quotient cat-
egory (𝐼𝑁𝑉 -𝒞)/(∼), denoted by 𝑃𝑅𝑂-𝒞. A morphism 𝒇 : 𝑿 → 𝒀
of 𝑃𝑅𝑂-𝒞 is the equivalence class [(𝑓, 𝐹𝜇)] of a morphism (𝑓, 𝐹𝜇) :
𝑿 → 𝒀 of 𝐼𝑁𝑉 -𝒞. The composition is defined via representatives,
i.e.,

𝒈𝒇 = [(𝑔,𝐺𝜈)][(𝑓, 𝐹𝜇)] = [(𝑓𝑔,𝐺𝜈𝐹𝑔(𝜈))].

Observe that the morphisms of 𝑃𝑅𝑂-𝒞 having representatives in
𝐼𝑁𝑉1-𝒞 determine a subcategory, denoted by 𝑃𝑅𝑂1-𝒞 ⊆ 𝑃𝑅𝑂-𝒞,
which is isomorphic to (𝐼𝑁𝑉1-𝒞)/(∼).

By [11, Theorem I.1.4], every generalized inverse system 𝑿 is
isomorphic in 𝑃𝑟𝑜-𝒞 to an inverse system 𝑿 ′ (indexed by a co-
finite directed ordered set and having the terms and bonds of 𝑿).
Therefore, there is no essential benefit in considering 𝑃𝑟𝑜-𝒞 instead
of 𝑝𝑟𝑜-𝒞. However, the next theorem shows that it is not the case for
generalized inverse hypersystems, i.e., for 𝑃𝑅𝑂-𝒞 (even 𝑃𝑅𝑂1-𝒞)
and 𝑃𝑟𝑜-𝒞, equivalently, 𝑝𝑟𝑜-𝒞.
Theorem 4.6. For every category 𝒞, there exist the following func-
torial inclusions of (sub)categories:

𝑝𝑟𝑜-𝒞 ⊆ 𝑃𝑟𝑜-𝒞 ⊆ 𝑃𝑅𝑂1-𝒞 ⊆ 𝑃𝑅𝑂-𝒞,
where the first one is skeletal; the second is full and, in general,
not skeletal; while the third, in general, is not full (equivalently, is
not an isomorphism). Furthermore, there exist a category 𝒞 and a
generalized inverse hypersystem 𝑿 in 𝒞 having the following prop-
erties:

- for every generalized inverse system 𝒀 (having cofinally
many terms which are not initial objects of 𝒞) in 𝒞, the
morphism set 𝑃𝑅𝑂1-𝒞(𝒀 ,𝑿) is empty;

- there exist inverse systems 𝒁 in 𝒞 such that 𝑃𝑅𝑂-𝒞(𝒁,𝑿)
is not empty;

- for every generalized inverse system 𝒀 in 𝒞, 𝑿 is not iso-
morphic to 𝒀 in 𝑃𝑅𝑂-𝒞.

Proof: It follows by the appropriate definitions that the pro-
category 𝑝𝑟𝑜-𝒞 is a full subcategory of 𝑃𝑟𝑜-𝒞. By [11, Theorem
I.1.4], every generalized inverse system 𝑿 is isomorphic in 𝑃𝑟𝑜-𝒞
to an ordinary inverse system 𝑿 ′. Therefore, 𝑝𝑟𝑜-𝒞 is a skeleton
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of 𝑃𝑟𝑜-𝒞. Further, the corresponding definitions imply that 𝑃𝑟𝑜-
𝒞 ⊆ 𝑃𝑅𝑂1-𝒞 is a full subcategory. The rest follows by Example 4.7
and the corresponding consideration below. □

Example 4.7. Let Λ = (𝜆𝑖 = 𝐴, {1𝐴, 𝜎},ℕ) be the small weakly
cofiltered category of Example 2.4. Let 𝒞 = Set, the category of
sets and functions (or Top, the category of topological spaces and
mappings, or H(Top) = Top/(≃), the homotopy category). For
every 𝑖 ∈ ℕ, put 𝑋(𝜆𝑖) = {𝑥, 𝑥′}, 𝑥 ∕= 𝑥′, (in Top and H(Top)—with
the discrete topology). Further, for every 𝑖, put 𝑋(1𝜆𝑖

) = 1{𝑥,𝑥′},
and put

𝑋(𝜎) ≡ 𝑝 : {𝑥, 𝑥′} → {𝑥, 𝑥′}, 𝑝(𝑥) = 𝑥′, 𝑝(𝑥′) = 𝑥.

Then 𝑋 : Λ→ Set (or Top, or H(Top)) is a (covariant) functor; i.e.,

𝑿 = (𝑋𝑖 = {𝑥, 𝑥′}, {1{𝑥,𝑥′}, 𝑝},ℕ), written as

{𝑥, 𝑥′}
1←
←
𝑝

{𝑥, 𝑥′}
1←
←
𝑝

{𝑥, 𝑥′}
1←
←
𝑝

⋅ ⋅ ⋅ ,

is a generalized inverse hypersystem (“hypersequence”) in 𝒞 that is
not a generalized inverse system in 𝒞 (see Example 3.3). Moreover,
for every generalized inverse system 𝒀 having cofinally many terms
which are not initial objects of 𝒞, the set 𝑃𝑅𝑂1-𝒞(𝒀 ,𝑿) is empty,
which is not the case for 𝑃𝑅𝑂-𝒞(𝒀 ,𝑿) even for inverse systems.
If, for instance, 𝒀 and 𝒀 ′ are the rudimentary inverse systems

⌊{𝑥}⌋ ≡ ({𝑥}, 1{𝑥}, {1}) and⌊{𝑥, 𝑥′}⌋ ≡ ({𝑥, 𝑥′}, 1{𝑥,𝑥′}, {1})
in 𝒞, respectively, then the morphism set 𝑃𝑅𝑂-𝒞(𝒀 ,𝑿) is the
singleton {[(𝑐1, {𝑥 7→ 𝑥, 𝑥 7→ 𝑥′}]} = (𝑐1, {𝑥 7→ 𝑥, 𝑥 7→ 𝑥′}), and
𝑃𝑅𝑂-𝒞(𝒀 ′,𝑿) =

{[(𝑐1, {𝑐𝑥, 𝑐𝑥′})], [(𝑐1, {1, 𝑝})], [(𝑐1, {𝑐𝑥, 𝑐𝑥′ , 1, 𝑝})]}
= {(𝑐1, {𝑐𝑥, 𝑐𝑥′}), (𝑐1, {1, 𝑝}), (𝑐1, {𝑐𝑥, 𝑐𝑥′ , 1, 𝑝})}.

However, 𝑿 is not isomorphic in 𝑃𝑅𝑂-𝒞 to any 𝒀 ∈ 𝑂𝑏(𝑃𝑟𝑜-𝒞).
In order to verify the first and third assertions stated in Example

4.7, it suffices (according to [11, Theorem I.1.4] and the construc-
tion of 𝑃𝑅𝑂1-𝒞) to verify them in the case of inverse systems 𝒀 in
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𝒞. Let us consider an arbitrary map of generalized inverse hyper-
systems (𝑔,𝐺𝑖) : 𝒀 → 𝑿, where 𝒀 = (𝑌𝜇, 𝑞𝜇𝜇′ ,𝑀) is an inverse
system in 𝒞. Then, by condition (1), for every pair 𝑖 < 𝑖′ in ℕ and
every 𝑔𝑖 ∈ 𝐺𝑖, there exist a pair 𝑔1𝑖′ , 𝑔

2
𝑖′ ∈ 𝐺𝑖′ and a pair 𝜇1, 𝜇2 ∈𝑀 ,

𝜇𝑗 ≥ 𝑔(𝑖), 𝑔(𝑖′), 𝑗 = 1, 2, such that the following two relations hold:

𝑔𝑖𝑞𝑔(𝑖)𝜇1
= 1{𝑥,𝑥′}𝑔1𝑖′𝑞𝑔(𝑖′)𝜇1

and 𝑔𝑖𝑞𝑔(𝑖)𝜇2
= 𝑝𝑔2𝑖′𝑞𝑔(𝑖′)𝜇2

.

Choose a 𝜇 ∈𝑀 such that 𝜇 ≥ 𝜇1, 𝜇2 and (for the first assertion)
𝑌𝜇 is not an initial object of 𝒞 (i.e., 𝑌𝜇 ∕= ∅). Since 𝒀 is an inverse
system, 𝑔𝑖𝑞𝑔(𝑖)𝜇1

𝑞𝜇1𝜇 = 𝑔𝑖𝑞𝑔(𝑖)𝜇 = 𝑔𝑖𝑞𝑔(𝑖)𝜇2
𝑞𝜇2𝜇 holds, and thus, the

above equalities imply that

𝑔1𝑖′𝑞𝑔(𝑖′)𝜇 = 𝑝𝑔2𝑖′𝑞𝑔(𝑖′)𝜇 .

Now, if [(𝑔,𝐺𝑖)] : 𝒀 → 𝑿 were to belong to 𝑃𝑅𝑂1-𝒞(𝒀 ,𝑿), then
it would admit a representative (𝑔′, 𝐺′

𝑖 = {𝑔′𝑖}), 𝑔′𝑖 : 𝑌𝑔′(𝑖) → 𝑋𝑖 =
{𝑥, 𝑥′}, 𝑖 ∈ ℕ. By the above consideration, it would again imply
that

𝑔′𝑖′𝑞𝑔(𝑖′)𝜇 = 𝑝𝑔′𝑖′𝑞𝑔(𝑖′)𝜇 .

However, it is not possible because, for every 𝑍 ∕= ∅ and every
function ℎ : 𝑍 → {𝑥, 𝑥′}, ℎ ∕= 𝑝ℎ. Thus, 𝑃𝑅𝑂1-𝒞(𝒀 ,𝑿) = ∅.

For the third assertion, let us assume to the contrary; i.e., assume
that there exists an inverse system 𝒀 = (𝑌𝜇, 𝑞𝜇𝜇′ ,𝑀) in 𝒞 such that
𝑿 ∼= 𝒀 in 𝑃𝑅𝑂-𝒞. Then there exist an (𝑓, 𝐹𝜇) : 𝑿 → 𝒀 and a
(𝑔,𝐺𝑖) : 𝒀 →𝑿 of 𝐼𝑁𝑉 -𝒞 such that

(𝑓𝑔,𝐺𝑖𝐹𝑔(𝑖)) ∼ (1ℕ, {1{𝑥,𝑥′}}) and (𝑔𝑓, 𝐹𝜇𝐺𝑓(𝜇)) ∼ (1𝑀 , {1𝑌𝜇}).
First, let us consider the special case of 𝒀 = 𝒀 0 such that 𝑌 0

𝜇 =

{𝑦𝜇, 𝑦𝜇′} for every 𝜇 ∈ 𝑀 ; equivalently, each term 𝑌 0
𝜇 of 𝒀 0 is a

unique pair {𝑦, 𝑦′}. Denote by 𝑞 the permutation 𝑦 7→ 𝑦′, 𝑦′ 7→ 𝑦.
Since

𝒞({𝑦, 𝑦′}, {𝑦, 𝑦′}) = {1{𝑦,𝑦′}, 𝑞, 𝑐𝑦, 𝑐𝑦′},
the following cases for 𝑞𝜇𝜇′ , 𝜇 ≤ 𝜇′, in general, are relevant to
consider:

Case 1: all but finitely many bonding morphisms are the identity;
Case 2: all but finitely many bonding morphism are 𝑞;
Case 3: all but finitely many bonding morphisms are the identity

or 𝑞;
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Case 4: all but finitely many bonding morphisms are 𝑐𝑦;
Case 5: all but finitely many bonding morphism are 𝑐𝑦′ .

Further, since 𝑞2 = 1, one readily sees that the inverse systems
in the first, second, and third cases are mutually isomorphic, and
that they are isomorphic to the rudimentary system ⌊{𝑦, 𝑦′}⌋ as
well. In the fourth and fifth cases, the inverse systems are mutually
isomorphic and also isomorphic to the trivial rudimentary system
⌊{𝑦}⌋. It is readily seen that 𝐼𝑁𝑉 -𝒞(⌊{𝑦}⌋ ,𝑿) is the singleton
{(𝑐1, {𝑦 7→ 𝑥, 𝑦 7→ 𝑥′})}. Thus, there exists a single morphism
⌊{𝑦}⌋ → 𝑿 of 𝑃𝑅𝑂-𝒞, which, obviously, is not an isomorphism.
Hence, the rudimentary case ⌊{𝑦, 𝑦′}⌋ ∼= ⌊{𝑥, 𝑥′}⌋ ≡ 𝒀 is the only
one left. As we have proven already, for (𝑔,𝐺𝑖) = (𝑐1, 𝐺𝑖), there is
an 𝑖 ∈ ℕ such that 𝑐𝑎𝑟𝑑(𝐺𝑖) ≥ 2. Then an easy analysis shows that
each 𝐺𝑖, 𝑖 ∈ ℕ, contains at least two morphisms (of four of them
in whole). The commutativity conditions imply that the constant
morphisms 𝑐𝑥 and 𝑐𝑥′ must not be in 𝐺𝑖. Consequently, for every
𝑖 ∈ ℕ, it must be 𝐺𝑖 = {1, 𝑝}. On the other hand, (𝑓, 𝐹𝜇) reduces
to a function {1} → ℕ and a nonempty set 𝐹1 of morphisms

𝑓1 : 𝑋𝑓(1) = {𝑥, 𝑥′} → {𝑥, 𝑥′} = 𝑌1,

i.e., ∅ ∕= 𝐹1 ⊆ {1, 𝑝, 𝑐𝑥, 𝑐𝑥′}. However, the commutativity condi-
tions of Definition 4.4 for (𝑔𝑓, 𝐹1𝐺𝑓(1)) ∼ (1{1}, {1𝑌1}) imply that
𝐹1 = ∅, a contradiction.

Consider now the general case of 𝒀 . Observe that the structure
of 𝑿 (the bonding morphisms are bijections on the pair {𝑥, 𝑥′})
and the appropriate commutativity conditions of Definition 4.4
imply that there exists a 𝜇 ∈ 𝑀 such that 𝑐𝑎𝑟𝑑(𝑞𝜇𝜇′(𝑌𝜇′)) ∕< 2,
𝜇′ ≥ 𝜇. Thus, we may assume that for each 𝜇 and all 𝜇′ ≥
𝜇, 𝑐𝑎𝑟𝑑(𝑞𝜇𝜇′(𝑌𝜇′)) ≥ 2. Notice that the relation (𝑓𝑔,𝐺𝑖𝐹𝑔(𝑖)) ∼
(1ℕ, {1{𝑥,𝑥′}}) implies that

(∀𝑖 ∈ ℕ)(∀𝑔𝑖 ∈ 𝐺𝑖)(∀𝑓𝑔(𝑖) ∈ 𝐹𝑔(𝑖))(∃𝑖′ ≥ 𝑖)

such that at least one of the following equalities holds (1 ≡ 1{𝑥,𝑥′}):

1 ∘ 1 = 𝑔𝑖𝑓𝑔(𝑖)1, 1 ∘ 1 = 𝑔𝑖𝑓𝑔(𝑖)𝑝, 1 ∘ 𝑝 = 𝑔𝑖𝑓𝑔(𝑖)1, 1 ∘ 𝑝 = 𝑔𝑖𝑓𝑔(𝑖)𝑝.

Since 𝑝2 = 1, they reduce to 𝑔𝑖𝑓𝑔(𝑖) = 1 and 𝑔𝑖𝑓𝑔(𝑖) = 𝑝. Thus,
𝑔𝑖 is a surjection and 𝑓𝑔(𝑖) is an injection. Further, the relation
(𝑔𝑓, 𝐹𝜇𝐺𝑓(𝜇)) ∼ (1𝑀 , {1𝑌𝜇}) implies that

(∀𝜇 ∈𝑀)(∀𝑓𝜇 ∈ 𝐹𝜇)(∀𝑔𝑓(𝜇) ∈ 𝐺𝑓(𝜇))(∃𝜇′ ≥ 𝜇, 𝑔𝑓(𝜇))
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such that 1𝑌𝜇𝑞𝜇𝜇′ = 𝑓𝜇𝑔𝑓(𝜇)𝑞𝑔𝑓(𝜇)𝜇′ . Hence, for every 𝜇 ∈𝑀 , there
exists a 𝜇′ ≥ 𝜇 such that, for every 𝜇′′ ≥ 𝜇′, 𝑐𝑎𝑟𝑑(𝑞𝜇𝜇′′(𝑌𝜇′′)) ≤ 2.

Consequently, 𝑐𝑎𝑟𝑑(𝑞𝜇𝜇′′(𝑌𝜇′′)) = 2. Since 𝒀 and 𝒀 0 are inverse
systems in 𝒞 (the terms are sets or discrete spaces), it follows that
𝒀 ∼= 𝒀 0 in 𝑝𝑟𝑜-𝒞. Therefore, if 𝑿 ∼= 𝒀 in 𝑃𝑅𝑂-𝒞, then 𝑿 ∼= 𝒀 0

in 𝑃𝑅𝑂-𝒞, a contradiction.

Finally, the second assertion of Example 4.7 is true because

(𝑔,𝐺𝑖) = (𝑐1, {𝑥 7→ 𝑥, 𝑥 7→ 𝑥′}) : ⌊{𝑥}⌋ →𝑿 and

(𝑔′, 𝐺′
𝑖) :

⌊{𝑥, 𝑥′}⌋→𝑿,

where 𝑔′ = 𝑐1 and 𝐺′
𝑖 ∈ {{𝑐𝑥, 𝑐𝑥′}, {1, 𝑝}, {𝑐𝑥, 𝑐𝑥′ , 1, 𝑝}}, 𝑖 ∈ ℕ, are

the only maps of those generalized inverse hypersystems in 𝒞 and
no pair (𝑐1, 𝐺

′
𝑖) of the possible three is equivalent. Hence, all the

assertions stated in Example 4.7 are verified.

Theorem 4.6 and Example 4.7 immediately imply the following
concrete fact.

Corollary 4.8. In 𝑃𝑅𝑂-𝒞, where 𝒞 ∈ {Set,Top,H(Top)}, there
exist generalized inverse hypersystems which are not isomorphic to
any generalized inverse system.

Remark 4.9. There is a different, although similar, class of mor-
phisms of generalized inverse hypersystems which slightly restrict
the category 𝑃𝑅𝑂-𝒞. First, in a more restrictive analogue of Defini-
tion 4.1, we could replace “∀𝑓𝜇,∃𝑓𝜇′ and ∀𝑓𝜇′ ,∃𝑓𝜇” by “∀𝑓𝜇,∀𝑓𝜇′ ,”
and, keeping the same identities and composition, obtain a new kind
of 𝐼𝑁𝑉 -𝒞. Further, we could strengthen Definition 4.4 such that
instead of “∀𝑓𝜇,∃𝑓 ′

𝜇 and ∀𝑓 ′
𝜇,∃𝑓𝜇,” “∀𝑓𝜇,∀𝑓 ′

𝜇” is required. This
is also an equivalence relation, which preserves composition. Con-
sequently, there exist several kinds of “𝑃𝑅𝑂-𝒞,” having the same
subcategories 𝑝𝑟𝑜-𝒞 ⊆ 𝑃𝑟𝑜-𝒞 ⊆ 𝑃𝑅𝑂1-𝒞.

Moreover, one readily sees that the new “𝐼𝑁𝑉 -𝒞 ” is a subcat-
egory of 𝐼𝑁𝑉 -𝒞. Namely, every new map of generalized inverse
hypersystems is a map in the previous setting as well. Further, in
any new case, each equivalence class of a new map of generalized
inverse hypersystems is contained in a unique equivalence class in
the previous setting. Nevertheless, one can easily verify that the
new categories “𝑃𝑅𝑂-𝒞” are subcategories of 𝑃𝑅𝑂-𝒞. Moreover,
it is readily seen that in the most restrictive case (and by accepting



272 N. UGLEŠIĆ

the axiom of choice) “𝑃𝑅𝑂-𝒞” ∼= “𝑃𝑅𝑂1-𝒞” holds. (That is the
reason for the chosen definitions!)

Finally, observe that Corollary 2.10 holds in such restricted cat-
egories “𝑃𝑅𝑂-𝒞 ” since the generalized inverse hypersystem 𝑿 of
Example 4.7 retains the same property with respect to them.

Lemma 4.10. Every generalized inverse hypersystem 𝑿 in a cate-
gory 𝒞 is isomorphic to a generalized inverse hypersystem 𝑿 ′ over
a small weakly cofiltered category. For instance, 𝑿 ′ can be the
“subhypersystem” of 𝑿 over any small and cofinal full subcategory
Λ′ ⊆ Λ, and then the identities on the corresponding terms induce
an isomorphism 𝒊 : 𝑿 →𝑿 ′ of 𝑃𝑅𝑂1-𝒞.

Proof: Let 𝑋 : Λ → 𝒞, i.e., 𝑿 = (𝑋𝜆, 𝑝𝑢,Λ) is a generalized
inverse hypersystem in a category 𝒞. Then, by the corresponding
definitions, there exists a small subcategory of Λ which is cofinal in
Λ. Choose such a small and cofinal Λ′ ⊆ Λ that is a full subcategory
as well. Then Λ′ is also a weakly cofiltered category. Namely, since
Λ′ ⊆ Λ is cofinal and full, conditions (i) and (ii)′ for Λ′ hold via
conditions (i) and (ii)′ of Λ, respectively. Put 𝑋 ′ : Λ′ → 𝒞 to be
the restriction functor of 𝑋 : Λ→ 𝒞, which is a generalized inverse
hypersystem over the small weakly cofiltered category Λ′. Then
the corresponding 𝑿 ′ = (𝑋 ′

𝜆′ = 𝑋𝜆′ , 𝑝′𝑢′ = 𝑝𝑢′ ,Λ′) is isomorphic
in 𝑃𝑅𝑂1-𝒞 to the generalized inverse hypersystem 𝑿. Indeed, the
morphism

𝒊 = [(𝑖, {1𝑋𝜆0
})] : 𝑿 →𝑿 ′

of 𝑃𝑅𝑂1-𝒞, where 𝑖 : 𝑂𝑏(Λ′) ↪→ 𝑂𝑏(Λ) is the inclusion, has the
inverse

𝒊′ = [(𝑖′, {𝑝𝑢})] : 𝑿 ′ →𝑿

in 𝑃𝑅𝑂1-𝒞, where 𝑖′ : 𝑂𝑏(Λ) → 𝑂𝑏(Λ′) is a cofinal function such
that for every 𝜆 ∈ 𝑂𝑏(Λ), the set Λ(𝑖′(𝜆), 𝜆) is not empty, and
𝑝𝑢 : 𝑋𝑖′(𝜆) → 𝑋𝜆 is any of the existing bonding morphisms. □

Theorem 4.11. Let 𝑿 = (𝑋𝜆, 𝑝𝑢,Λ) be a generalized inverse hy-
persystem in a category 𝒞. Then 𝑿 admits an isomorphic (in
𝑃𝑅𝑂1-𝒞) generalized inverse hypersystem 𝑿 ′ = (𝑋𝜆′ , 𝑝𝑢,Λ

′), which
is a “subhypersystem” of 𝑿 having Λ′ ⊆ Λ small, cofinal, and full,
and 𝑂𝑏(Λ′) admits a directed preordered set (𝑂𝑏(Λ′),≤) such that

𝜆′
1 ≤ 𝜆′

2 ⇔ Λ′(𝜆′
2, 𝜆

′
1) ∕= ∅.
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Proof: According to Lemma 4.10, given any small and cofinal full
subcategory Λ′ ⊆ Λ, which exists by definition, the corresponding
“subhypersystem”

𝑿 ′ = (𝑋 ′
𝜆′ = 𝑋𝜆′ , 𝑝′𝑢′ = 𝑝𝑢,Λ

′)

of 𝑿 is isomorphic to 𝑿 in 𝑃𝑅𝑂1-𝒞. Let us define
𝜆′
1 ≤ 𝜆′

2 ⇔ Λ′(𝜆′
2, 𝜆

′
1) ∕= ∅.

One trivially verifies that (𝑂𝑏(Λ′),≤) is a preordered set (≤ is not
antisymmetric!). Further, by condition (i) of Λ′, (𝑂𝑏(Λ′),≤) is
directed. Therefore, 𝑿 ′ = (𝑋𝜆′ , 𝑝𝑢, (Λ

′,≤)) is a desired generalized
inverse hypersystem. □

The next definition comes now in a natural way.

Definition 4.12. A generalized inverse hypersystem 𝑿 =
(𝑋𝜆, 𝑝𝑢,Λ) such that 𝑂𝑏(Λ) is a set which admits a directed pre-
order ≤ satisfying

(∀𝜆, 𝜆′ ∈ 𝑂𝑏(Λ)) 𝜆 ≤ 𝜆′ ⇔ Λ(𝜆′, 𝜆) ∕= ∅,

is said to be an inverse hypersystem, denoted by (𝑋𝜆, 𝑝𝑢, (Λ,≤)).
Notice that the directedness of (Λ,≤) corresponds to condition

(i) of Λ.

5. Cofiniteness for inverse hypersystems

Recall that an inverse system 𝑿 = (𝑋𝜆, 𝑝𝜆𝜆′ ,Λ) in a category
𝒞 is said to be cofinite provided the index set Λ is cofinite, which
means that each 𝜆 ∈ Λ has at most finitely many predecessors.
This property is very useful because it allows one to apply the
usual induction technique in the proofs of assertions involving the
set ℕ of positive integers. It is a well-known and important fact
that every inverse system 𝑿 in a category 𝒞 admits an isomorphic
inverse system having a cofinite and ordered index set ([9]; [6, p.
6]; [11, p. 15]; [5]; [3, p. 205]). According to [11, Theorem I.1.4],
there was no need to introduce an analogue of the cofiniteness for
generalized inverse systems. However, in light of our Theorem 4.6
and Corollary 4.8, it could be useful to define an analogue of the
cofiniteness for (generalized) inverse hypersystems.
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Definition 5.1. A category Λ is said to be finitely out-connected
provided, for each 𝜆 ∈ 𝑂𝑏(Λ), the morphism sets Λ(𝜆, 𝜆′) are not
empty for at most finitely many 𝜆′ ∈ 𝑂𝑏(Λ). A generalized inverse
hypersystem 𝑿 = (𝑋𝜆, 𝑝𝑢,Λ) in a category 𝒞 is said to be finitely
out-bonded provided, for each 𝜆 ∈ 𝑂𝑏(Λ), the bonding morphism
sets

𝑋(Λ(𝜆, 𝜆′)) = {𝑋(𝑢) ≡ 𝑝𝑢 : 𝑋𝜆 → 𝑋𝜆′ ∣ 𝑢 ∈ Λ(𝜆, 𝜆′)}
are not empty for at most finitely many 𝜆′ ∈ 𝑂𝑏(Λ). Further, if
𝑿 is an inverse hypersystem (𝑋𝜆, 𝑝𝑢, (Λ,≤)), then 𝑿 is said to be
cofinite if (Λ,≤)) is cofinite.

Obviously, if Λ is finitely out-connected, then 𝑿 = (𝑋𝜆, 𝑝𝑢,Λ) is
finitely out-bonded. By the previous results and the above defini-
tions, the following facts are obvious.

Corollary 5.2. An inverse hypersystem 𝑿 = (𝑋𝜆, 𝑝𝑢, (Λ,≤)) in a
category 𝒞 is finitely out-bonded if and only if it is cofinite. Fur-
ther, every finitely out-bonded generalized inverse hypersystem 𝑿 =
(𝑋𝜆, 𝑝𝑢,Λ) in a category 𝒞 admits an isomorphic (in 𝑃𝑅𝑂1-𝒞) co-
finite inverse hypersystem 𝑿 ′ = (𝑋𝜆′ , 𝑝𝑢, (Λ

′,≤)), which is a “sub-
hypersystem” of 𝑿.

However, we can exhibit a much better result as follows (compare
[11, Theorem I.1.2 and its proof]).

Theorem 5.3. Every generalized inverse hypersystem 𝑿 =
(𝑋𝜆, 𝑝𝑢,Λ) in a category 𝒞 is isomorphic to an inverse hypersystem
𝒀 = (𝑌𝜇, 𝑞𝑣, (𝑀,≤)) in 𝒞 with 𝑀 cofinite and ordered and 𝑐𝑎𝑟𝑑(𝑀)
≤ 𝑐𝑎𝑟𝑑(Λ). Moreover, for each 𝜇 ∈ 𝑀 , the term 𝑌𝜇 is an 𝑋𝜆(𝜇),
and, for every related pair 𝜇 ≤ 𝜇′ in 𝑀 ,

{𝑞𝑣 ∣ 𝑞𝑣 : 𝑌𝜇′ → 𝑌𝜇} = {𝑝𝑢 ∣ 𝑝𝑢 : 𝑋𝜆(𝜇′) → 𝑋𝜆(𝜇)},
while an isomorphism of 𝑿 to 𝒀 in 𝑃𝑅𝑂1-𝒞 is given by the iden-
tities on the corresponding terms.

Proof: Let 𝑿 = (𝑋𝜆, 𝑝𝑢,Λ) be a generalized inverse hypersystem
in a category 𝒞. By Theorem 4.11, we may assume that the category
Λ is small, i.e., that the class 𝑂𝑏(Λ) is a set and that 𝑿 is an inverse
hypersystem (𝑋𝜆, 𝑝𝑢, (Λ,≤)). Let 𝐹 (𝑂𝑏(Λ)) denote the set of all
finite subsets of 𝑂𝑏(Λ), and let 𝑀 be its subset consisting of all
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𝜇 ∈ 𝐹 (𝑂𝑏(Λ)) that fulfill the condition

(∃!𝜆0 ∈ 𝜇)(∀𝜆 ∈ 𝜇) Λ(𝜆0, 𝜆) ∕= ∅.

For a given 𝜇 ∈𝑀 , the unique 𝜆0 is denoted by max𝜇. Now we
define

(∀𝜇, 𝜇′ ∈𝑀) (𝜇 ≤ 𝜇′ ⇔ 𝜇 ⊆ 𝜇′).
Then, obviously, (𝑀,≤) is an ordered (partially) set. Further,
(𝑀,≤) is directed. Namely, by condition (i) of the weakly cofiltered
category Λ, for every pair 𝜇, 𝜇′ ∈𝑀 , there exist a 𝑢 ∈ Λ(𝜆,max𝜇)
and a 𝑢′ ∈ Λ(𝜆,max𝜇′). Then

𝜇′′ = 𝜇 ∪ 𝜇′ ∪ {𝜆} ∈𝑀,

having the unique 𝜆 = max𝜇′′ and 𝜇, 𝜇′ ≤ 𝜇′′. Since every 𝜇 ∈ 𝑀
is a finite set, the definition of the relation ≤ on 𝑀 implies that
(𝑀,≤) is cofinite. Finally, for each pair 𝜇, 𝜇′ in 𝑀 , we put

𝑀(𝜇′, 𝜇) =
{

∅, 𝜇 ≰ 𝜇′
Λ(max𝜇′,max𝜇), 𝜇 ≤ 𝜇′

to be the corresponding morphism set and keep the identities and
composition of Λ. Since Λ is a category, so is 𝑀 . Further, by
definition, if 𝑀(𝜇′, 𝜇) ∕= ∅, then 𝜇 ≤ 𝜇′. Conversely, if 𝜇 ≤ 𝜇′, then
𝜇 ⊆ 𝜇′, and thus, max𝜇 ≤ max𝜇′. Then the assumed property of
(Λ,≤) implies that ∅ ∕= Λ(max𝜇′,max𝜇) = 𝑀(𝜇′, 𝜇).

It is left to verify that the category 𝑀 is weakly cofiltered. First,
condition (i) for 𝑀 is fulfilled because it corresponds to the di-
rectedness of (𝑀,≤). Namely, by the above construction, this in-
herits from Λ and (Λ,≤). Further, let 𝑣1, 𝑣2 ∈ 𝑀(𝜇′, 𝜇). Then
𝑣1 = 𝑢1 and 𝑣2 = 𝑢2 ∈ Λ(max𝜇′,max𝜇). By condition (ii)′ of
Λ, there exist 𝑢′1, 𝑢′2 ∈ Λ(𝜆,max𝜇′) such that 𝑢1𝑢

′
1 = 𝑢2𝑢

′
2. Put

𝜇′′ = 𝜇′ ∪ {𝜆}. Then 𝜇′′ ∈ 𝑀 with max𝜇′′ = 𝜆. Choose 𝑣′1 = 𝑢′1
and 𝑣′2 = 𝑢′2 ∈𝑀(𝜇′′, 𝜇′), and condition (ii)′ for 𝑀 follows.

Now, for every 𝜇 ∈ 𝑀 , put 𝑌𝜇 = 𝑋max𝜇, and, for every related
pair 𝜇 ≤ 𝜇′ in 𝑀 , put

{𝑞𝑣 ∣ 𝑞𝑣 : 𝑌𝜇′ → 𝑌𝜇} = {𝑝𝑢 ∣ 𝑝𝑢 : 𝑋max𝜇′ → 𝑋max𝜇}.
Then 𝒀 = (𝑌𝜇, 𝑞𝑣, (𝑀,≤)) is an inverse hypersystem in 𝒞 having all
the desired properties. (In the functorial language, 𝒀 is the functor
𝑌 : 𝑀 → 𝒞, which “is the restriction functor” of 𝑋 : Λ→ 𝒞 to the
full subcategory determined by the object set {max𝜇𝑗 ∣ 𝑗 ∈ 𝐽} ≈
𝑀 . Though max𝜇𝑗 = max𝜇𝑗′ in Λ for 𝑗 ∕= 𝑗′ can often happen,
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we treat them to be different “objects of” 𝑀”!) The last statement
holds because the equivalence class 𝒊 of (max, {1𝑋max𝜇}) : 𝑿 → 𝒀
is an isomorphism of 𝑃𝑅𝑂1-𝒞. □

Remark 5.4. All the notions and facts of sections 3, 4, and 5 can
be dualized. Thus, starting with direct systems in a category 𝒞, i.e.,
with 𝑑𝑖𝑟-𝒞 and 𝑖𝑛𝑗-𝒞 = (𝑑𝑖𝑟-𝒞)/(∼), and passing to the generalized
direct systems, i.e., to 𝐷𝑖𝑟-𝒞 and 𝐼𝑛𝑗-𝒞 = (𝐷𝑖𝑟–𝒞)/(∼), one can
introduce the direct hypersystems in 𝒞, i.e., the categories 𝐷𝐼𝑅-𝒞
and 𝐼𝑁𝐽-𝒞 = (𝐷𝐼𝑅-𝒞)/(∼), having the dual properties of those
obtained in sections 3, 4, and 5.

6. Where do inverse hypersystems occur?

In [10], Mardešić introduced an equivalence relation on met-
ric compacta (via compact ANR-inverse sequences - expansions),
called the 𝑆-equivalence, which is coarser than the shape type clas-
sification (see also [12]). It readily extends to any tow-category
(the objects are all the corresponding inverse sequences). In [14]
and [4], the 𝑆-equivalence is decomposed into a sequence (𝑆𝑛) of
equivalence relations such that 𝑆 ⇔ (𝑆𝑛) and

𝑆 ⇒ ⋅ ⋅ ⋅𝑆𝑛+1 ⇒ 𝑆𝑛 ⇒ ⋅ ⋅ ⋅ ⇒ 𝑆1 ⇒ 𝑆0.

More precisely, given a pair of inverse sequences 𝑿 and 𝒀 in a
category 𝒞 and an 𝑛 ∈ ℕ, 𝑆𝑛−1(𝑿) = 𝑆𝑛−1(𝒀 ) means that two
(symmetric) conditions 𝑆𝑛(𝑿,𝒀 ) and 𝑆𝑛(𝒀 ,𝑿) are fulfilled, where
𝑆𝑛(𝑿,𝒀 ) is defined as

(∀𝑗1 ∈ ℕ)(∃𝑖1 ∈ ℕ)(∀𝑖′1 ≥ 𝑖1)(∃𝑗′1 ≥ 𝑗1)(∀𝑗2 ≥ 𝑗1)(∃𝑖2 ≥ 𝑖′1) . . .

. . . (∀𝑖′𝑛−1 ≥ 𝑖𝑛−1)(∃𝑗′𝑛−1 ≥ 𝑗𝑛−1)(∀𝑗𝑛 ≥ 𝑗𝑛−1)(∃𝑖𝑛 ≥ 𝑖𝑛−1),

and there exist 𝒞-morphisms 𝑓𝑛
𝑗𝑘
≡ 𝑓𝑘 : 𝑋𝑖𝑘 → 𝑌𝑗𝑘 , 𝑘 = 1, . . . , 𝑛,

and 𝑔𝑛𝑖′𝑘
≡ 𝑔𝑘 : 𝑌𝑗′𝑘 → 𝑋𝑖′𝑘 , 𝑘 = 1, . . . , 𝑛− 1, such that the following

diagram

𝑋𝑖1 ← 𝑋𝑖′1 ← 𝑋𝑖2 ← ⋅ ⋅ ⋅ ← 𝑋𝑖′𝑛−1
← 𝑋𝑖𝑛

↓ 𝑓1 ↑ 𝑔1 ↓ 𝑓2 ⋅ ⋅ ⋅ ↑ 𝑔𝑛−1 ↓ 𝑓𝑛
𝑌𝑗1 ← 𝑌𝑗′1 ← 𝑌𝑗2 ← ⋅ ⋅ ⋅ ← 𝑌𝑗′𝑛−1

← 𝑌𝑗𝑛

in 𝒞 commutes.
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To illustrate how an inverse hypersystem could occur, let, for in-
stance, 𝑛 = 3, and consider condition 𝑆3(𝑿,𝒀 ). Then, for two, gen-
erally different, choices of indices: 𝑗1, 𝑖

′
1, 𝑗2, 𝑖

′
2, 𝑗3 and 𝑗∗1 , 𝑖′′1, 𝑗∗2 , 𝑖′′2, 𝑗∗3 ,

the following diagram (actually, two diagrams in one drawing, where
𝑋𝑖 and 𝑌𝑗 are abbreviated to 𝑖 and 𝑗, respectively) can appear:

𝑖1 ← 𝑖∗1 ← 𝑖′1 ← 𝑖′′1 ← 𝑖∗2 ← 𝑖2 ← 𝑖′′2 ← 𝑖′2 ← 𝑖3 ← 𝑖∗3
↓ 𝑓1 𝑓 ′

1 ↓ ↑ 𝑔1 𝑔′1 ↑ ↓ 𝑓 ′
2 𝑓2 ↓ ↑ 𝑔′2 𝑔2 ↑ ↓ 𝑓3 𝑓 ′

3 ↓
𝑗1 ← 𝑗∗1 ← 𝑗′1 ← 𝑗′′1 ← 𝑗∗2 ← 𝑗2 ← 𝑗′′2 ← 𝑗′2 ← 𝑗3 ← 𝑗∗3

.

The five-tuples of 𝒞-morphisms 𝑓1, 𝑔1, 𝑓2, 𝑔2, 𝑓3 and 𝑓 ′
1, 𝑔

′
1, 𝑓

′
2, 𝑔

′
2, 𝑓

′
3

make, respectively, the corresponding diagrams commutative. Note
that the following three 𝒞-morphisms of 𝑌𝑗′′1 to 𝑌𝑗1 have occurred:

𝑣1 ≡ 𝑞𝑗1𝑗′′1 = 𝑓1𝑝𝑖1𝑖′1𝑔1𝑞𝑗′1𝑗′′1 = 𝑞𝑗1𝑗∗1 𝑓
′
1𝑝𝑖∗1𝑖′′1 𝑔

′
1,

𝑣2 ≡ 𝑓1𝑝𝑖1𝑖′′1 𝑔
′
1 and

𝑣3 ≡ 𝑞𝑗1𝑗∗1 𝑓
′
1𝑝𝑖∗1𝑖′1𝑔1𝑞𝑗′1𝑗′′1 .

Put

𝑣′2 = 𝑞𝑗′′1 𝑗∗2 𝑓
′
2𝑝𝑖∗2𝑖′2𝑔2 : 𝑌𝑗′2 → 𝑌𝑗′′1 and

𝑣′3 = 𝑞𝑗′′1 𝑗2𝑓2𝑝𝑖2𝑖′′2 𝑔
′
2 : 𝑌𝑗′′2 → 𝑌𝑗′′1 .

Then 𝑣2𝑣
′
2 =

𝑓1𝑝𝑖1𝑖′′1 𝑔
′
1𝑞𝑗′′1 𝑗∗2 𝑓

′
2𝑝𝑖∗2𝑖′2𝑔2 = 𝑓1𝑝𝑖1𝑖′′1 𝑝𝑖′′1 𝑖∗2𝑝𝑖∗2𝑖′2𝑔2 = 𝑓1𝑝𝑖1 𝑖′2𝑔2 = 𝑞𝑗1𝑗′2

and 𝑣3𝑣
′
3 =

𝑞𝑗1𝑗∗1 𝑓
′
1𝑝𝑖∗1𝑖′1𝑔1𝑞𝑗′1𝑗′′1 𝑞𝑗′′1 𝑗2𝑓2𝑝𝑖2𝑖′′2 𝑔

′
2 = 𝑞𝑗1𝑗∗1 𝑓

′
1𝑝𝑖∗1𝑖′1𝑝𝑖′1𝑖2𝑝𝑖2𝑖′′2 𝑔

′
2

= 𝑞𝑗1𝑗∗1 𝑞𝑗∗1 𝑗′′2 = 𝑞𝑗1𝑗′′2 .

This indicates that, in certain specific circumstances, the consider-
ation of some problems concerning the 𝑆𝑛-equivalences of inverse
sequences could require the framework of the corresponding cat-
egory of inverse hypersystems. For instance, the sequence of 𝑆𝑛-
equivalences induces an (ultra)pseudometric structure on the ob-
ject class 𝑂𝑏(𝑡𝑜𝑤-𝒞) (see [13, Example 3 and Example 4]). Then
some convergence problems immediately require the corresponding
inverse hypersystems setting. Particularly, the very question about
the completeness of the (ultra)pseudometric structure might have
an affirmative answer in the larger framework of 𝑃𝑅𝑂-𝒞.
Acknowledgment. The author is grateful to the referee for her/his
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des modules in Séminaire N. Bourbaki, Vol. 5. Exp. No. 195. Paris: Société
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