

http://topology.auburn.edu/tp/

Almost H-Closed

by

JACK PORTER

Electronically published on November 5, 2010 $\,$

Topology Proceedings

Web:	http://topology.auburn.edu/tp/
Mail:	Topology Proceedings
	Department of Mathematics & Statistics
	Auburn University, Alabama 36849, USA
E-mail:	topolog@auburn.edu
ISSN:	0146-4124
COPYRIGHT © by Topology Proceedings. All rights reserved.	

E-Published on November 5, 2010

ALMOST H-CLOSED

JACK PORTER

ABSTRACT. This paper develops an example of a non-H-closed, Urysohn space with the property that for every chain of nonempty sets, the intersection of the θ -closures of the sets is nonempty, every infinite set has a θ -complete accumulation point, and every κ -sequence has a θ -cluster point for every infinite cardinal κ . This shows that three of the characterizations of compactness cannot be extended directly to H-closed spaces.

1. INTRODUCTION

In 1924, Paul Alexandroff and Paul Urysohn [1] established a number of characterizations of compactness including these two: a space is compact if and only if every chain of nonempty closed sets has nonempty intersection if and only if every infinite subset has a complete accumulation point. Also in [1], Alexandroff and Urysohn introduced and characterized the concept of H-closed spaces. The chain characterization plays an important role in proving spaces are compact; for example, one major result connecting compactness and H-closure is that a space is compact if every closed subset is H-closed. Both M. H. Stone [9] and Miroslav Katětov [4] prove this result by showing that every chain of nonempty H-closed sets has nonempty intersection.

²⁰⁰⁰ Mathematics Subject Classification. 54D25, 54D30.

Key words and phrases. H-closed spaces, $\kappa\text{-nets},$ $\kappa\text{-sequences},$ $\theta\text{-closure},$ $\theta\text{-cluster}.$

^{©2010} Topology Proceedings.

There are two natural paths to extend the chain condition to characterize H-closed spaces. Both extended conditions are satisfied in H-closed spaces. This paper develops a relatively simple example that shows neither extended condition is enough to prove H-closure.

In [1], Alexandroff and Urysohn extended the complete accumulation point characterization of compactness to H-closure by proving that for each infinite subset A of an H-closed space X, there is a point $p \in X$ such that for each neighborhood U of X, $|A \cap cl_X U| = |A|$. In 1960, G. A. Kirtadze [5] showed that the converse is not true. Our simple example also shows the converse is not true.

Recently, in an excellent paper about κ -nets, R. E. Hodel [3] characterized H-closed spaces in terms of κ -nets. Hodel asks if a Hausdorff space X remains H-closed if κ -nets in his H-closed characterization are replaced by a weaker notion of κ -sequence. We show this is not true, too.

All spaces considered in this paper are Hausdorff, and for a space X, let $\tau(X)$ denote the set of open subsets of X.

2. Example 1

Recall (see [8, 4.8(e)]) that in a space X, a subset $A \subseteq X$ is regular closed if $A = cl_X int_X A$. In 1940, Katětov [4] proved that a Hausdorff space X is *H*-closed if and only if every filter base of regular closed subsets has nonempty intersection. One natural path of extending the chain condition to H-closed spaces would be to determine if a Hausdorff space is H-closed if every chain of nonempty regular closed sets has nonempty intersection. We show this is false with an example of a non-H-closed, Tychonoff, extremally disconnected space \mathbb{B} .

We need some preliminary results.

Lemma 1. Let $\beta \omega$ be the Stone-Čech compactification of the countable discrete space ω .

- (a) ([2, 9H.2]) If A is an infinite closed subset of $\beta \omega$, then $|A| = |\beta \omega| = 2^{\mathfrak{c}}$.
- (b) ([2, 6S.8]) If A is a nonempty G_{δ} subset of $\beta \omega \backslash \omega$, then $int_{\beta \omega \backslash \omega} A \neq \emptyset$.

Lemma 2. Let C be a chain of infinite clopen sets of $\beta \omega$. Then $| \cap C| = 2^{\mathfrak{c}}$.

ALMOST H-CLOSED

Proof: There is an ordinal β and a cofinal, well-ordered subchain $\mathcal{C}' = \{C_{\alpha} : \alpha < \beta\} \subseteq \mathcal{C}$ such that $C_{\alpha} \supset C_{\alpha+1}$ for $\alpha + 1 < \beta$. As \mathcal{C}' is cofinal, $\cap \mathcal{C} = \cap \mathcal{C}'$. If β is not a limit ordinal, then $C_{\beta-1} = \cap \mathcal{C}'$, $|C_{\beta-1}| = 2^{\mathfrak{c}}$, and we are done. So, we can assume that β is a limit ordinal. Note that for $\alpha < \beta$, $C_{\alpha} = cl_{\beta\omega}(C_{\alpha} \cap \omega) \supset C_{\alpha+1} = cl_{\beta\omega}(C_{\alpha+1} \cap \omega)$. It follows that $C_{\alpha} \cap \omega \supset C_{\alpha+1} \cap \omega$. Thus, $\{(C_{\alpha} \setminus C_{\alpha+1}) \cap \omega : \alpha < \beta\}$ is a family of pairwise disjoint subsets of ω . So, β is a countable limit ordinal and $cf(\beta) = \omega$. There is a cofinal subfamily $\mathcal{D} = \{D_n : n \in \omega\}$ of \mathcal{C}' . But $\cap \{D_n \setminus \{n\} : n \in \omega\}$ is a G_{δ} set in $\beta \omega \setminus \omega$ and has nonempty interior. Hence, $|\cap \{D_n \setminus \omega : n \in \omega\}| = 2^{\mathfrak{c}}$.

Fact 3. Let $p \in \beta \omega \setminus \omega$ and $\mathbb{B} = \beta \omega \setminus \{p\}$. If \mathcal{C} is a chain of nonempty regular closed sets in \mathbb{B} , then $\cap \mathcal{C} \neq \emptyset$.

Proof: First, note that \mathbb{B} is extremally disconnected as \mathbb{B} is a dense subspace of the extremally disconnected space $\beta\omega$. Thus, the regular closed subsets of \mathbb{B} are clopen sets. If $C \in \mathcal{C}$, then $C = cl_{\mathbb{B}}(C \cap \omega) = cl_{\beta\omega}(C \cap \omega) \setminus \{p\}$ and $cl_{\beta\omega}(C \cap \omega) = cl_{\beta\omega}C$ is clopen in $\beta\omega$. Also, $\cap \mathcal{C} = \cap \{cl_{\beta\omega}C : C \in \mathcal{C}\} \setminus \{p\}$. By Lemma 2, $|\cap \{cl_{\beta\omega}C : C \in \mathcal{C}\}| = 2^{\mathfrak{c}}$. Thus, $\cap \mathcal{C} \neq \emptyset$.

We have shown that the Tychonoff, extremally disconnected space \mathbb{B} has the property that every chain of nonempty regular closed sets has nonempty intersection. Since a regular H-closed space is compact (see [8, 4.8(c)]), \mathbb{B} is not H-closed.

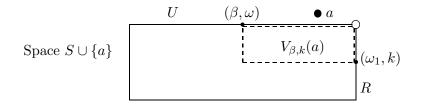
3. Example 2

For $A \subseteq X$, let $cl_{\theta}A = \{p \in X : \text{for } p \in U \in \tau(X), cl_X U \cap A \neq \emptyset\}$; if there is the possibility of confusion, we will denote $cl_{\theta}A$ by $cl_{\theta}^X A$. In 1968, N. V. Veličko [10] proved that a space is H-closed if and only if for each filter base \mathcal{F} , $\bigcap_{F \in \mathcal{F}} cl_{\theta}F \neq \emptyset$. In this section, we develop a Hausdorff, non-H-closed space \mathbb{T} with the property that for every chain \mathcal{C} of nonempty sets, $\bigcap_{C \in \mathcal{C}} cl_{\theta}C \neq \emptyset$. Surprisingly, the space \mathbb{T} has other nice properties and answers a question by Hodel [3].

(1) The description of our space starts with a variation of the Tychonoff plank. Let S denote the Tychonoff plank $(\omega_1 + 1) \times (\omega + 1) \setminus \{(\omega_1, \omega)\}$ – the product space without the corner point; S is a zero-dimensional, Tychonoff space. Let $R = \{(\omega_1, n) : n \in \omega\}$ be

the right-hand edge and $U = \{(\alpha, \omega) : \alpha \in \omega_1\}$ be the upper edge. Sometimes, we will need to consider a one-point extension of S, namely $S \cup \{a\}$. The subspace S is dense and open in $S \cup \{a\}$ and $\{V_{\beta,k} : \beta \in \omega_1, k \in \omega\}$ is an open neighborhood base at the point a where $V_{\beta,k}(a) = \{a\} \cup (\beta, \omega_1) \times (k, \omega)$. (Note that this is the same space as enlarging the product topology $(\omega_1+1) \times (\omega+1)$ by adding the set $\{(\omega_1, \omega)\} \cup \omega_1 \times \omega$.) The extension $S \cup \{a\}$ is H-closed (use 4.8(h)(8) in [8]) and Urysohn but not compact.

Note that for $\alpha < \omega_1$, the subspace $(\alpha + 1) \times (\omega + 1)$ of S is compact.



(2) Let Y denote $S \times \{0, 1, 2\}$ ($\{0, 1, 2\}$ has the discrete topology) with these points identified: $(\omega_1, k, 0) = (\omega_1, k, 1)$ for each $k \in \omega$ and $(\beta, \omega, 1) = (\beta, \omega, 2)$ for $\beta \in \omega_1$. For $i \in \{0, 1, 2\}$, let $S_i = S \times \{i\}, U_i = U \times \{i\}$, and $R_i = R \times \{i\}$. Finally, let $\mathbb{T} = Y \cup \{a_0, a_2\}$. For $i \in \{0, 2\}$, an open neighborhood base for a_i is $\{V_{\beta,k}(a_i) \times \{i\} : \beta \in \omega_1, k \in \omega\}$. Note that $S_0 \cup \{a_0\}$ and $S_2 \cup \{a_2\}$ are homeomorphic to $S \cup \{a\}$ and are H-closed subspaces of \mathbb{T} and that $cl_{\theta}(S_0 \cup \{a_0\}) = S_0 \cup \{a_0\}$ and $cl_{\theta}(S_2 \cup \{a_2\}) = S_2 \cup \{a_2\}$.

Space \mathbb{T}	\bullet^{n_2} S_2
$a_0 ullet$	$(\beta, \omega, 1) = (\beta, \omega, 2)$
S_0	S_1 $(\omega_1, k, 0) = (\omega_1, k, 1)$

ALMOST H-CLOSED

Property A. The space \mathbb{T} has the property that for every chain C of nonempty sets, the chain $\{cl_{\theta}C : C \in C\}$ has nonempty intersection.

Proof: Assume there is a chain \mathcal{C} of nonempty sets in \mathbb{T} such that $\bigcap \{ cl_{\theta}C : C \in \mathcal{C} \} = \emptyset$. Let P denote the H-closed subspace $S_0 \cup \{a_0\}$. If $C \cap P \neq \emptyset$ for each $C \in \mathcal{C}$, then $\mathcal{C}_0 = \{C \cap P : C \in \mathcal{C}\}$ is a chain of nonempty sets in the H-closed subspace P. As \mathcal{C}_0 is a filter base on P, it follows from Veličko's result that $\bigcap \{ cl_{\theta}^{P}(C \cap P) :$ $C \in \mathcal{C}\} \neq \emptyset$. However, $cl_{\theta}^{P}(C \cap P) = cl_{\theta}^{\mathbb{T}}(C \cap P)$ in \mathbb{T} . This is a contradiction as $\bigcap \{ cl_{\theta}^{\mathbb{T}} C : C \in \mathcal{C} \} = \emptyset$. So, there is a $C \in \mathcal{C}$ such that $C \cap (S_0 \cup \{a_0\}) = \emptyset$. A similar argument yields there is a $C \in \mathcal{C}$ such that $C \cap (S_2 \cup \{a_2\}) = \emptyset$. We can suppose that for each $C \in \mathcal{C}$, $C \subseteq S_1 \setminus (U_1 \cup R_1) \subseteq \bigcup \{\omega_1 \times \{n\} \times \{1\} : n \in \omega\}$. In particular, $\{a_0, a_2\} \cap cl_{\theta}^{\mathbb{T}}C = \emptyset$ for each $C \in \mathcal{C}$. Hence, $cl_{\theta}^{\mathbb{T}}C = cl_{\mathbb{T}}C$ and our assumption becomes $\bigcap \{ cl_{\mathbb{T}}C : C \in \mathcal{C} \} = \emptyset$. Note that for each $n \in \mathcal{C}$ ω and $C \in \mathcal{C}$, $cl_{\mathbb{T}}C \cap ((\omega_1 + 1) \times \{n\} \times \{1\})$ is compact. So, for each $n \in \omega$, there is $C_n \in \mathcal{C}$ such that $cl_{\mathbb{T}}C_n \cap ((\omega_1 + 1) \times \{n\} \times \{1\}) = \emptyset$ and $C_n \supseteq C_{n+1}$. Thus, $\bigcap \{ cl_{\mathbb{T}} C_n : n \in \omega \} = \emptyset$. For each $n \in \omega$, let $x_n \in C_n$; $\{x_n : n \in \omega\}$ is an infinite set as $\bigcap \{cl_{\mathbb{T}}C_n : n \in \omega\} = \emptyset$. Also, $\bigcap \{ cl_{\mathbb{T}} \{ x_m : m \geq n \} : n \in \omega \} = \emptyset$. There is an $\alpha \in \omega_1$ such that $\{x_n : n \in \omega\} \subseteq (\alpha + 1) \times (\omega + 1) \times \{1\} = Z$. As Z is compact, $cl_{\mathbb{T}}\{x_m : m \ge n\} \subseteq Z$ for each $n \in \omega$. This shows that $\bigcap \{ cl_{\mathbb{T}} \{ x_m : m \ge n \} : n \in \omega \} \neq \emptyset$, a contradiction.

Property B. It is easy to verify that the space \mathbb{T} is Urysohn. Consider the open filter base $\mathcal{F} = \{(\alpha, \omega_1) \times (n, \omega)\} \times \{1\} : \alpha \in \omega_1, n \in \omega\}$ on \mathbb{T} . The open filter \mathcal{F} has the property that $\bigcap \{cl_{\mathbb{T}}F : F \in \mathcal{F}\} = \emptyset$. This shows that \mathbb{T} is not H-closed. Combining these two results with that of Property A, we have that \mathbb{T} is a Urysohn, non-H-closed space with the property that for every chain \mathcal{C} of nonempty sets in \mathbb{T} , $\bigcap \{cl_{\theta}C : C \in \mathcal{C}\} \neq \emptyset$.

Our next goal is to show that the Urysohn, non-H-closed space \mathbb{T} has the property that for every infinite subset A of \mathbb{T} , there is a point $p \in \mathbb{T}$ such that $|A \cap cl_{\theta}U| = |A|$ for all $p \in U \in \tau(\mathbb{T})$; we say that p is a θ -complete accumulation point of A. In the following result we will use Alexandroff and Urysohn's result [1] that every infinite subset of an H-closed space has a θ -complete accumulation point.

Property C. Every infinite set A of \mathbb{T} has a θ -complete accumulation point.

Proof: Let A be an infinite subset of T. If $|A \cap (S_0 \cup \{a_0\})| = |A|$, then, as $S_0 \cup \{a_0\}$ is H-closed, A has a θ -complete accumulation point in $S_0 \cup \{a_0\}$. But a θ -complete accumulation point in $S_0 \cup \{a_0\}$ is also a θ -complete accumulation point in T. A similar result holds for the H-closed subspace $S_2 \cup \{a_2\}$. We can suppose that $A \subseteq S_1 \setminus (U_1 \cup R_1)$ and, as noted in Property A, $S_1 \setminus (U_1 \cup R_1) \subseteq \bigcup \{\omega_1 \times \{n\} \times \{1\} : n \in \omega\}$. If A is a countable set, there is some $\alpha < \omega_1$ such that A is contained in the compact subspace $(\alpha + 1) \times (\omega + 1) \times \{1\}$. Thus, A has a complete accumulation point in T. Next, let A be an infinite subset such that $|A| = \omega_1$. There is some $n \in \omega$, such that $|A \cap ((\omega_1 + 1) \times \{n\} \times \{1\})| = \omega_1$. As $(\omega_1 + 1) \times \{n\} \times \{1\}$ is compact for each $n \in \omega$, A has a complete accumulation point in T. □

For an infinite cardinal κ and a space Y, a function $f: \kappa^{<\omega} \to Y$ is called a κ -net (see [3]); the κ -net is denoted as $\langle x_F : F \in \kappa^{<\omega} \rangle$ where $f(F) = x_F$. A point $p \in Y$ is a θ -cluster point of $\langle x_F : F \in$ $\kappa^{<\omega}$ if for $p \in U \in \tau(Y)$ and $F \in \kappa^{<\omega}$, there is $G \in \kappa^{<\omega}$ such that $F \subseteq G$ and $x_G \in cl_Y U$. The concept of κ -nets fits somewhere between nets and filters. Hodel [3] proves that a Hausdorff space X is H-closed if and only if every κ -net has a θ -cluster point in X. A sequence $\langle x_{\alpha} : \alpha \in \kappa \rangle$ in a space Y has a θ -cluster point $p \in Y$ if for each $\alpha \in \kappa$ and $p \in U \in \tau(Y)$, there is some $\beta \in \kappa$ such that $\alpha < \beta$ and $x_{\beta} \in cl_{\mathbb{T}}U$. Let $S(\alpha) = \{\beta \in \kappa : \alpha < \beta\}$. Hodel [3] shows that in an H-closed space, every κ -sequence has a θ -cluster point and asks if a Hausdorff space Y in which every κ -sequence has a θ -cluster point in Y for each κ is necessarily H-closed. We answer this question by showing that our space \mathbb{T} has the property that every κ -sequence has a cluster point. First, notice that a κ sequence $\langle x_{\alpha} : \alpha \in \kappa \rangle$ in a space Y has a θ -cluster point $p \in Y$ if and only if $p \in \bigcap \{ cl_{\theta} S(\alpha) : \alpha \in \kappa \}.$

Property D. The non-H-closed space \mathbb{T} has the property that every κ -sequence has a θ -cluster point in \mathbb{T} . Let $\langle x_{\alpha} : \alpha \in \kappa \rangle$ be a κ -sequence in \mathbb{T} for some infinite cardinal κ . The family of sets $\{S(\alpha) : \alpha \in \kappa\}$ of \mathbb{T} is a chain of nonempty sets. By Property A, there is some point $p \in \bigcap \{cl_{\theta}S(\alpha) : \alpha \in \kappa\}$. By the above comment, p is a θ -cluster point in \mathbb{T} .

ALMOST H-CLOSED

Comment: By Property A, for every chain C of nonempty sets in \mathbb{T} , $\bigcap \{cl_{\theta}C : C \in C\} \neq \emptyset$. If C' is a chain of nonempty regular closed sets in \mathbb{T} , then for each $C \in C'$, $cl_{\theta}int_{\mathbb{T}}C = cl_{\mathbb{T}}int_{\mathbb{T}}C = C$. Thus, $\{int_{\mathbb{T}}C : C \in C\}$ is a chain of nonempty open sets. It follows that $\bigcap \{C : C \in C\} = \bigcap cl_{\theta}int_{\mathbb{T}}C : C \in C\} \neq \emptyset$. That is, the space \mathbb{T} has the chain property of the space \mathbb{B} in section 2. However, the space \mathbb{B} is Tychonoff, whereas the space \mathbb{T} is only Urysohn. If Xis a regular space satisfying the property that for every chain C of nonempty sets in X, $\bigcap \{cl_{\theta}C : C \in C\} \neq \emptyset$, then X is compact because in a regular space, $cl_{\theta}A = cl_XA$ for each subset A of X. For this reason, the space \mathbb{B} is also included.

Note: Another application of the chain characterization of compactness is in [7] where it is shown that an H-closed space in which every closed set is the θ -closure of another set is compact.

Many of the ideas in this paper are connected by this very nice result from [3]. We are indebted to the referee for many helpful comments and for suggesting that this result be added.

Theorem 4 ([3]). The following are equivalent for any space X and infinite cardinal κ :

- (1) every λ -sequence $\{x_{\alpha} : \alpha < \lambda\}$ with $\lambda \leq \kappa$ has a θ -cluster point;
- (2) if $\{F_{\alpha} : \alpha < \lambda\}$ is a decreasing sequence of nonempty subsets of X with $\lambda \leq \kappa$, then $\cap cl_{\theta}(F_{\alpha}) \neq \emptyset$;
- (3) if C is a chain of nonempty subsets of X with $|C| \leq \kappa$, then $\cap cl_{\theta}(C) \neq \emptyset$; and
- (4) if A is an infinite subset of X with $|A| \leq \kappa$ and |A| regular, then A has a θ -complete accumulation point.

References

- Paul Alexandroff and Paul Urysohn, Zur theorie der topologischen ra
 üme, Math. Ann. 92 (1924), 258–262.
- [2] Leonard Gillman and Meyer Jerison, Rings of Continuous Functions. The University Series in Higher Mathematics. Princeton, N.J.-Toronto-London-New York: D. Van Nostrand Co., Inc., 1960
- [3] R. E. Hodel, A theory of convergence and cluster points based on κ-nets, Topology Proc. 35 (2010), 291–330.

- [4] Miroslav Katětov, Über H-abgeschlossene und bikompakte räume, Časopis Pěst. Mat. Fys. 69 (1940), 36–49.
- [5] G. A. Kirtadze, Different types of completeness of topological spaces (Russian), Mat. Sb. (N.S.) 50 (92) (1960), 67–90.
- [6] A. V. Osipov, Weakly H-closed spaces, Proc. Steklov Inst. Math. 2004, Topol. Math. Control Theory Differ. Equ. Approx. Theory, suppl. 1, S15– S17.
- [7] Jack Porter and Mohan Tikoo, On Katětov spaces, Canad. Math. Bull. 32 (1989), no. 4, 425–433.
- [8] Jack R. Porter and R. Grant Woods, *Extensions and Absolutes of Hausdorff Spaces*. New York: Springer-Verlag, 1988.
- M. H. Stone, Applications of the theory of Boolean rings to general topology, Trans. Amer. Math. Soc. 41 (1937), no. 3, 375–481.
- [10] N. V. Veličko, *H-closed topological spaces*, Amer. Math. Soc. Transl. 70(2) (1968), 103–118.

Department of Mathematics; University of Kansas; Lawrence, KS 66045

E-mail address: porter@math.ku.edu