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D-SPACES, TREES, AND AN ANSWER

TO A PROBLEM OF BUZYAKOVA

PETER J. NYIKOS

Abstract. A ZFC example is given of a Tychonoff space in
which the extent of every subspace equals its Lindelöf de-
gree, yet the space is not a D-space, answering a question of
Raushan Z. Buzyakova. The example is the tree of compact
subsets of a stationary, co-stationary subset of 𝜔1. A simple
method is given of embedding any tree as a dense open sub-
space of a tree which is a D-space. Some classes of trees that
are D-spaces are discussed, along with some open problems
about D-spaces.

1. Introduction

This paper was motivated by the following question, posed by
Raushan Z. Buzyakova [2, Question 3.6].

Question 1.1. If 𝑋 is a space such that 𝑒(𝑌 ) = 𝑙(𝑌 ) for all sub-
spaces 𝑌 of 𝑋, is 𝑋 a D-space?

Definition 1.2. The extent of a space 𝑋, designated 𝑒(𝑋), is the
supremum of the cardinalities of its closed discrete subspaces. The
Lindelöf degree (Lindelöf number) of𝑋, designated 𝑙(𝑋), is the least
𝜅 such that every open cover of 𝑋 has a subcover of cardinality ≤ 𝜅.
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A well-known elementary fact is that 𝑒(𝑋) ≤ 𝑙(𝑋) for all topo-
logical spaces 𝑋. But from now on, “space” will mean “Hausdorff
space.” Moreover, the examples we give of trees are all Hausdorff
(hence, Tychonoff).

Definition 1.3. A neighborhood assignment (neighbornet) on a
space 𝑋 is a family of sets indexed by the points of 𝑋, each one
a neighborhood of the indexing point. A D-space (dually discrete
space, respectively) is a space 𝑋 such that for every neighbornet
𝒱 = {𝑉𝑥 : 𝑥 ∈ 𝑋}, there is a closed discrete subset (discrete subset,
respectively) 𝐷 of 𝑋 such that {𝑉𝑥 : 𝑥 ∈ 𝐷} covers 𝑋.

In the above definition, we may confine our attention to those
𝒱 whose members are open — the open neighborhood assignments.
This is because if a shrinking of a neighbornet has a [closed] dis-
crete subspace associated with it as above, then so does the original
neighbornet. Hence, one can also confine oneself to neighborhoods
from a given base for the topology or a system of neighborhood
bases for the points.

Despite the similarity in the definitions of the two concepts, the
class of dually discrete spaces is radically larger than the class of
D-spaces. But one thing the two classes share is the wide range
of uncertainty as to which spaces do or do not belong. On the
one hand, we do not know whether every subspace of a compact
hereditarily Lindelöf space is dually discrete; on the other hand,
we also do not know of a consistent example of 𝜃-refinable space
that is not a D-space. In this respect, we have not advanced at
all since Eric K. van Douwen and Washek F. Pfeffer [3] introduced
the concept of D-spaces in 1979. They remarked that there was no
satisfactory space that was known not to be a D-space, with “sat-
isfactory” meaning “having a covering property at least as strong
as metacompactness or supracompactness.”

Question 1.1 is the seventh of ten then-open problems about D-
spaces that were repeated by Todd Eisworth in [5]. In section 2, we
give a ZFC counterexample that is a tree with the interval topology.

Definition 1.4. A tree is a partially ordered set (poset) in which
the set of predecessors of each element is well ordered.
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If 𝑇 is a tree and 𝑡 ∈ 𝑇 , then 𝑡↓ = {𝑥 ∈ 𝑇 : 𝑥 ≤ 𝑡} and
∇𝑡(𝑇 ) (also denoted ∇𝑡 or 𝑡↑ if the tree is clear from context) is
{𝑥 ∈ 𝑇 : 𝑡 ≤ 𝑥}.

The height of 𝑡 ∈ 𝑇 , denoted ℎ𝑡(𝑡), is the order type of 𝑡↓, and
if 𝛼 is an ordinal, then 𝑇 (𝛼) = {𝑡 : ℎ𝑡(𝑡) = 𝛼}. Some authors write
𝑇𝛼 for 𝑇 (𝛼). The height of 𝑇 , denoted ℎ𝑡(𝑇 ), is the least 𝛼 such
that 𝑇 (𝛼) = ∅.
Definition 1.5. If 𝑇 is a tree, the interval topology (sometimes
referred to simply as the “tree topology”) on 𝑇 is the topology
whose base is the set of all intervals of the form (𝑠, 𝑡] = {𝑥 ∈ 𝑇 :
𝑠 < 𝑥 ≤ 𝑡} together with all singletons {𝑚} such that 𝑚 is a
minimal element of 𝑇 .

Section 3 gives some positive results on when a tree is a D-space,
the general question of when is a tree a D-space in its interval
topology, while in section 4 we discuss some open problems, first
for trees and then for spaces in general.

2. The main counterexample

The author’s interest in Question 1.1 was kindled by a consis-
tent example, due to Tetsuya Ishiu [9], of a space 𝑋 that is not
a D-space even though 𝑒(𝑌 ) = 𝑙(𝑌 ) for all closed subspaces. The
counterexample to Question 1.1 presented here is done just using
the usual (ZFC) axioms of set theory.

The following lemma has an easy proof.

Lemma 2.1. A subset 𝐷 of a tree 𝑇 is closed discrete if and only
if every infinite ascending sequence in 𝐷 is unbounded above in 𝑇 .

Lemma 2.2. A tree 𝑇 has a cofinal closed discrete subspace if
and only if it has a cofinal subset that is the countable union of
antichains.

Proof: If 𝐷 is a closed discrete subspace, then Lemma 2.1 implies
it is a subtree of height ≤ 𝜔, and every level in a tree is obviously an
antichain. Conversely, if {𝐴𝑛 : 𝑛 ∈ 𝜔} is a set of antichains whose
union is cofinal in a tree 𝑇 , let 𝐷𝑛 ⊂ 𝐴𝑛 be defined by induction
as follows. 𝐷0 = 𝐴0, and if 𝐷𝑛 has been defined, let

𝐷𝑛+1 = {𝑡 ∈ 𝐴𝑛+1 : (∀𝑑 ∈ 𝐷0, . . . , 𝐷𝑛) ¬(𝑡 ≤ 𝑑)}.
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Then 𝐷 =
∪∞

𝑛=0𝐷𝑛 is clearly cofinal, and any ascending chain
in 𝐷 is associated with strictly increasing subscripts and hence is
unbounded above in 𝑇 . □

Theorem 2.3. If a tree is a D-space, then every branch is of count-
able cofinality, and the tree has a cofinal subset which is a closed
discrete subspace.

Proof: Let 𝑉𝑡 = 𝑡↓ for all points 𝑡 ∈ 𝑇 . If 𝐷 is as in the definition
of a D-space, then 𝐷 is obviously a cofinal closed discrete subspace
of 𝑇 .

If 𝐵 is a branch of 𝑇 , let 𝑉𝑡 = 𝑡↓ for all 𝑡 ∈ 𝐵, while if 𝑡 /∈ 𝐵,
then let 𝑉𝑡 = 𝑡↓ if 𝑡↓ does not meet 𝐵. Otherwise, by our Hausdorff
assumption, 𝐵 is closed, so we can let 𝑉𝑡 be any interval (𝑠, 𝑡] that
does not meet 𝐵. Then if 𝐷 is as before, 𝐷 ∩𝐵 must be countable
and cofinal in 𝐵 by Lemma 2.1. □

We will return to the general question of when is a tree a D-
space in section 3. For now, we just note that the converse of
Theorem 2.3 is far from true. Any tree can be embedded as a
closed subtree of a tree with a cofinal antichain, and every closed
subspace of a D-space is a D-space. But there are examples of trees
in which every branch is countable, but which are not D-spaces. A
Souslin tree is a consistent example. Clearly, a Souslin tree does
not have a countable cofinal subset, but every union of countably
many antichains in a Souslin tree is countable.

Here is a very different, ZFC example of a non-D-space which
gives a negative answer to Question 1.1.

Example 2.4. Let 𝐸 be a stationary, co-stationary subset of 𝜔1.
Members of the tree 𝑇 (𝐸) are the compact subsets of 𝐸, ordered
by end extension <𝑇 . That is, if 𝑐1 and 𝑐2 are compact subsets of
𝐸, then 𝑐1 <𝑇 𝑐2 if and only if 𝑐1 ⊂ 𝑐2 and 𝛼 < 𝛽 for all 𝛼 ∈ 𝑐1 and
𝑏 ∈ 𝑐2 ∖ 𝑐1. Since 𝐸 does not contain a club, every branch of 𝑇 (𝐸)
is countable.

Definition 2.5. Call a tree robust if for every 𝑡 ∈ 𝑇 and every 𝛼
such that ℎ𝑡(𝑡) < 𝛼 < ℎ𝑡(𝑇 ), there exists 𝑥 ∈ 𝑇 such that 𝑡 < 𝑥
and ℎ𝑡(𝑥) = 𝛼. In other words, each point of 𝑇 has successors at
every level above its own.
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For our next theorem, we use a definition of “Baire” that refers
to the logicians’ wedge topology (also known as the Alexandroff
discrete topology [11]) on posets. This is the topology whose base
is the set of all wedges ∇𝑡 = {𝑥 ∈ 𝑇 : 𝑥 ≥ 𝑡}. This is not a 𝑇2

topology, but it is the topology logicians refer to when they use the
expressions “dense,” “open,” and “Baire” in the context of trees.
These have simple order-theoretic characterizations: A dense set in
this topology is one that is cofinal and an open set is one that is
upwards-closed. A Baire set is defined below.

Definition 2.6. A poset is 𝜔-distributive or Baire if every count-
able collection of cofinal, upwards-closed sets has cofinal intersec-
tion.

The following is well-known folklore. We need only the easy
implication (2) =⇒ (1).

Theorem 2.7. Let 𝑇 be a robust tree of height 𝜔1 in which every
chain is countable. The following are equivalent.

(1) No subset of the form ∇𝑡 has a cofinal subset which is the
countable union of antichains.

(2) 𝑇 is Baire.
(3) Forcing with 𝑇 cannot collapse 𝜔1.

Lemma 2.8 ([6]). 𝑇 (𝐸) is a robust tree of height 𝜔1.

Theorem 2.9. 𝑇 (𝐸) is not a D-space.

Proof: By Lemma 2.2, Theorem 2.3, Theorem 2.7, and Lemma
2.8, it is enough to show that 𝑇 (𝐸) is Baire. This is shown in
[12, Lemma 9.12] where 𝑇 (𝐸) is called 𝑈(𝐸), except that the
proof makes no mention of the essential ingredient that 𝑇 (𝐸) is ro-
bust, implicitly used in getting extensions arbitrarily far up inside
a countable elementary submodel. (Compare the proof of Theorem
3.9 below.) □

Theorem 2.10. 𝑇 (𝐸) has no Aronszajn subtrees.

Proof: Let 𝑆 be a subtree of 𝑇 (𝐸) in which every level is count-
able. If 𝑐 ∈ 𝑆, then the level of 𝑐 in 𝑆 is no greater than its level
in 𝑇 , which, in turn, is no greater than 𝑚𝑎𝑥(𝑐). Suppose 𝑆 is
uncountable; the following argument yields a contradiction.
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For 𝜉 ∈ 𝜔1, let

𝛼(𝜉) = 𝑚𝑖𝑛 {𝜂 : 𝑚𝑎𝑥(𝑐) ≤ 𝜂 for all 𝑐 in the 𝜉th level of 𝑆}.
Let 𝛼0 = 0, 𝛼𝜈+1 = 𝛼(𝛼𝜈 + 1), and if 𝜇 is a limit ordinal, let

𝛼𝜇 = 𝑠𝑢𝑝{𝛼𝜈 : 𝜈 < 𝜇}.
Then {𝛼𝜈 : 𝜈 < 𝜔1} is a club, and so it meets the complement of

𝐸 in a stationary set. If 𝜈 is a limit ordinal and 𝑐 is on the 𝛼𝜈th
level of 𝑆, then 𝛼𝜈 ∈ 𝑐; but if 𝛼𝜈 /∈ 𝐸, this is impossible. □
Theorem 2.11. Let 𝑇 be a tree. Exactly one of the following is
true.

(1) 𝑇 either has an uncountable branch or a Souslin subtree.
(2) Every uncountable subset of 𝑇 contains an antichain of the

same cardinality.

Proof: If (1) fails, let 𝑆 be an uncountable subset of 𝑇 .

If ∣𝑆∣ = 𝜔1, we use the fact that any uncountable tree without
an uncountable branch is either a Souslin tree or it contains an
uncountable antichain.

If 𝑐𝑓(∣𝑆∣) > 𝜔1, then some level must meet 𝑆 in a set of cardi-
nality ∣𝑆∣, and this is an antichain.

Finally, suppose ∣𝑆∣ is singular of cofinality 𝜔 or 𝜔1. If 𝑐𝑓(∣𝑆∣) =
𝜔, let {𝜅𝑛 : 𝑛 ∈ 𝜔} be cofinal in ∣𝑆∣, with 𝜅0 > 𝜔1, and let 𝑆′ =
{𝑥 ∈ 𝑆 : ∣∇𝑥(𝑆)∣ < ∣𝑆∣}.

Case 1: ∣𝑆′∣ = ∣𝑆∣. In this case, if ∣∇𝑥(𝑆)∣ < 𝜅𝑛 for some 𝑛 and
all 𝑥 ∈ 𝑆′, then the minimal members of 𝑆′ are an antichain of size
∣𝑆∣. Otherwise, pick the least 𝜃 such that the 𝜃th level 𝑆′(𝜃) of 𝑆′ is
infinite, and pick distinct 𝑡𝑛 ∈ 𝑆′(𝜃) such that ∣∇𝑡𝑛(𝑆)∣ > 𝜅𝑛. Since
𝜅𝑛 > 𝜔1, there must be an antichain 𝐿𝑛 in ∇𝑡𝑛(𝑆) of cardinality
> 𝜅𝑛; then

∪∞
𝑛=0 𝐿𝑛 is as desired.

Case 2: ∣𝑆′∣ < ∣𝑆∣. Let 𝑈 = 𝑆 ∖𝑆′, let 𝜃 be the least ordinal such
that 𝑈(𝜃) is infinite, and pick distinct 𝑡𝑛 in 𝑈(𝜃) and antichains 𝐿𝑛

as above.

If 𝑐𝑓(∣𝑆∣) = 𝜔1, just replace countable sets with sets of size 𝜔1

in the above constructions. □
Corollary 2.12. If 𝑋 is any subspace of 𝑇 (𝐸), then 𝑒(𝑋) = 𝑙(𝑋).
Moreover, extent is always attained (except for 𝜔 under some defi-
nitions of extent).
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𝑇 (𝐸) does not seem to satisfy any of the nice topological prop-
erties that van Douwen was interested in and which are featured in
most of the other problems in [5]. Even the following question is
open (and a negative answer seems likely).

Problem 2.13. Is 𝑇 (𝐸) countably metacompact?

One nice property that 𝑇 (𝐸) does have is realcompactness.

Definition 2.14. A zero-set of a space𝑋 is a set of the form 𝑓←{0}
for some continuous function 𝑓 : 𝑋 → ℝ. A Z-filter on a space 𝑋
is a proper filter 𝒰 of the lattice of zero-sets. That is, if 𝑍0 and
𝑍1 are zero-sets in 𝒰 , then their intersection is in 𝒰 , every zero-set
containing one in 𝒰 is itself in 𝒰 , and the empty set is not in 𝒰 .

A Z-ultrafilter is a Z-filter 𝒰 that is maximal among all Z-filters.
Equivalently, if 𝑍 is a zero-set not in 𝒰 , then it is disjoint from
some member of 𝒰 .

Given a collection 𝒮 of zero-sets of a space 𝑋, the Z-filter gen-
erated by 𝒮 is denoted ⟨𝒮⟩ and is the upwards closure of the set of
all finite meets of members of 𝒮 in the lattice of zero-sets.

Definition 2.15. Let 𝒰 be a Z-ultrafilter. 𝒰 is free if
∩𝒰 =

∅, and it is fixed if it is not free. A space is realcompact if it is
Tychonoff, and every Z-ultrafilter with the countable intersection
property (c.i.p.) is fixed.

For the next theorem we need the following classical facts.

(1) If a space can be partitioned into clopen sets, every Z-ultra-
filter on the set is naturally associated with an ultrafilter on the
index set, and this ultrafilter has the c.i.p. if and only if the original
Z-ultrafilter has it.

(2) [7, §12.2] No free ultrafilter on a set of cardinality smaller than
the first measurable cardinal 𝔐1 can have the c.i.p., but there is a
free ultrafilter with the c.i.p. on every discrete space of cardinality
≥ 𝔐1.

Theorem 2.16. Let 𝑇 be a tree. The following are equivalent.

∙ Every chain in 𝑇 is countable, and ∣𝑇 ∣ < 𝔐1, and 𝑇 is
Hausdorff.

∙ 𝑇 is hereditarily realcompact.
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Proof: If 𝑇 has an uncountable chain 𝐶, then the points of 𝐶
on countable levels form a copy of 𝜔1, which is not realcompact,
because every countably compact, realcompact space is compact [7,
Problem 5H2].

If 𝑇 has no uncountable branches but its cardinality is ≥ 𝔐1,
then, by regularity of measurable cardinals, 𝑇 has a level of car-
dinality ≥ 𝔐1 which is a closed discrete subspace, hence not real-
compact by the classical facts mentioned above.

So suppose ∣𝑇 ∣ < 𝔐1 and every chain in 𝑇 is countable. The only
way a tree can fail to be Hausdorff is for two or more points on a
limit level to have the same set of predecessors. This is also the only
way a basic open set can fail to be clopen; hence, every Hausdorff
tree is zero-dimensional and Tychonoff. Since every first countable
realcompact space is hereditarily realcompact [7, Corollary 8.15],
we need only show that every Z-ultrafilter on 𝑇 with the c.i.p. is
fixed. Let 𝒰 be such an ultrafilter and let 𝐶 = {𝑡 ∈ 𝑇 : ∇𝑡 ∈ 𝒰}.
Then 𝐶 is clearly a downwards closed chain. Because 𝒰 has the
c.i.p. and every chain in 𝑇 is countable, 𝐶 has a greatest element 𝑡0.
Then {𝑡0} is in 𝒰 because its complement in ∇𝑡0 can be partitioned
into ≤ 𝔠 many clopen sets of the form ∇𝑠, 𝑠 > 𝑡. Since 𝔠 is smaller
than the first measurable cardinal, 𝒰 = ⟨{𝑡0}⟩ and is thus fixed. □
Corollary 2.17. 𝑇 (𝐸) is realcompact.

Proof: It remains only to show that 𝑇 (𝐸) is Hausdorff. Note that
every non-isolated point is a compact subset 𝑐 of 𝜔1 with a greatest
element 𝛼 which is a limit ordinal in the closure of the ordinals in 𝑐
that precede it. The predecessors of 𝑐 in 𝑇 (𝐸) are initial segments
of 𝑐 with greatest elements. No other compact subset of 𝜔1 can have
the same initial segments, so 𝑇 (𝐸) is Hausdorff by the criterion in
the third paragraph in the proof of Theorem 2.16. □

3. Some classes of trees that are D-spaces

Where trees with the interval topology are concerned, dual dis-
creteness no longer causes a problem.

Theorem 3.1 ([4]). Every tree is dually discrete in the interval
topology.

However, we will mention some problems involving dual discrete-
ness after presenting some classes of trees that are D-spaces.
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Definition 3.2. Let 𝐿 be a totally ordered set. A tree 𝑇 is 𝐿-
special if there is a <-preserving function from 𝑇 to 𝐿. A tree is
special if it is a countable union of antichains.

As is well known, a tree is special if, and only if, it is ℚ-special.

Theorem 3.3. Every special tree is hereditarily a D-space.

Proof: A routine induction shows that if𝑋 is the countable union
of closed D-subspaces, then 𝑋 is a D-space. The rest is immediate
from the fact that an antichain in a tree is closed discrete, and
hence a D-space. □

A similar proof shows that every locally compact, subparacom-
pact space is a D-space. Simply use the fact that every compact
space is a D-space and the definition of “subparacompact” that
every open cover has a 𝜎-discrete closed refinement.

When this paper was originally submitted, the following ques-
tions were still open problems.

Question 3.4. Is every ℝ-special tree (a) a D-space? (b) heredi-
tarily a D-space?

Question 3.5. If a tree is hereditarily a D-space, is it (a) ℝ-special?
(b) special?

Both parts of both questions were answered by the following
result of the author’s Ph.D. student, Heather Cheatum, who showed
the following theorem.

Theorem 3.6. Let ℍ be the lexicographically ordered Hilbert cube.
Then every ℍ-special tree is hereditarily a D-space.

Even with ℍ replaced by [0, 1]2𝑙𝑒𝑥, the lexicographically ordered
unit square, the modified Theorem 3.6 implies that both parts of
Question 3.5 have negative answers, since what is called 𝜎ℝ in [12]
is [0, 1]2𝑙𝑒𝑥-special, but not ℝ-special.

The following is a class of trees that are D-spaces, but not nec-
essarily hereditarily D.

Definition 3.7. A tree is branch complete if every branch (i.e.,
every maximal chain) has a greatest element.
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The branch completion of a tree 𝑇 is the tree 𝑇 obtained by
adjoining a point 𝑡𝐵 at the end of each branch 𝐵 of 𝑇 . That is,
𝑇 = 𝑇 ∪ {𝑡𝐵 : 𝐵 is a branch of 𝑇} and if 𝑡1, 𝑡2 ∈ 𝑇 , then 𝑡1 ≤𝑇 𝑡2
if and only if either 𝑡𝑖 ∈ 𝑇 for 𝑖 = 1, 2 and 𝑡1 ≤𝑇 𝑡2 or 𝑡1 ∈ 𝑇 and
𝑡2 = 𝑡𝐵 for some branch 𝐵 such that 𝑡1 ∈ 𝐵.

Clearly, the branch completion of every tree is branch complete.
As a partial converse, if 𝑇 is a branch complete Hausdorff tree in
which all maximal points are non-isolated, then 𝑇 is naturally iso-
morphic to to the branch completion of its non-maximal members.

For simplicity, we write 𝑇 (𝐸) for 𝑇 (𝐸) below. It is a tree in which
every chain is countable, and 𝑇 (𝐸) is a dense, downwards closed

(hence, open) subtree which is not a D-space. However, 𝑇 (𝐸) is a
D-space.

Theorem 3.8. Every branch-complete, Hausdorff tree is a D-space.

Proof: Let 𝑇 be branch complete. Then every closed subtree of
𝑇 is also branch complete. Let {𝑉𝑡 : 𝑡 ∈ 𝑇} be an open neighbornet
and let 𝐷0 be the set of all maximal points of 𝑇 . If 𝐷𝛽 has been
defined for all 𝛽 < 𝛼, let 𝐷𝛼 be the set of all maximal points of

𝑇 ∖
∪
𝛽<𝛼

(
∪

{𝑉𝑡 : 𝑡 ∈ 𝐷𝛽}).

This induction ends when
∪

𝛽<𝛼(
∪{𝑉𝑡 : 𝑡 ∈ 𝐷𝛽}) covers 𝑇 , and

we will be done once we show that 𝐷 =
∪

𝛽<𝛼𝐷𝛽 is closed discrete.
In fact, the following proof shows that every chain in 𝐷 is finite.
Clearly, every 𝐷𝛽 is an antichain. If 𝑑0 < 𝑑1 < ⋅ ⋅ ⋅ < 𝑑𝑛 < . . . in
𝐷, and 𝑑𝑖 ∈ 𝐷𝑘(𝑖), then the 𝑘(𝑖) form a decreasing sequence which
terminates after finitely many steps. □

In the case 𝑇 = 𝑇 (𝐸), we seem to have very little left of 𝑇 after
the first step.

Theorem 3.9. Let 𝒰 = ⟨𝑈𝑡 : 𝑡 ∈ 𝑇 (𝐸)⟩ be an open neighbornet

and let 𝐷0 be the antichain 𝑇 (𝐸) ∖ 𝑇 (𝐸). Let 𝑈 =
∪{𝑈𝑑 : 𝑑 ∈ 𝐷0}

and let 𝑆 = 𝑇 (𝐸) ∖ 𝑈 = 𝑇 (𝐸) ∖ 𝑈 . Then 𝑆 is special.

Proof: Otherwise, let 𝑆∗ = {𝑠 ∈ 𝑆 : ∇𝑠(𝑆) is special }. Then
𝑆∗ is special, because the minimal elements form an antichain. Let
𝑆′ = 𝑆 ∖ 𝑆∗. We claim that 𝑆′ = ∅.
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Suppose 𝑆′ ∕= ∅. Then ℎ𝑡(𝑆′) = 𝜔1 and 𝑆′ is robust. Let 𝑁0 be
a countable elementary submodel of a sufficiently large fragment
of the universe containing 𝐸, 𝑇 (𝐸), and 𝒰 . Then 𝑇 (𝐸), 𝐷0, and
𝑈 are also elements of 𝑁0. Let {𝑁𝛼 : 𝛼 < 𝜔1} be a continuous
∈-chain of countable elementary submodels. Let 𝛿 /∈ 𝐸 be such
that 𝑁𝛿 ∩ 𝜔1 = 𝛿, and let 𝛼𝑛 ↗ 𝛿. Note that max(𝑡) < 𝛿 for all
𝑡 ∈ 𝑁𝛿 and that 𝛼𝑛 ∈ 𝑁𝛿 for each 𝑛.

Let 𝑥0 ∈ 𝑆′∩𝑁𝛿. By elementarity, there exists 𝑥1 ∈ 𝑆′∩𝑁𝛿 such
that 𝑥1 ≥ 𝑥0 and the height of 𝑥1 in 𝑆′ is at least 𝛼1 (but < 𝛿).
In general, with 𝑥𝑛 defined, let 𝑥𝑛+1 ≥ 𝑥𝑛, 𝑥𝑛+1 ∈ 𝑆′ ∩ 𝑁𝛿, and
𝛼𝑛+1 ≤ ℎ𝑡𝑆′(𝑥𝑛+1)(< 𝛿). Then the set of all 𝑥𝑛 is not bounded
above in 𝑇 (𝐸) because the sequence of maximum members of the
𝑥𝑛 converges to 𝛿 /∈ 𝐸, and hence it determines a branch 𝐵 of
𝑇 (𝐸). But then 𝑡𝐵 is in the closure of {𝑥𝑛 : 𝑛 ∈ 𝜔}, and 𝑡𝐵 ∈ 𝐷0,
contradicting “𝑥𝑛 ∈ 𝑆 for all 𝑛.” □

From either Theorem 3.8 or Theorem 3.3 and Theorem 3.9, we
obtain the following.

Corollary 3.10. 𝑇 (𝐸) is a D-space, yet has a dense, downwards
closed (hence open) subtree 𝑇 (𝐸) which is not a D-space.

The induction in the proof of Theorem 3.8 need not end at 𝜔.
Remarkably enough, given any cardinal number 𝜅, it is not hard
to construct trees by induction in which every chain is finite, and
for which the process does not terminate before some stage 𝛼 such
that 𝜅 ≤ 𝛼. So even if every chain in the 𝑆 of Theorem 3.9 is finite,
we could have 𝔠-many steps still to go.

4. Open problems and one more construction

Cheatum’s Theorem 3.6 suggests the following problems.

Problem 4.1. Let 𝛼 be an ordinal and let 𝐿𝛼 = [0, 1]𝛼 with the
lexicographic order. (For example, ℍ = 𝐿𝜔.) Is every 𝐿𝛼-special
tree a D-space for all countable 𝛼?

Problem 4.2. What implications hold between the following state-
ments for arbitrary Hausdorff trees 𝑇?

(1) 𝑇 is 𝐿𝛼-special for some countable ordinal 𝛼.
(2) 𝑇 is quasi-metrizable.
(3) 𝑇 is hereditarily D.
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(4) Every subtree of 𝑇 has a cofinal subset that is the countable
union of antichains.

The author has shown that (1) =⇒ (2) =⇒ (4), and he conjec-
tures that (1) =⇒ (3) =⇒ (4). What makes these implications
nontrivial is the fact that the relative topology on a subtree is not
always the interval topology. Indeed, the subtree of successor levels
is a closed discrete space in any tree, and it is an easy exercise to
embed any tree as the set of isolated points in another tree. In
contrast, the implication (1) =⇒ (2) in the following problem is
a corollary of Theorem 2.3 and the fact that a closed subspace of a
D-space is a D-space, so that only the reverse implication is open.

Problem 4.3. Are the following equivalent for any Hausdorff tree
𝑇?

(1) 𝑇 is a D-space.
(2) Every closed subtree of 𝑇 has a cofinal subset that is a count-

able union of antichains.

In comparing this problem with Theorem 2.3, note that a branch
of a Hausdorff tree is a closed subspace.

The following construction justifies a remark following Theorem
2.3.

Example 4.4. Given a tree 𝑇 , let 𝑇 ∗ = {𝑡∗ : 𝑡 ∈ 𝑇}, where 𝑡∗ /∈ 𝑇
satisfies 𝑡 < 𝑡∗ but 𝑡∗ is incomparable to any point of ∇𝑡 ∖ {𝑡}
and to any other 𝑠∗ ∕= 𝑡∗. In other words, ∇𝑡∗(𝑇

∗) = {𝑡∗} and
(𝑡∗)↓ = 𝑡↓ ∪ {𝑡}. Then 𝑇 ∗ ∖ 𝑇 is a cofinal antichain of 𝑇 ∗, and 𝑇 is
closed in 𝑇 ∗.

Finally, Problem 4.2 suggests some general questions, beginning
with the following.

Problem 4.5. [Problem 4.6.] Is every [non-Archimedeanly] quasi-
metrizable space (a) a D-space or (b) dually discrete?

Problem 4.6 is also motivated by the fact [8, Theorem 10.3] that
non-Archimedeanly quasi-metrizable spaces are those spaces with
𝜎-interior-preserving bases, and an affirmative answer to Problem
4.6 would be a generalization of the result (see [1] and [5]) that
all spaces with 𝜎-point-finite bases (more generally, all spaces with
point-countable bases) are D-spaces.
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At the present time, we even have difficulty distinguishing be-
tween problems 4.5 and 4.6. There is essentially only one known ex-
ample of a space that is quasi-metrizable but not non-Archimedeanly
quasi-metrizable, the Kofner plane [10] and [8, p. 490]. It is appar-
ently not known whether this space is a D-space.
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