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INTRINSIC DEFINITION OF STRONG SHAPE FOR
COMPACT METRIC SPACES

NIKITA SHEKUTKOVSKI

ABSTRACT. The best known approach to the intrinsic definition
of shape of compact metric spaces is by use of near continuous
functions f : X — Y and the corresponding notion of homotopy.
A new definition of strong shape will be presented based on higher
homotopies of this type.

1. INTRODUCTION

The best known approach to the intrinsic definition of shape of (metric)
spaces is by use of near continuous functions f : X — Y. The idea of -
continuity (continuity up to € > 0) leads to continuity up to some covering
VY of Y, i.e., V-continuity and the corresponding V-homotopy.

The first approach of this type for compact metric spaces was given in
[2]. We also refer the reader to [7]. In [3], the approach is generalized to
paracompact spaces.

In this paper, we present, for the first time, an intrinsic approach to
strong shape theory and construct the strong shape category of compact
metric spaces. The approach combines continuity up to a covering and
the corresponding homotopies of second order, used in [4], in constructing
the strong shape category of metric compacta. The homotopies of second
order are used in actually the same way, for construction of a category of
inverse systems in the paper [§].

In [4], it is shown that the approach using continuous homotopies of
second order leads to standard strong shape theory in the case of compact
metric spaces. It is shown that this approach is equivalent with the first
definition of the strong shape category SSh given by J. Brendan Quigley [6]
in 1973. The author believes that the strong shape category constructed
in this paper and the category SSh are isomorphic.
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28 N. SHEKUTKOVSKI

2. ConTINUITY UP TO A COVERING

Let X and Y be compact metric spaces. By a covering, we understand
an open covering.

Definition 2.1. Suppose V is a finite covering of Y. A function f: X —
Y is V-continuous at point x € X if there exists a neighborhood U, of z,
and V' € V such that

f(Uz) € V.

A function f : X — Y is V-continuous if it is V-continuous at every
point z € X. In this case, the family of all U, form a covering of X, and
since X is compact, there exists a finite subcovering. By this, f: X —» Y
is V-continuous if there exists a finite covering U of X, such that for any
x € X, there exists a neighborhood U€ U of x, and V' € V such that
f(U) C V. We denote: there exists U, such that f (U)=< V.

If f: X — Y is V-continuous, then f : X — Y is W-continuous for
any W such that V < W.

If V is a finite covering of Y and V' € V, the open set st( V) (star of V)
is the union of all W € V such that WV # 0. We form a new covering
of Y, st(V) = {st(V)|V € V}.

Theorem 2.2. Suppose V is a finite covering of Y, X = X;J X2, X;
closed, i =1,2, and f; : X; — Y, V-continuous functions, i =1,2, such
that fi(x) = fo(x) for all x € X1 () X2. We define a function f: X =Y
by
f(z) = fi(z), for z € X;, i=1,2.
Then
(1) if x € IntX; or x € IntXs, then f: X =Y is V-continuous at x;

(2) if x € FrXy and © € FrXs, then f: X = Y is st(V)-continuous
at x.

Proof. (1) If x € Int X; or z € Int X5, then there exists an open subset
U of X, x € U, such that f(U) CV for some V € V;ie., f: X =Y is
V-continuous at x.

(2) If x € FrX; and = € FrXs, since X; are closed, i =1,2, then z € X,
and x € X3. There exist open subsets U/ of X;, z € U/, and V; € V, such
that f(U]) CV;, for i =1,2. Then V4 (V2 # 0, since f1(U7) () f2(U3) # 0.

There are open subsets U; of X, U/ = U;(X;, i=1,2. We put U =
Ui Uz . Then U is a neighborhood of = in X and

fU) = HLUNX)U UNXs)
C AUINX)U f(U2NX2) = 1(UDU f2(Uz) S ViU V2.
It follows that f: X — Y is st(V)-continuous at x. O
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Definition 2.3. The functions f,g : X — Y are V-homotopic if there
exists a function F': I x X — Y such that

(1) F:Ix X —Y is st(V)-continuous;

(2) there exists a neighborhood N = [0,¢) | J(1 —¢,1], € > 0, of I =

{0, 1} such that F|yxx is V-continuous;
(3) F(0,2) = f(z) and F(1,2) = g(x).

We denote the relation of homotopy by f > g.

Proposition 2.4. The relation of homotopy fr{;g s an equivalence re-

lation.

Proof. 1f fr;g by a V-homotopy F' : I x X — Y and gr;h by a V-
homotopy G : I x X — Y, we define a homotopy H : I x X — Y by

| F(2s,2), 0<s

Hs,z) = { G(2s —1,z), <s

Since F' is V-continuous on (% -6, %] x X for some 4, % > 4§ > 0,
and G is V-continuous on [%,%—&—5) x X for some e, % > e > 0, by
Theorem 2.2, it follows that H is st(V)-continuous on (% -0, % + 5) x X;
ie, H:IxX — Y is st(V)-continuous. We have checked only one of

several conditions. O

1
1 S§
l<s<li.

Remark 2.5. In Definition 2.3, we cannot replace conditions (1) and (2)
by the expected condition: F' : I x X — Y is V-continuous. A simple
example in [1] shows that in this case the usual concatenation of two
homotopies which are V-continuous is not always V-continuous.

At the end of this section, an intrinsic definition of shape is presented
which somewhat differs from the definition in [2]. However, it is shown
that the definition of a shape morphism in this paper coincides with the
definition in [2] and, consequently, coincides with the standard definition.

The main notion for the intrinsic definition of shape for compact metric
spaces is the notion of proximate sequence from X to Y.

A sequence of finite coverings, V; > Vo-...of a compact metric space
such that for any covering V), there exists n, such that V > V), we call a
cofinal sequence of finite coverings.

Definition 2.6. A sequence (f,) of functions f, : X — Y is a prozimate
sequence from X to Y if there exists a cofinal sequence of finite coverings
of Y, Vi = Vo =..., and for all indices m > n, f, and f,, are V,-
homotopic. In this case, we say that (f,,) is a proximate sequence over

(Vn)-
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If (f,) and (f],) are proximate sequences from X to Y, then there exists
a cofinal sequence of finite coverings V; > Va>-...such that (f,) and (f},)
are proximate sequences over (V).

Two proximate sequences (f,) and (f)) : X — Y are homotopic if
for some cofinal sequence of finite coverings Vi = Vao-..., (fn) and (f})
are proximate sequences over (V,,), and for all integers, f,, and f] are
(Vp)-homotopic. We say that (f,) and (f},) are homotopic over (V,,).

By Remark 2.5 and Proposition 2.4, it follows that the relation of
homotopy of two proximate sequences (f,) and (f}) is an equivalence
relation. We denote the equivalence class by [(f,)]-

In [2], the set of V-homotopy classes of V-continuous functions f : X —
Y is denoted by [(X,Y)]y. The homotopy class of f is denoted by [f]y.
If V=V and fg;g, then ff;g. So the map pyyr : [X, Y]y — [X, Y]y,

defined by pyy/ ([f]v) = [f]v, is well defined, and
([X, Y]y, pyy, V finite covering)
is an inverse system in the category of sets and functions.
The inverse limit of this inverse system is denoted by lim [X,Y]y. In
%
[2], a bijection is established between 1&11 [X,Y]y and the set of all shape
%

morphisms from X to Y.

Theorem 2.7. There is a bijection between the set @1 [X,Y]y and the
)%

set of homotopy classes [(fn)] of prozimate sequences (fn): X =Y.

Proof. Suppose (f,) : X — Y is a proximate sequence over V; >
Vai-.... Then the inverse limit Jim [X,Y]y is isomorphic to the inverse

v
limit Jim [X, Y]y, of the inverse sequence

n

([X,Y]y,,pv,v,.,n € N),

Where for n < m7 pvnvm([f]vwn) = [f}vn'
With the homotopy class [(fy,)] of the proximate sequence (f,) : X —

Y, we associate the element

([fn]vn) = ([fl]vl7 [fQ]Vza )
of lim [X,Y]y,. First, this is an element of Jim [X,Y]y, since for n < m,

from f, oy S, 1t follows py, v ([fmlv,.) = [falv,-

Secondi if (f,) and (f},) are homotopic over (Vn), then for all integers
In oy fr, and it follows ([f.]v,) = ([fh]v,,)-

n
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Third, for a given element ([g,]v, ) = ([91]v,, [92]vs, ---) of Jim (X, Y]y,,

n
we can find a proximate sequence (g,) : X — Y such that ([gn]y,) is
associated with the homotopy class [(g,)]-
This proves the theorem. (|

Let (fn) : X — Y be a proximate sequence over (V,,), and let (gx) :
Y — Z be a proximate sequence over (Wj,). For a covering Wj, of Z, there
exists a covering V,,, of Y such that g(V,,, ) <Wj. Then the composition of
these two proximate sequences is the proximate sequence ( hy) = (gi fn,, ) :
X = Z.

Compact metric spaces and homotopy classes of proximate sequences
[(fn)] form the shape category of metric compacta. Actually, the verifica-
tion that a category is obtained is given in the next section.

3. INTRINSIC DEFINITION OF STRONG SHAPE

The sequence of pairs (fp, fn,nt1) of functions f, : X = Y and fp, 41 :
I x X — Y is a strong proximate sequence from X to Y if there exists
a cofinal sequence of finite coverings, V; = V5 »...of Y, such that for
each natural number n, f, : X — Y is a (V,,)-continuous function and
fant1 1 I x X =Y is a homotopy connecting (V,,)-continuous functions
fan: X —=Yand fr;1: X =Y.

We say that (fn, fnnt1) s a strong proximate sequence over (V).

If (fn, frnt1) and (fy,, £}, ,41) are strong proximate sequences from X
to Y, then there exists a cofinal sequence of finite coverings (V,,) such that
(fns frns1) and (f},, f}, ,11) are strong proximate sequences over (V).

Two strong proximate sequences (fp, fun+1) and (fy,, f}, p11) : X =Y
are homotopic if there exists a strong proximate sequence (F,, Fj, n4+1) :
I x X =Y over (V,) such that

(1) F,, : I x X = Y is a homotopy between V,,-continuous maps f,
and f;

(2) Fun1 1 I x I x X — Y is a st?(V,)-continuous function, and
there exists a neighborhood N of dI% such that F, ,+1|nxx is st(Vy)-
continuous, and

Fn.,n+1(tvov$) = fn,nJrl(tvx)a Fn,nJrl(tv 1ax) = f’r/L,n+1(t’ ;U)
We denote the homotopy relation by (fn, fn.n+1)=(f}, 7/1,n+1)'

Theorem 3.0.1. The relation of homotopy of strong proximate sequences
is an equivalence relation.

Proof. We will prove the transitivity of the relation. If (f,, font+1) =~
(fns foons1) by a homotopy (Fy, Fpny1) : I x X — Y over (V,) and
(fos fovmsr) = (fs filng1) by a homotopy (Gn,Gnpnt1) 1 I x X = Y
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over (V,), we define a homotopy (Hy,Hpnt1) : I x X — Y, defining
H,:IxX—Y by

[ Fa(2s,2), 0<s<3
H(s, ) = { Gn(2s —1,2), % <s<1
and H,, py1: I XIx X =Y by
_ Fn,’n+1(t723)$)7 0<s< %
Hn,n+1(t,s»x) - { Gn’n+1(t,28 _ 1’1;)’ % <s<1.

Since Fy, p41 is st(V)-continuous on I x (% -0, 1] x X, for some 6,

% >0 >0, and Gy 41 is st(V)-continuous on I x [%,%—i—e) x X, for

some ¢, % > & > 0, by Theorem 2.2, it follows that H, 11 is st*(V)-
continuous on I x (% —5,%4—5) x Xsie, Hypy1 : IXxIxX =Y is

st?(V)-continuous. O
We denote, by [(fr, frn.n+1)], the homotopy class of a strong proximate

sequence (fp, fr,n+1)-
Suppose (fn; fant1) : X — Y is a strong proximate sequence. If
n < n' are two indices, we define f,,,, : I x X =Y by

fn,n(taz) = fn(x)a

and for n < n/, and k =n' — n,

fn,n/ (t,x) = fn7n+1 * fn+1,n+2 E SR 3 f'n/ 1,0’ (t l‘)
Jrns1(kt, x), 0<t<i
frt1ns2(kt — 1, 2), lop<?
o (bt —k+1,2), kT t<1.

If (fn, fnn+1) is a strong proximate sequence over (V,,), then the func-
tion fp, »/ is a Vy,-homotopy connecting functions f, and f,-.

Definition 3.0.2. A strong proximate subsequence (g, g k+1) of the
strong proximate sequence (fy, fn.n+1) is defined by a strictly increasing
sequence of integers ny < ng < ... and by maps gr = f, and g g1 :
IxX =Y,

Gk k+1 = S+l * frg+1ng+2 % 0 % fnk+1—1,nk+1-

In order to prove the next theorem, we need the following functions
defined on 2-simplexes. In the plane with orthogonal coordinates (¢, s),
let eg, e1, and ey be the vertices of a simplex A=leg, €1, €3], and let
(bo, b1, b2) be barycentric coordinates in the simplex such that ep=(1, 0, 0),
e1=(0,1,0), and e2=(0,0,1). The map L : A — I, defined by L(t, s) = ba,
is continuous and L(eg) = 0, L(e;) = 0, and L(ez) = 1. The restriction
of the function L : A — I to the l-simplex [eg,es] is a linear map.
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The same is true for the 1-simplex [e1, ], while on [eg, e1], L equals 0.
We define a function @, ,,» : A X X — Y by

D, (8,8, 2) = frn (L(t,s), ).

Then ®,,,, : A x X — Y is st(V,)-continuous and @, ,, (e, x) = fr(z),
D, pr(e1,x) = fo(z), and @, v (e2,x) = for(x). Moreover, @, v : A X
X — Y is V,-continuous at (eg,z), (e1,z), and (eg,x) for any z € X.
For example, since f, v : I x X — Y is V,-continuous at (0,x), there
exist [0,e) C I, U a neighborhood of z in X, and V € V,, such that
Jnn([0,6) x U) C V. Then L71([0,¢)) is a neighborhood of ey, and

Oy (L710,8) X U) = fro (LL7Y0,6) X U) C frn([0,6) xU) CV,
i.e., is V,-continuous at (eq, ).

Also, we define a function ! : A x X — Y by

®! (t,5,2) = fuwl— (L(t,5), ).

Then @:}1/ A x X =Y is st(V,)-continuous and (I);}u (eg,x) = fn(2),
o~ (e1,7) = fu(x), and @;i,(eg,x) = fu(x).

n,n’

Finally, if A is the half square, A = {(t,s)|t > s} CIxI, and n <

n’ < n' are three indices and n < n”, we put v = (Z=% , =) and we
define a function f,,my : A X X =Y by
_ oL (t,s,2), (t,5) €[(1,0),v,(0,0)
f’nn/n// (t, S, l‘) - { (I)n’n”(t7 s,x)7 (t7 S) c [07 (1’ )’ (17 1)

Theorem 3.0.3. If (fn, fnnt1) is a strong prozimate sequence over (V)
and (gk, gk k+1) s a subsequence, then (gi, gr.k+1) s also a strong proz-
imate sequence over (V). The strong prozimate sequences (fn, fnn+1)
and (g, i k+1) are homotopic.

Proof. We have to define a homotopy (Hy, Hi x+1) between strong proxi-
mate sequences (fi, fi.k+1) and (gk, gr.x+1). First, we define a homotopy
Hy : I xX — Y by Hy(t,z) = frn,(t,z). Now, we have to define
Hk’k+1:IXIXX_>Y.
Case 1: If N = k and Nk+1 = k+ 1, then (fk;’fk’kJrl) = (gk,gk,k+1)-
Case 2: ny, =k and ngy1 > k+ 1. We put p = ng41 — k,

1
T={(ts))0<t<1+(=—1)-s} CIxI,

p

and define Hy p41: I X I x X =Y by

fk,k+1((1_£w : t7l’), (t,s,x) €T x X

Hirally5,2) = { et (b5,0), () € [(1,4), (1,0), (1,1)].
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The function is well defined along the line ¢ = 1 + (% —1)-s. The two
points of this line which belong to d(I x I) are (1,0) and (5, 1). The
function ®p41 p,,, is Vi-continuous at (1,0, z) and (%, 1,x). We have to
prove that the function defined by the expression fk’kﬂ(ﬁ - t,x)
is also Vj-continuous at these points. Then, by Theorem 2.2, Hy r41 :
I xIxX —Y wil be st(Vg)-continuous at these points, and condition

(2) for a homotopy of strong proximate sequences will be satisfied. If we

put h(t,s) = ﬁ-t, h:T — I, then h(1,0) =1 and h(%,l) =1 and

fre k41 (h(t, ), x) = fk,k+1((1_:ﬁ “t, ).
Since frr+1 @ I x X — Y is Vi-continuous at (1,0,z), there exist
(1 —&,1] C I, a neighborhood U of z in X, and V € Vj such that
Jrrt1((1 —&,1] x U) € V. Then h='((1 — ¢,1]) is a neighborhood of
(1,0), and

ferr1(h(h Y (1 —£,1)) x U) C frr1((1 —¢,1] x U) C V;

i.e., the function defined by the expression fkka(ﬁ “t,x) is Vg
continuous at (1,0, ).

Case 3: ny > kand ng1 > k+1. In order to define Hy, j41 : IXxIxX —
Y, we decompose I x I = Ay |JP|JAs, where A; and Ay are the sim-
plexes, A1=[(1,0), (0, =), (0,0)] and Az=[(0,1), (1, 1 = =), (1,1)]

and II is the parallelogram defined by the vertices (0, ﬁ), (0,1), (1,0),
(1,1 - —1-). We put

nk—k
@;ﬁiﬂ(us,x), (t,s,z) € Ay x X
Hipt1(t, s, ) = fknk(ﬁ + s, 1), (t,s,z) eI x X
Ppy1nps, (65, 2), (t,s,2) € Ay x X. O

Proposition 3.0.4. If f : X — Y is W-continuous, then id X f :
KxX — KxY is K xW-continuous, where K is compact and K x W =
{K x W|W € W}.

Theorem 3.0.5. Let G : I XY — Z be a st(W)-continuous function and
let there exist a neighborhood N of 01, such that G|nxy is W-continuous.
Then there exists a finite coveringV of Y, such that for each V-continuous
function f: X =Y, G(id x f) : I x X — Z is st(W)-continuous, and
G(id X f)|nrxx 18 W-continuous.
Proof. Choose a point y € Y. For any s € I, there exist an interval JY (a
neighborhood of s in I ) and a neighborhood V, of y such that
G(J? x V) CcW,,

for some W¢, € st(W), 0 < s <1, and

G x V)Y cw), G xV,))cW,
for some Wyo, Wy1 ew.
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Then {J¥|s € I} is an open covering of the interval I = [0, 1]. There
is a finite subcovering J¢ ,JY ,...,J¢ which is minimal. We can choose
the indices in such a way that

ng = [Ovbl)vjs% = (a2ab2)a~~~ann = (anvl]
and a;4+1 < b; . If we put
Vy = Vy‘("1 ﬂV?j‘z N ---ﬂVys”,

then G((a;, b;) x V) C Wi and G([0,b1) x V) C WSt, G((an, 1] x V) C
Wpn.

yThere is a finite subcovering V={V,| z € Z} of the covering {V,| y€Y'}.
Then

U {72 xVeli=1,...n}
V.ev

is a finite covering of I x Y such that G(JZ x V) is contained in some
member of st(W), 0 < s; < 1, and G(J§ x V,) and G(JF x V,) are
contained in some member of W.

Now, if f : X — Y is a V-continuous function, then the function
H: I x X — Z, defined by

H{(t,x) = G(t, f(2)),

is st(W)-continuous, and G(id x f)|n'xx is W-continuous. O

3.1. Composition of Strong Proximate Sequences. The composi-
tion of strong proximate sequences (fn, fnnt+1) : X — Y and (gk, gk k+1)
Y — Z is a strong proximate sequence (hg, hg k+1) : X — Z defined in
the following way:

If (gk,gkk+1) : Y — Z is a strong proximate sequence over Wy, then
kk+1 - I XY — Z is a homotopy connecting W;-continuous functions
gk and g1

(1) As in Theorem 3.0.5, by putting G = gj, x+1, we can construct a co-
final sequence of finite coverings V;, of Y, such that for each Vg-continuous
function f: X =Y, G(id x f) : I x X — Z is st(Wj)-continuous, and
G(id x f)|nxx is Wi-continuous.

We will choose a sequence of integers n; < ng < ... . There exists
an integer n; such that for n > n,, the function f,, , is a homotopy
connecting W;-continuous functions f,, and f,.

There exists an integer ny, such that for n > no, the function f,, , is
a homotopy connecting WWs-continuous functions f,,, and f,. We proceed
in this away and construct the sequence of integers n; < ng < ... .

From (1), it follows that the function gg g4+1(1 X fn,,,): I x X € Z is
a homotopy connecting WW-continuous functions g fr,,, and gry1fn, -
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From (1) and Proposition 3.0.4, it follows that the function g fn, n,., :
I x X € Z is a homotopy connecting Wj,-continuous functions gy, f,,, and
9k fnk+1 .

By the two previous statements and Theorem 2.2, it follows that the
sequence of pairs of functions (hg, by k+1), defined as follows, is a strong
proximate sequence.

We put
hy = gkfnk
and
G Fr i (2, ), 0<t<$
h t,x) = ksMh41 2
k’kJrl( ) { gk,k+1(2t - 13 fnk+1 (ZC)), % <t< 1

Here, fnk,nk+1 = fnk,nk+1 kK fnk+171,nk+1‘
The function is well defined since

gkfnk,nk+1 (2 : %a 33) = gkfnk+1 (Z‘) = gk,k+1(2 ’ % -1, fnk+1 (x))
and
hk,k+1(0? 1') = gkf”ky”k{»l (Ov ‘T) = gkfnk (Oa ‘T) = hk(x)
P k1 (1, @) = g1 (L, fry (%) = Ght1 frnyr (2) = higr ().
We have to prove that the composition does not depend on the choice
of subsequences.
Suppose that there is another choice of a subsequence n} < nf, < ....

The corresponding strong proximate sequence (h%,hﬁﬁk ) X = Zis
defined by

;g = gkfn;e
and
gkfn’ n' (Qt,x), 0
’ t’x — kK41
k;,k;—‘,-l( ) { gk7k+1(2t717f”2+1($))’ %

We have to prove that (hy, hg k1) : X = Z and (hy, hyp0q) : X — Z
are homotopic.

We can construct a sequence nf < n4 < ... such that n;,n; < n! for
every 4, and we define a strong proximate sequence (h,, h};k )X =7,
putting

;c/ = gkfng
and
vy Sy my, (28, 7), 0<t<i:
b (BT =0 g @1y (@), L<t<1.
To prove that (hk,hrrt1) : X — Z and (hj, by pyy) + X = Z
are homotopic, it is enough to prove that (hg,hpr+1) : X — Z and

(Wi b gy1) = X — Z are homotopic.
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We define a homotopy (Hg, Hi k+1) : I x X — Z by
Hk‘(tax) = gk‘fnkng (tax)

This homotopy connects hy = g fn, and hy = gi fry-
We define Hy 11 : I X I x X — Z by

gk?fnk’ﬂgn%+1 (S,Qt,.]?), O S t S %
Hipr1(t5,2) = $ Gk fawnisany, (288, 2), s<t<3
gk,k+1(2t*17fnk+1n;€’+1(5;1’))7 % <t<1.

Then (Hy,Hgg+1) : X x I — Z is a homotopy connecting strong
proximate sequences (hg, by k1) : X — Z and (hy,hi 1) : X — Z.

3.2. Composition of Homotopy Classes of Strong Proximate
Sequences. In subsection 3.1, we showed that the definition of the com-
position (gn, gn,n+1) © (fns frnt1) : X — Z of strong proximate sequences
(fns fant+1) : X =Y and (gn, gnont1) 1 Y — Z is well defined.

Now we define composition of homotopy classes in the standard way
by

[(gna gn,n-i-l)] o [(fna fn,n+1)] = [(gnv gn,n+1) © (f’m fn,n-‘rl)]'

Remark 3.2.1. By taking a subsequence of the original strong proximate
sequence (fn, fn.nt+1), we can suppose that the composition (A, Apnt1)
X = Z of (fn, fan+1) : X =Y and (gn, gn,nt1) 1 Y — Z is given by

hn:gnfn
and
Gnfrnt1(2t, ), 0<t<i
hpnat1(t,x) = ’ 2
1 (6,2) {gn,n+1(2t—1,fn+1<x>), lot<d

We denote (hna hn,n-i—l) = ((gf)na (gf)n,n-l-l)'

Theorem 3.2.2. Suppose that (fn, fnni1); (frs friner) + X = Y and
(9n> Gnint1)s (Gns Gnmir) © Y — Z are strong provimate sequences such

that (fnv f7l7n+1)%(f7lz? ’V/I,TL+1) and (gnagn,n+1) ~ (g;wg’:un—&-l)' Then
((gf)na (gf)n,n+1) ~ ((glfl)n7 (g/f/)n,n+1)-

P?"OOf. If (fnvfn,n+1) ~ (711’ 7/L,n+1) and (gnagn,nJrl) ~ (g;zvg;l,n+1)
by homotopies (F,,F, n+1) and (Gp,Gnnt1), respectively, then
((gf)na (gf)n,nJrl) ~ ((gf/)nv(gf/)n,n+1) by a homotopy (anHn,nJrl)v
defined by
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H,(s,x) = gnFn(s,x)
and

Gnn+1(2t = 1, Fy (s, ),

Also, ((9f")n, (9f )nm+1) = ((9'f)n, (9" f)nnt1) by a homotopy
(K’naKn,n+1), deﬁned by

Kn(s,x) = Gn(s, fo(x))

F, 2t,s,x), 0<t
Hp i (t,s,2) = { InFnnt1( ) 1
2 —

and
_ Gn(s7 7/1n+1(2t737x))7 0§t§ %
Kn,n-‘rl(t?sax) = { Gn,n+1(2t _ 17f'rlz+1(87x))7 % <t<l1.
Since ~ is an equivalence relation, it follows that((gf)n, (¢f)nn+1) =

(g ', (g/f/)n,n+1)~ O
Theorem 3.2.3. If (fn, famnt1) : X =Y, (Gn,gnnt+1) 1 Y = Z, and
(hn, hpnt1) 1 Z — W are strong prozimate sequences, then

((his 1) © (G Gnon+1)) © (Fas frns1) =

(Bns hnnt1) © ((9ns gnont1) © (o, frnt1)) -

Proof. These two maps are connected by a homotopy (Hy, Hpnt1), de-
fined by

Hn(s, .13) = hngnfn(x)

and
hngnfn,n+l(147+ts;x)7 0 S t S sjl_l
Hn,nJrl(tv 8,.%') = hngn,n+1(4t —1- S, fn-i—l(x))v Sil <t< 851
hn,n+1(%>gn+1fn+1($ )s 5451 <t<L U

The identity map X — X is defined by the strong proximate sequence
(idx,p): X — X, where p: I x X — X is defined by p(t,z) = z.

Theorem 3.2.4. Let (fy, fant1) : X — Y be a strong prozimate se-
quence. Then (idy,p) © (fnafn,n—O—l) ~ (fnafn,n+1) and (fn,fn,n.g.l) o
(devp) ~ (fnvfn,nJrl)'

Proof. A homotopy (H,,, Hy, n+1) connecting strong proximate sequences
(idYap) o (fnv fn,n—i—l) and (fn, fn,n+1) is defined by

Hn(S,J)) = fn(x)

and

2t
2t 1),
H"7n+1(t7 571:) - { ;nfR;()S+l )
n s !

»
+
=

= O
INIA
~ o+
IAIA

3
+
=
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The homotopy (K, K, n+1) connecting strong proximate sequences
(fn» fn,n+1) o (ianp) and (fna fn,nJrl) is defined by
K,(s,z) = fu(x)

and
1—s
Kn,n+1(t,s»x) = { 2

1. O

fap(t, @), 0
2t—1+s 1—s

fn,n+1( T+s ,I), 2

<t
<t

IA IA

By theorems 3.2.2, 3.2.3, and 3.2.4, it follows that compact metric
spaces and homotopy classes of strong proximate sequences form a cate-
gory which we call the strong shape category of compact metric spaces.
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