

http://topology.auburn.edu/tp/

A NOTE ON UNIFORMLY CONTINUOUS SELECTIONS FOR MULTI-VALUED MAPS

by

I. STASYUK AND E.D. TYMCHATYN

Electronically published on April 16, 2011

Topology Proceedings

Web:	http://topology.auburn.edu/tp/
Mail:	Topology Proceedings
	Department of Mathematics & Statistics
	Auburn University, Alabama 36849, USA
E-mail:	topolog@auburn.edu
ISSN:	0146-4124
~ ~ ~ ~ ~ ~ ~ ~	

COPYRIGHT © by Topology Proceedings. All rights reserved.

E-Published on April 16, 2011

A NOTE ON UNIFORMLY CONTINUOUS SELECTIONS FOR MULTI-VALUED MAPS

I. STASYUK AND E.D. TYMCHATYN

ABSTRACT. Michael's zero-dimensional selection theorem asserts that if $F: X \to Y$ is a lower semicontinuous multi-valued map of a zero-dimensional paracompact space X into a complete metric space Y and F has closed point values then F admits a continuous selection. If X is a zero-dimensional metric space it is known that one cannot always choose the selection to be uniformly continuous even if F is uniformly continuous with respect to the Hausdorff distance. In this note we prove that if X is an ultrametric space and F is uniformly continuous then F admits a uniformly continuous selection.

1. INTRODUCTION

Let (Y, ρ) be a metric space. For $A \subset Y$ and $\varepsilon > 0$ let $S(A, \varepsilon)$ denote the ε -ball around A. We extend the definition of Hausdorff metric as follows. For closed and non-empty subsets A, B of Y let $H_{\rho}(A, B)$ be the infimum of all positive δ such that $A \subset S(B, \delta)$ and $B \subset S(A, \delta)$ if such δ exists. Otherwise, let $H_{\rho}(A, B) = \infty$. A multi-valued map $F: (X, d) \to (Y, \rho)$ between metric spaces is said to be *uniformly continuous* if for each $\varepsilon > 0$ there exists $\delta > 0$ such that $d(x, y) < \delta$ implies $H_{\rho}(F(x), F(y)) < \varepsilon$.

Michael's zero-dimensional selection theorem states that if X is a paracompact zero-dimensional space and Y is a complete metric space then every multi-valued map $F: X \to Y$ which is lower semicontinuous and takes closed point values has a continuous selection f, i.e., a continuous function $f: X \to Y$ such that $f(x) \in F(x)$ for each $x \in X$.

Note that in case the space X is compact and metric the selection $f: X \to Y$ in Michael's theorem is obviously uniformly continuous.

©2011 Topology Proceedings.

41

²⁰¹⁰ Mathematics Subject Classification. Primary 54C60, 54C65; Secondary 54E40.

 $Key\ words\ and\ phrases.$ Multi-valued map, uniformly continuous selection, ultrametric space, Michael zero-dimensional selection theorem.

The authors were supported in part by NSERC grant no. OGP 0005616.

The following example shows that a selection cannot in general be chosen to be uniformly continuous even if X is a zero-dimensional metric space and F is uniformly continuous.

It is noted in [2, Example 6.1] that the multi-valued map G from the unit interval [0, 1] into the compact subsets of the space

$$\left\{ \left(t, \sin\frac{1}{t}\right) \mid t \neq 0 \right\} \cup \{(0, s) \mid -1 \le s \le 1\} \subset \mathbb{R}^2$$

defined for every $x \in X$ by the formula

$$G(x) = \begin{cases} \{(t, \sin\frac{1}{t}) \mid \frac{1}{2}x \le t \le x\} \text{ if } x \in (0, 1], \\ \{0\} \times [-1, 1] \text{ if } x = 0 \end{cases}$$

admits no continuous selection. Let G' be the restriction of the map G onto the set of the rational numbers from [0,1]. Then the map G' is uniformly continuous and is defined on the zero-dimensional space $\mathbb{Q} \cap [0,1]$ but it admits no uniformly continuous selection because otherwise it would extend to a continuous selection of G.

It is interesting to find conditions for which a multi-valued map F has a uniformly continuous selection. We give one such condition in this note.

Recall that a metric d on a space X is an *ultrametric (or non-Archimedean)* if it satisfies the strong triangle inequality

$$d(x,y) \le \max\{d(x,z), d(z,y)\}$$

for all $x, y, z \in X$. It is known [1] that a metric space X admits an ultrametric compatible with its topology if and only if dim X = 0.

2. Result

Theorem 2.1. Let (X, d) be an ultrametric space and (Y, ρ) be a complete metric space. Then every uniformly continuous multi-valued map $F: (X, d) \to (Y, \rho)$ with closed point values has a uniformly continuous selection.

Proof. Let $\{\mathcal{V}_i\}_{i=1}^{\infty}$ be the family of clopen covers of the space (X, d) such that \mathcal{V}_i consists of mutually disjoint balls of radius 1/i. Let F be a uniformly continuous multi-valued map with closed point values from a metric space (X, d) to a complete metric space (Y, ρ) . For every $j \in \mathbb{N}$ there is $\delta_j > 0$ such that

$$H_{\rho}(F(x), F(y)) < 1/j^2$$

whenever $x, y \in X$ and $d(x, y) < \delta_j$. Let $\{\mathcal{W}_j\}_{j=1}^{\infty}$ be a subsequence of $\{\mathcal{V}_i\}_{i=1}^{\infty}$ such that diam $V < \delta_j$ for every $V \in \mathcal{W}_j$. Choose $a(V, j) \in V$ for every $V \in \mathcal{W}_j, j \in \mathbb{N}$.

42

For j = 1 let $b(V, 1) \in F(a(V, 1)), V \in \mathcal{W}_1$. Define a function $f_1 \colon X \to Y$ by letting $f_1(x) = b(V, 1)$ if $x \in V \in \mathcal{W}_1$. Then f_1 is well-defined (since there is a unique element of \mathcal{W}_1 which contains x) and uniformly continuous because $f_1(x) = f_1(y)$ whenever $d(x, y) < \delta_1$.

Suppose that for $k \in \{2, ..., n-1\}$ there are defined uniformly continuous functions $f_k \colon X \to Y$ and points $b(V, k) \in F(a(V, k))$ such that

$$\rho(b(V,k), b(U,k-1)) < 1/(k-1)^2$$

and $f_k(V) = \{b(V,k)\}$ for $V \in \mathcal{W}_k, U \in \mathcal{W}_{k-1}$ with $V \subset U$.

For every $V \in \mathcal{W}_n$ there is a unique $U \in \mathcal{W}_{n-1}$ such that $V \subset U$. Since diam $U < \delta_{n-1}$ we have $d(a(V, n), a(U, n-1)) < \delta_{n-1}$ and, hence,

$$H_{\rho}(F(a(V,n)), F(a(U,n-1))) < 1/(n-1)^2.$$

Therefore, there exists $b(V, n) \in F(a(V, n))$ such that

$$\rho(b(V,n), b(U,n-1)) < 1/(n-1)^2.$$

Let $f_n: X \to Y$ be defined by $f_n(x) = b(V, n)$ if $x \in V \in \mathcal{W}_n$. Then f_n is uniformly continuous.

By induction we obtain a Cauchy sequence $\{f_n\}$ of uniformly continuous functions which converges to some uniformly continuous function $f: X \to Y$. If $x \in X$ then

$$x \in \ldots V_j \subset V_{j-1} \subset \cdots \subset V_1$$

for some unique sequence of $V_j \in \mathcal{W}_j, j \in \mathbb{N}$. Therefore,

$$f(x) = \lim_{j \to \infty} f_j(x) = \lim_{j \to \infty} b(V_j, j) \in Y$$

because $\{b(V_j, j)\}$ is Cauchy and Y is complete. Since $a(V_j, j)$ converges to x and F is uniformly continuous, $F(a(V_j, j))$ converges to F(x) and, hence, $f(x) = \lim_{j\to\infty} b(V_j, j) \in F(x)$. So $f(x) \in F(x)$ for every $x \in X$ and f is a uniformly continuous selection of F.

Acknowledgements. The authors wish to express gratitude to the referee for useful remarks and suggestions which helped to improve the paper.

References

- J. de Groot, Non-Archimedean metrics in topology, Proc. Amer. Math. Soc. 7 (1956), 948–953.
- [2] E. Michael, Continuous selections 1, Ann. of Math. 63, (1956), 361–382.

DEPARTMENT OF MECHANICS AND MATHEMATICS, LVIV NATIONAL UNIVERSITY, UNIVERSYTETSKA ST. 1, LVIV, 79000, UKRAINE

Current address: Department of Computer Science and Mathematics, Nipissing University, 100 College Drive, Box 5002, North Bay, ON, P1B 8L7 Canada E-mail address: i_stasyuk@yahoo.com

DEPARTMENT OF MATHEMATICS AND STATISTICS, UNIVERSITY OF SASKATCHEWAN, MCLEAN HALL 106 WIGGINS ROAD, SASKATOON, SK S7N 5E6 CANADA *E-mail address:* tymchat@math.usask.ca

44